cse547 DISCRETE MATHEMATICS

Professor Anita Wasilewska

Fall2023

Lecture 16

REVIEW for FINAL

Classical DISCRETE MATHEMATICS Problems

Some Discrete Mathematics Problems

PART 1: FINITE and INFINITE SETS

Finite and Infinite Sets

Definition 1

A set A is FINITE if and only if there is a natural number $n \in N$ and there is a $1-1$ function f that maps the set $\{1,2, \ldots n\}$ onto A, i.e.

$$
f: A \xrightarrow{1-1, \text { onto }} B
$$

Definition 2

A set A is INFINITE if and only if it is NOT FINITE

Finite and Infinite Sets

Problem 1

Use the above definitions 1, 2 to prove the following
Fact 1
A set A is INFINITE if and only if it contains a countably infinite subset, i.e. one can define a 1 - 1 sequence $\left\{a_{n}\right\}_{n \in N}$ of some elements of A

Proof
Part 1 Proof of the Implication
If A is infinite, then we can define a 1-1 sequence of elements of A

Fact 1 Proof

Let A be infinite
We define the 1-1 sequence of elements of A

$$
a_{1}, a_{2}, \ldots, \ldots, \ldots a_{n}, \ldots
$$

as follows
Observe that $A \neq \emptyset$, because if $A=\emptyset$, the set A would be finite. Contradiction
So there is an element of $a \in A$ and we define

$$
a_{1}=a
$$

Consider now a set $A-\left\{a_{1}\right\}=A_{1} . A_{1} \neq \emptyset$ because if $A_{1}=\emptyset$, then $A-\left\{a_{1}\right\}=\emptyset$ and A would be finite. Contradiction So there is an element $a_{2} \in A-\left\{a_{1}\right\}$ and $a_{1} \neq a_{2}$ and we define

$$
a_{1}, a_{2}
$$

Fact 1 Proof

Assume that we defined a set

$$
A_{n}=A-\left\{a_{1}, \ldots, a_{n}\right\}
$$

The set $A_{n} \neq \emptyset$ because if $A-\left\{a_{1}, \ldots, a_{n}\right\}=\emptyset$, then A
is finite. Contradiction
So there is an element

$$
a_{n+1} \in A-\left\{a_{1}, \ldots, a_{n}\right\} \text { and } a_{n+1} \neq a_{n} \ldots \neq a_{1}
$$

By mathematical induction, we have defined a 1-1 sequence

$$
a_{1}, a_{2}, \ldots, \ldots, \ldots a_{n}, \ldots
$$

of elements of A
This ends the proof the Part 1

Fact 1 Proof

Part 2 Proof of the Implication
If the set A contains a 1-1 sequence
$a_{1}, a_{2}, \ldots, \ldots, \ldots a_{n}, \ldots$, then A is INFINITE

Assume A is NOT INFINITE; i.e by the Definition 1 A is finite. Every subset of finite set is finite, so we can't have a 1-1 infinite sequence of elements of A. Contradiction

Finite and Infinite Sets - Problem 2

Problem 2

Use the Fact 1 from Problem 1 to prove the following

Dedekind Theorem

For any set A,
A is INFINITE if and only if there is a proper subset B of the set A, such that $|A|=|B|$

Dedekind Theorem is sometimes used as a definition of the infinite set

Dedekind Theorem Proof

Dedekind Theorem

For any set A,
A is INFINITE if and only if there is a proper subset B of the set A, such that $|A|=|B|$

Proof

Part 1 Proof of the Implication
If A is an infinite set, then there is a set B and
there is a function f such that

$$
B \subset A \text { and } f: A \xrightarrow{1-1, \text { onto }} B
$$

Dedekind Theorem Proof

Let the set A be infinite
By the Fact 1, we have a $1-1$ sequence $a_{1}, a_{2}, \ldots, a_{n}, \ldots$
of elements of A
We take $B=A-\left\{a_{1}\right\}$. Obviously $B \subset A$ and we define the function $f: A \xrightarrow{1-1, \text { onto }} B$ as follows

$$
\begin{gathered}
f\left(a_{1}\right)=a_{2}, \quad f\left(a_{2}\right)=a_{3} \quad \ldots \quad f\left(a_{n}\right)=a_{n+1} \\
f(a)=a \text { for all other } a \in A
\end{gathered}
$$

Obviously, f is $1-1$, onto
Observe: we have many of other choices of the set B

Dedekind Theorem Proof

Part 2 Proof of the Implication
If there is a proper subset B of the set A, such that $|A|=|B|$,
then the set A is INFINITE
Assume that we have $B \subset A$ and the function f, such that

$$
f: A \xrightarrow{1-1, \text { onto }} B
$$

We use Fact 1 to show that is infinite; i.e we do it by constructing a $1-1$ sequence $a_{1} \ldots a_{n}, \ldots$ of elements of A We do it as follows
We know that $B \subset A$, so $A-B \neq \emptyset$ and there is $b \in A-B$
This is our first element of the sequence $a_{1} \ldots a_{n}, \ldots$

