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REVIEW for FINAL

Classical DISCRETE MATHEMATICS Problems



Some Discrete Mathematics Problems

PART 1: FINITE and INFINITE SETS



Finite and Infinite Sets

Definition 1

A set A is FINITE if and only if there is a natural number
n ∈ N and there is a 1 − 1 function f that maps the set
{1, 2, ...n} onto A , i.e.

f : A
1−1,onto
−→ B

Definition 2

A set A is INFINITE if and only if it is NOT FINITE



Finite and Infinite Sets

Problem 1

Use the above definitions 1, 2 to prove the following

Fact 1

A set A is INFINITE if and only if it contains a countably
infinite subset, i.e. one can define a 1 − 1 sequence {an}n∈N

of some elements of A

Proof

Part 1 Proof of the Implication

If A is infinite, then we can define a 1-1 sequence of
elements of A



Fact 1 Proof

Let A be infinite
We define the 1-1 sequence of elements of A

a1, a2, . . . , . . . , ... an, . . .

as follows
Observe that A , ∅, because if A = ∅, the set A would be
finite. Contradiction
So there is an element of a ∈ A and we define

a1 = a

Consider now a set A − {a1} = A1. A1 , ∅ because if A1 = ∅,
then A − {a1} = ∅ and A would be finite. Contradiction
So there is an element a2 ∈ A − {a1} and a1 , a2 and we
define

a1, a2



Fact 1 Proof

Assume that we defined a set

An = A − {a1, . . . , an}

The setAn , ∅ because if A − {a1, . . . , an} = ∅, then A

is finite. Contradiction

So there is an element

an+1 ∈ A − {a1, . . . , an} and an+1 , an . . . , a1

By mathematical induction, we have defined a 1-1 sequence

a1, a2, . . . , . . . , ... an, . . .

of elements of A

This ends the proof the Part 1



Fact 1 Proof

Part 2 Proof of the Implication

If the set A contains a 1-1 sequence
a1, a2, . . . , . . . , ... an, . . . , then A is INFINITE

Assume A is NOT INFINITE; i.e by the Definition 1 A is finite.
Every subset of finite set is finite, so we can’t have a 1-1
infinite sequence of elements of A. Contradiction



Finite and Infinite Sets - Problem 2

Problem 2

Use the Fact 1 from Problem 1 to prove the following

Dedekind Theorem

For any set A,

A is INFINITE if and only if there is a proper subset B of the
set A , such that |A | = |B |

Dedekind Theorem is sometimes used as a definition of the
infinite set



Dedekind Theorem Proof

Dedekind Theorem

For any set A,

A is INFINITE if and only if there is a proper subset B of the
set A , such that |A | = |B |

Proof

Part 1 Proof of the Implication

If A is an infinite set, then there is a set B and

there is a function f such that

B ⊂ A and f : A
1−1,onto
−→ B



Dedekind Theorem Proof

Let the set A be infinite

By the Fact 1, we have a 1-1 sequence a1, a2, . . . , an, . . .

of elements of A

We take B = A − {a1}. Obviously B ⊂ A and we define the

function f : A
1−1,onto
−→ B as follows

f(a1) = a2, f(a2) = a3 . . . f(an) = an+1

f(a) = a for all other a ∈ A

Obviously, f is 1-1, onto

Observe: we have many of other choices of the set B



Dedekind Theorem Proof

Part 2 Proof of the Implication

If there is a proper subset B of the set A, such that |A | = |B |,

then the set A is INFINITE

Assume that we have B ⊂ A and the function f, such that

f : A
1−1,onto
−→ B

We use Fact 1 to show that is infinite; i.e we do it by
constructing a 1-1 sequence a1 . . . an, . . . of elements of A

We do it as follows

We know that B ⊂ A , so A − B , ∅ and there is b ∈ A − B

This is our first element of the sequence a1 . . . an, . . .



Dedekind Theorem Proof

Observe that f : A
1−1,onto
−→ B, so f(b) ∈ B and b ∈ A − B,

hence f(b) , b and we take f(b) is our second element of the
sequence

We have now,
a1 = b , a2 = f(b)

and f(b) , b , b ∈ A − B , f(b) ∈ B

Take now a new element ff(b)

As f is 1-1 and f(b) , b, we get ff(b) , f(b) , b and

we defined a one- one finite sequence

a1 = b , a2 = f(b), a3 = ff(b)

We denote ff(b) = f2(b)



Dedekind Theorem Proof

We continue the construction by mathematical induction

Assume that we have constructed a 1-1 finite sequence

a1 = b , a2 = f(b), a3 = f2(b)f3(b), . . . , fn(b)

Observe that

ffn(b) = fn+1(b) , fn(b) as the function f is 1-1

By mathematical induction, we have that the sequence

{fn(b)}n∈N

is a 1-1 sequence of elements of A and hence by Fact 1 A is
infinite



Problem 3

Problem 3

Use technique from the proof of Dedekind Theorem to prove
the following

Fact 2

For any infinite set A and its finite subset B, |A | = |A − B |

Proof

A is infinite, then by Fact 1 there is a 1-1 sequence
a1, a2, . . . , an, . . . of elements of A

