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REVIEW for FINAL

Classical DISCRETE MATHEMATICS Problems



Some Discrete Mathematics Problems

PART 1: FINITE and INFINITE SETS



Finite and Infinite Sets

Definition 1

Aset Ais FINITE if and only if there is a natural number
ne N andthereis a1 -1 function f that maps the set
{1,2,...n} onto A, i.e.

1-1,onto

f: A —

Definition 2
Aset A is INFINITE ifandonlyif itis NOT FINITE



Finite and Infinite Sets

Problem 1
Use the above definitions 1, 2 to prove the following
Fact 1

Aset A is INFINITE if andonlyif it contains a countably
infinite subset, i.e. one can define a 1 — 1 sequence {an}nen

of some elements of A
Proof
Part 1 Proof of the Implication

If A is infinite, then we can define a 1-1 sequence of
elements of A



Fact 1 Proof

Let A be infinite
We define the 1-1 sequence of elements of A

31, az,...,...,...an, e

as follows

Observe that A # 0, because if A = 0, the set A would be
finite. Contradiction

So there is an element of a € A and we define
a = a

Consider now aset A —{ai} = A1. Ay # 0 because if A = 0,
then A —{a;} = 0 and A would be finite. Contradiction
So there is an element a> € A — {a4} and a; # a» and we
define

ai, az



Fact 1 Proof

Assume that we defined a set
An - A _{a19"'san}

The setA, # O because if A —-{ay,...,an} = 0,then A
is finite. Contradiction
So there is an element

an+1 € A—{ay,...,ap} and app1 #an... # a
By mathematical induction, we have defined a 1-1 sequence
al, a2y...peuuy..8ny e

of elements of A
This ends the proof the Part 1



Fact 1 Proof

Part 2 Proof of the Implication

If the set A contains a 1-1 sequence
ai, a,...,...,...an, ..., then A is INFINITE

Assume A is NOT INFINITE; i.e by the Definition 1 A is finite.
Every subset of finite set is finite, so we can’t have a 1-1
infinite sequence of elements of A. Contradiction



Finite and Infinite Sets - Problem 2

Problem 2
Use the Fact 1 from Problem 1 to prove the following

Dedekind Theorem
For any set A,

A is INFINITE if and only if there is a proper subset B of the
set A, such that |A| = |B]|

Dedekind Theorem is sometimes used as a definition of the
infinite set



Dedekind Theorem Proof

Dedekind Theorem
For any set A,

A is INFINITE if and only if there is a proper subset B of the
set A, suchthat |A| = |B]|

Proof

Part 1 Proof of the Implication

If A is an infinite set, then there is a set B and
there is a function f such that

1-1,onto

BcA and f: A —



Dedekind Theorem Proof

Let the set A be infinite

By the Fact 1, we have a 1-1 sequence aj,as, ..., an, ...
of elements of A

We take B = A —{a;y}. Obviously B ¢ A and we define the

. 1-1,onto
function f: A — B asfollows

f(a1) = da, f(aZ) = as . f(an) = an4+1

f(a) = a for all other ac A

Obviously, fis 1-1, onto
Observe: we have many of other choices of the set B



Dedekind Theorem Proof

Part 2 Proof of the Implication

If there is a proper subset B of the set A, such that |A| = |B|,
then the set A is INFINITE

Assume that we have B ¢ A and the function f, such that

1-1,onto

f: A —

We use Fact 1 to show that is infinite; i.e we do it by
constructing a 1-1 sequence a; ... an,... of elements of A

We do it as follows
We know that Bc A,so A - B # () andthereisbe A-B
This is our first element of the sequence a;...ap,...



Dedekind Theorem Proof

1-1,onto

Observethatf: A —  B,sof(b)eBandbeA-B,
hence f(b) # b and we take f(b) is our second element of the
sequence

We have now,
a = b, ars = f(b)

and f(b) # b, be A-B,f(b) e B

Take now a new element ff(b)

Asfis 1-1and f(b) # b, we get ff(b) # f(b) # b and
we defined a one- one finite sequence

ai=b, a= f(b), as = ff(b)

We denote ff(b) = 2(b)



Dedekind Theorem Proof

We continue the construction by mathematical induction
Assume that we have constructed a 1-1 finite sequence

a1 = b, ap=f(b), as=1(b)(b), ..., "(b)
Observe that
ff1(b) = "1 (b) # f"(b) as the function f is 1-1
By mathematical induction, we have that the sequence
{f"(b)}nen

is a 1-1 sequence of elements of A and hence by Fact1 A is
infinite



Problem 3

Problem 3

Use technique from the proof of Dedekind Theorem to prove
the following

Fact 2
For any infinite set A and its finite subset B, |A| = |A — B|

Proof

A is infinite, then by Fact 1 there is a 1-1 sequence
ai, a», ..., ap, ... of elements of A