Dedekind Theorem Proof

Observe that $f: A \xrightarrow{1-1, \text { onto }} B$, so $f(b) \in B$ and $b \in A-B$, hence $f(b) \neq b$ and we take $f(b)$ is our second element of the sequence
We have now,

$$
a_{1}=b, a_{2}=f(b)
$$

and $f(b) \neq b, b \in A-B, f(b) \in B$
Take now a new element $f f(b)$
As f is $1-1$ and $f(b) \neq b$, we get $f f(b) \neq f(b) \neq b$ and we defined a one- one finite sequence

$$
a_{1}=b, \quad a_{2}=f(b), \quad a_{3}=f f(b)
$$

We denote $f f(b)=f^{2}(b)$

Dedekind Theorem Proof

We continue the construction by mathematical induction Assume that we have constructed a 1-1 finite sequence

$$
a_{1}=b, \quad a_{2}=f(b), \quad a_{3}=f^{2}(b) f^{3}(b), \ldots, f^{n}(b)
$$

Observe that

$$
f f^{n}(b)=f^{n+1}(b) \neq f^{n}(b) \text { as the function } f \text { is } 1-1
$$

By mathematical induction, we have that the sequence

$$
\left\{f^{n}(b)\right\}_{n \in N}
$$

is a $1-1$ sequence of elements of A and hence by Fact $1 A$ is infinite

Problem 3

Problem 3

Use technique from the proof of Dedekind Theorem to prove the following

Fact 2

For any infinite set A and its finite subset $B,|A|=|A-B|$
Proof
A is infinite, then by Fact 1 there is a $1-1$ sequence
$a_{1}, a_{2}, \ldots, a_{n}, \ldots$ of elements of A
Let $|B|=k$
We choose k 1-1 sequences $\left\{c_{n}^{k}\right\}_{n \in N}$ of the sequence $\left\{a_{n}\right\}_{n \in N}$, such that

$$
c_{n}^{j} \neq c_{n}^{i} \text { for all } j \neq i, 1 \leq i, j \leq k \text { and } n \in N
$$

Fact 2 Proof

Let $B=\left\{b_{1}, \ldots, b_{k}\right\}$
We construct a function $f: A \xrightarrow{1-1, \text { onto }} A-\left\{b_{1}, \ldots, b_{k}\right\}$
as follows

$$
\begin{array}{cc}
f\left(b_{1}\right)=c_{1}^{1}, & f\left(c_{1}^{1}\right)=c_{2}^{1}, \ldots, f\left(c_{n}^{1}\right)=c_{n+1}^{1} \\
f\left(b_{2}\right)=c_{1}^{2}, & f\left(c_{1}^{2}\right)=c_{2}^{2}, \ldots, f\left(c_{n}^{2}\right)=c_{n+1}^{2} \\
\vdots \\
f\left(b_{k}\right)=c_{1}^{k}, & f\left(c_{1}^{k}\right)=c_{2}^{k}, \ldots, f\left(c_{n}^{k}\right)=c_{n+1}^{k} \\
f(a)=a \text { for all } a \in A-B
\end{array}
$$

As all sequences $\left\{C_{n}^{m}\right\}_{n \in N, m=1, \ldots, k}$ are 1-1, and different, the function f is $1-1$ and obviously ONTO $A-B$

Problem 4

Problem 4

Use technique from the proof of Dedekind Theorem to prove that the interval $[a, b], a<b$ of real numbers is infinite and

$$
|[a, b]|=|(a, b)|
$$

Solution

Use construction presented in the proof of the Fact 2 to construct a function

$$
f: \quad[a, b] \xrightarrow{1-1, \text { onto }}(a, b)
$$

Problem 5

Problem 5

Prove the following

Fact 3

For any or any cardinal numbers $\mathcal{M}, \mathcal{N}, \mathcal{K}$,

$$
\text { 1. } N \leq N
$$

2. If $\mathcal{N} \leq \mathcal{M}$ and $\mathcal{M} \leq \mathcal{K}$, then $\mathcal{N} \leq \mathcal{K}$

Solution

1. $\mathcal{N} \leq \mathcal{N}$ means that for any set A, we have that $|A| \leq|A|$ It is established for example, by taking $f(a)=a$, for all $a \in A$, as obviously

$$
f: A \xrightarrow{1-1} A
$$

Problem 4 Solution

2. If $\mathcal{N} \leq \mathcal{M}$ and $\mathcal{M} \leq \mathcal{K}$, then $\mathcal{N} \leq \mathcal{K}$

Solution

We have sets A, B, C, such that $|A|=\mathcal{N},|B|=\mathcal{M}$ and $|C|=\mathcal{K}$ and we assume that there are functions f and g, such that

$$
f: A \xrightarrow{1-1} B \quad \text { and } g: B \xrightarrow{1-1} C
$$

We have to construct a function h, such that

$$
h: A \xrightarrow{1-1} C
$$

We take as h a composition of f and g , i.e. we put for all $a \in A, h(a)=g(f(a))$ and h is obviously $1-1$