Let |B | = k

We choose k 1-1 sequences {ck
n }n∈N of the sequence

{an}n∈N, such that

c j
n , c i

n for all j , i, 1 ≤ i, j ≤ k and n ∈ N



Fact 2 Proof

Let B = {b1, . . . , bk }

We construct a function f : A
1−1,onto
−→ A − {b1, . . . , bk }

as follows

f(b1) = c1
1 , f(c1

1) = c1
2 , . . . , f(c

1
n) = c1

n+1

f(b2) = c2
1 , f(c2

1) = c2
2 , . . . , f(c

2
n) = c2

n+1

...

f(bk ) = ck
1 , f(ck

1 ) = ck
2 , . . . , f(c

k
n ) = ck

n+1

f(a) = a for all a ∈ A − B

As all sequences {Cm
n }n∈N,m=1,...,k are 1-1, and different,

the function f is 1-1 and obviously ONTO A − B



Problem 4

Problem 4

Use technique from the proof of Dedekind Theorem to prove
that the interval [a, b], a < b of real numbers is infinite and

|[a, b]| = |(a, b)|

Solution
Use construction presented in the proof of the Fact 2 to
construct a function

f : [a, b]
1−1,onto
−→ (a, b)



Problem 5

Problem 5

Prove the following

Fact 3

For any or any cardinal numbers M,N ,K ,

1. N ≤ N

2. If N ≤ M and M ≤ K , then N ≤ K

Solution

1. N ≤ N means that for any set A , we have that |A | ≤ |A |

It is established for example, by taking f(a) = a, for all a ∈ A ,
as obviously

f : A
1−1
−→ A



Problem 4 Solution

2. If N ≤ M and M ≤ K , then N ≤ K

Solution

We have sets A, B, C, such that |A | = N , |B | =M and

|C | = K and we assume that there are functions f and g,

such that
f : A

1−1
−→ B and g : B

1−1
−→ C

We have to construct a function h, such that

h : A
1−1
−→ C

We take as h a composition of f and g, i.e. we put for all

a ∈ A , h(a) = g(f(a)) and h is obviously 1- 1



Problem 5

Problem 5

Use Mathematical Induction to prove the following property of
finite posets

Property 1 Every non-empty finite poset has at least one
maximal element

Proof

Let (A ,≤) be a finite, not empty poset such that A has
n-elements, i.e. |A | = n

We carry the Mathematical Induction over n ∈ N − {0}

Reminder: an element ao ∈ A is a maximal element in

a poset (A ,≤) if and only if

¬∃a∈A (a0 , a ∩ a0 ≤ a)



Inductive Proof

Base case: n = 1, so A = {a} and a is maximal (and
minimal, and smallest, and largest) in the poset ({a},≤)

Inductive step: Assume that any set A such that |A | = n has
a maximal element;

Denote by a0 the maximal element in (A ,≤)

Let B be a set with n + 1 elements; i.e. we can write B as

B = A ∪ {b0} for b0 < A , for some A with n elements



Inductive Proof

By Inductive Assumption the poset (A ,≤) has a maximal
element a0

To show that (B ,≤) has a maximal element we need to
consider 3 cases.

1. b0 ≤ a0; in this case a0 is also a maximal element in
(B ,≤)

2. a0 ≤ b0; in this case b0 is a new maximal in (B ,≤)

3. a0, b0 are not compatible; in this case a0 remains
maximal in (B ,≤)

By Mathematical Induction we have proved that

∀n∈∈N−{0}(|A | = n ⇒ A has a maximal element)



Problem 6

Problem 6

Definition

Let D be a set, let n ≥ 0 and

let R ⊆ Dn+1 be a (n + 1)-ary relation on D

Then the subset B of D is said to be closed under R

if bn+1 ∈ B whenever (b1, . . . , bn, bn+1) ∈ R

Any property of the form ” the set B is closed under relations
R1,R2, . . . ,Rm” is called a Closure Property of B



CP Theorem

Prove the following Closure Property Theorem

CP Theorem

Let P be a closure property defined by relations on a set D,
and let A ⊆ D

Then there is a unique minimal set B such that B ⊆ A and
B has property P

Proof Consider the set if all subsets of D that are closed
under relations R1,R2, . . . ,Rm and that have A as a subset

We call this set S



CP Theorem Proof

Consider now

S = {X ∈ 2D : A ⊆ X and X is closed under R1,R2, . . . ,Rm}

We need to show that the poset S = (S, ⊆) has a

unique minimal element B.

Observe that S , ∅ as D ⊆ S and D is trivially closed under

R1,R2, . . . ,Rm and by definition A ⊆ D.

Consider then the set B which is the intersection of

all sets in S, i.e.
B =

⋂
S

Obviously A ⊆ B and we have to show now that B is closed

under all Ri



CP Theorem Proof

Suppose that a1, a2, . . . an−1 ∈ B, and

a1, a2, . . . an−1, an ∈ Ri

Since B is the intersection of all sets in S, we have that

a1, a2, . . . an−1 ∈ X , for all X ∈ S

But all sets in S are closed under all Ri , they also contain an

Therefore an ∈ B and hence B is closed under all Ri

Moreover, B is minimal, because there can be no proper

subset C of B, such that A ⊆ C and C is closed under all Ri

Because then C would be a member of S and thus C would
include B