Let |B| =k

We choose k 1-1 sequences {cj}nen  of the sequence
{@n}nen, such that

C{',qtc,"7 forall j#i,1<i,j<k and neN



Fact 2 Proof

LetB:{b1,...,bk}

1-1,
We construct a function f: A —o'fto A —{b1,...,bg}
as follows

i) =cl,  f(c]) =c,....f(ch) = ol

f(bx) = ck, f(ck)y =cf, ..., f(ck)y=ck

.....

the function f is 1-1 and obviously ONTO A — B



Problem 4

Problem 4

Use technique from the proof of Dedekind Theorem to prove
that the interval [a,b], a < b of real numbers is infinite and

|[a. b]| = I(a, b)]

Solution
Use construction presented in the proof of the Fact 2 to
construct a function

1-1,onto

f: [a,b] — (a,b)



Problem 5

Problem 5

Prove the following

Fact 3

For any or any cardinal numbers M, N, K,

1. NN

2. If N<M and M<K, then N <K

Solution
1. N < N means that for any set A, we have that |A| < |A|

It is established for example, by taking f(a) = a, for all a € A,

as obviously

fooAZL A



Problem 4 Solution

2. If N<M and M<K, then N <K

Solution
We have sets A, B, C, such that |[A| = N, |B|= M and
|C| = K and we assume that there are functions f and g,

such that - o
f: A— B and g:B— C

We have to construct a function h, such that
h: Al ¢

We take as h a composition of f and g, i.e. we put for all
acA, h(a)=g(f(a)) and h is obviously 1- 1



Problem 5
Problem 5

Use Mathematical Induction to prove the following property of
finite posets

Property 1 Every non-empty finite poset has at least one
maximal element

Proof

Let (A, <) be a finite, not empty poset such that A has
n-elements, i.e. |A| =n

We carry the Mathematical Induction over n € N — {0}
Reminder: an element a, € A is a maximal element in
a poset (A,<) if and only if

—Jaea(ap #anap < a)



Inductive Proof

Base case: n=1,s0 A = {a} and a is maximal (and
minimal, and smallest, and largest) in the poset ({a}, <)

Inductive step: Assume that any set A such that |A| = n has
a maximal element;

Denote by ap the maximal element in (A, <)
Let B be a set with n + 1 elements; i.e. we can write B as
B = A U{by} for by ¢ A, for some A with n elements



Inductive Proof

By Inductive Assumption the poset (A, <) has a maximal
element ap

To show that (B, <) has a maximal element we need to
consider 3 cases.

1. by < ag; in this case ag is also a maximal element in
(B, <)

2. ap < bp; in this case by is a new maximal in (B, <)
3. ap, by are not compatible; in this case ag remains
maximal in (B, <)

By Mathematical Induction we have proved that

¥ neen—0}(JA| = n = A has a maximal element)



Problem 6

Problem 6

Definition

Let D beaset, let n>0 and

let R c D" bea (n-+1)-ary relationon D

Then the subset B of D is said to be closed under R
if bpr1 € B whenever (by,....by,bri1) €R

Any property of the form ” the set B is closed under relations
Ri,Ra,...,Ry” is called a Closure Property of B



CP Theorem

Prove the following Closure Property Theorem
CP Theorem

Let P be a closure property defined by relations on a set D,
andlet AcD

Then there is a unique minimal set B suchthat BC A and
B has property P

Proof Consider the set if all subsets of D that are closed
under relations Rj, Ro, ..., Ry and that have A as a subset

We call this set S



CP Theorem Proof

Consider now
S=(Xe2P: Ac Xand Xis closed under Ry, Rs, ..., Rm)

We need to show that the poset S = (S, C) has a

unique minimal element B.

Observe that S # 0 as D € S and D is trivially closed under
Ri,Ro, ..., Ry and by definition A C D.

Consider then the set B which is the intersection of

all setsin S, i.e.
B={)S

Obviously A € B and we have to show now that B is closed
under all R;



CP Theorem Proof

Suppose that ay, ap,...a,-1 € B, and

ai,a, ... an-1, an € R;

Since B is the intersection of all sets in S, we have that
ay,a,...ap-1 € X, forall X e S

But all sets in S are closed under all R;, they also contain a,
Therefore a, € B and hence B is closed under all R;
Moreover, B is minimal, because there can be no proper
subset C of B, such that A € C and C is closed under all R;

Because then C would be a member of S and thus C would
include B