Problem 5

Problem 5

Use Mathematical Induction to prove the following property of finite posets
Property 1 Every non-empty finite poset has at least one maximal element

Proof

Let (A, \leq) be a finite, not empty poset such that A has n-elements, i.e. $|A|=n$
We carry the Mathematical Induction over $n \in N-\{0\}$
Reminder: an element $a_{0} \in A$ is a maximal element in a poset (A, \leq) if and only if

$$
\neg \exists_{a \in A}\left(a_{0} \neq a \cap a_{0} \leq a\right)
$$

Inductive Proof

Base case: $n=1$, so $A=\{a\}$ and a is maximal (and minimal, and smallest, and largest) in the poset ($\{a\}, \leq$)
Inductive step: Assume that any set A such that $|A|=n$ has a maximal element;
Denote by a_{0} the maximal element in (A, \leq)
Let B be a set with $n+1$ elements; i.e. we can write B as
$B=A \cup\left\{b_{0}\right\}$ for $b_{0} \notin A$, for some A with n elements

Inductive Proof

By Inductive Assumption the poset (A, \leq) has a maximal element a_{0}
To show that (B, \leq) has a maximal element we need to consider 3 cases.

1. $b_{0} \leq a_{0}$; in this case a_{0} is also a maximal element in
(B, \leq)
2. $a_{0} \leq b_{0}$; in this case b_{0} is a new maximal in (B, \leq)
3. a_{0}, b_{0} are not compatible; in this case a_{0} remains maximal in (B, \leq)
By Mathematical Induction we have proved that
$\forall_{n \in \in N-\{0\}}(|A|=n \Rightarrow A$ has a maximal element)

Problem 6

Problem 6
 Definition

Let D be a set, let $n \geq 0$ and
let $R \subseteq D^{n+1}$ be a $(n+1)$-ary relation on D
Then the subset B of D is said to be closed under R
if $b_{n+1} \in B$ whenever $\left(b_{1}, \ldots, b_{n}, b_{n+1}\right) \in R$

Any property of the form " the set B is closed under relations $R_{1}, R_{2}, \ldots, R_{m}$ " is called a Closure Property of B

CP Theorem

Prove the following Closure Property Theorem

CP Theorem
Let P be a closure property defined by relations on a set D , and let $A \subseteq D$

Then there is a unique minimal set B such that $B \subseteq A$ and B has property P

Proof Consider the set if all subsets of D that are closed under relations $R_{1}, R_{2}, \ldots, R_{m}$ and that have A as a subset We call this set \mathcal{S}

CP Theorem Proof

Consider now

$$
\mathcal{S}=\left\{X \in 2^{D}: A \subseteq X \text { and } X \text { is closed under } R_{1}, R_{2}, \ldots, R_{m}\right\}
$$

We need to show that the poset $\mathrm{S}=(\mathcal{S}, \subseteq)$ has a unique minimal element B.
Observe that $\mathcal{S} \neq \emptyset$ as $D \subseteq \mathcal{S}$ and D is trivially closed under $R_{1}, R_{2}, \ldots, R_{m}$ and by definition $A \subseteq D$.
Consider then the set B which is the intersection of all sets in \mathcal{S}, i.e.

$$
B=\bigcap \mathcal{S}
$$

Obviously $A \subseteq B$ and we have to show now that B is closed under all R_{i}

CP Theorem Proof

Suppose that $a_{1}, a_{2}, \ldots a_{n-1} \in B$, and
$a_{1}, a_{2}, \ldots a_{n-1}, a_{n} \in R_{i}$
Since B is the intersection of all sets in \mathcal{S}, we have that $a_{1}, a_{2}, \ldots a_{n-1} \in X$, for all $X \in \mathcal{S}$
But all sets in \mathcal{S} are closed under all R_{i}, they also contain a_{n}
Therefore $a_{n} \in B$ and hence B is closed under all R_{i}
Moreover, B is minimal, because there can be no proper subset C of B, such that $A \subseteq C$ and C is closed under all R_{i}
Because then C would be a member of \mathcal{S} and thus C would include B

