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CHAPTER 2
PART 5: INFINITE SUMS (SERIES)



Infinite Series
D

Must Know STATEMENTS- do not need to PROVE the
Theorems
Definition
If the limit limn→∞Sn exists and is finite, i.e.

lim
n→∞

Sn = S,

then we say that the infinite sum Σ∞n=1 an converges to S
and we write

Σ∞n=1 an = lim
n→∞

Σn
k=1 ak = S,

otherwise the infinite sum diverges



Example

Show
The infinite sum Σ∞n=1 (−1)n diverges

The infinite sum Σ∞n=0
1

(k+1)(k+2) converges to 1



Example

Example
The infinite sum Σ∞n=0 (−1)n diverges
Proof
We use the Perturbation Method

Sn + an+1 = a0 +∑
n
k=0ak+1

to eveluate

Sn = Σn
k=0 (−1)k =

1 + (−1)n

2
=

1
2

+
(−1)n

2

and we prove that

lim
n→∞

(
1
2

+
(−1)n

2
) does not exist



Example

Example
The infinite sum Σ∞n=0

1
(k+1)(k+2) converges to 1; i.e.

Σ∞n=0
1

(k + 1)(k + 2)
= 1

Proof: first we evaluate Sn = Σn
k=0

1
(k+1)(k+2) as follows

Sn = Σn
k=0

1
(k + 1)(k + 2)

= Σn
k=0k−2 = Σn+1

k=0k−2
δk

=− 1
k + 1

∣∣n+1
0 =− 1

n + 2
+ 1

and
lim

n→∞
Sn = lim

n→∞
− 1

n + 2
+ 1 = 1



Theorem

Theorem
If the infinite sum Σ∞n=1an converges, then limn→∞an = 0
Observe that this is equivalent to
If limn→∞an , 0 then Σ∞n=1an diverges

The reverse statement
If limn→∞an = 0, then Σ∞n=1an converges is not always true
The infinite harmonic sum H = Σ∞n=1

1
n diverges to∞

even if limn→∞
1
n = 0



Theorem

Theorem (D’Alambert’s Criterium)

If an ≥ 0 and lim
n→∞

an+1

an
< 1

then the series
∞

∑
n=1

an converges

Theorem (Cauchy’s Criterium)
If an ≥ 0 and lim

n→∞
n√an < 1

then the series
∞

∑
n=1

an converges



Theorems

Theorem (Divergence Criteria)

If an ≥ 0 and lim
n→∞

an+1

an
> 1 or limn→∞

n
√

an > 1

then the series
∞

∑
n=1

an diverges



Convergence/Divergence

Remark

It can happen that for a certain infinite sum
∞

∑
n=1

an

lim
n→∞

an+1

an
= 1 = lim

n→∞
n√an

In this case our Divergence Criteria do not decide
whether the infinite sum converges or diverges

We say in this case that that the infinite sum does not react
on the criteria
There are other, stronger criteria for convergence and
divergence



Examples

Example

The Harmonic series H =
∞

∑
n=1

1
n

does not react on

D’Alambert’s Criterium
Proof: Consider

lim
n→∞

an+1

an
= lim

n→∞

1
n+1

1
n

= lim
n→∞

1
(1 + 1

n )
= 1

Since lim
n→∞

an+1

an
= 1 we say , that the Harmonic series

H =
∞

∑
n=1

1
n

does not react on D’Alambert’s criterium



Examples

Example

The series
∞

∑
n=1

1
(n + 1)2 does not react on

D’Alambert’s Criterium (
Proof:
Consider, lim

n→∞

an+1

an

lim
n→∞

an+1

an
= lim

n→∞

(n + 1)2

(n + 2)2

= lim
n→∞

n2 + 2n + 1
n2 + 4n + 1

= lim
n→∞

1 + 2
n + 1

n2

1 + 4
n + 4

n2

= 1

Since, lim
n→∞

an+1

an
= 1 we say , that the series

∞

∑
n=1

1
(n + 1)2

does not react on D’Alambert’s criterium



Example 1

Example 1

∞

∑
n=1

cn

n!
converges for c > 0

HINT : Use D′Alembert

Proof:

an+1

an
=

cn+1

cn
n!

(n + 1)!

=
c

n + 1



Example

lim
n→∞

an+1

an
= lim

n→∞

c
n + 1

= 0 < 1

By D’Alembert’s Criterium

∞

∑
n=1

cn

n!
converges



Example

Example

∞

∑
n=1

n!

nn converges

Proof:

an =
n!

nn

an+1 =
n!(n + 1)

(n + 1)n+1

an + 1
an

=
n! n(n+1)

(n + 1)n+1 .
nn

n!

= (n + 1) .
nn

(n + 1)n+1



Example

(n + 1)n+1 = (n + 1)n (n + 1)

an + 1
an

=
(n + 1) nn

(n + 1)n (n + 1)

= (
n

n + 1
)
n

=
1

(1 +
1
n

)n



Example

lim
n→∞

an+1

an
= lim

n→∞

1

(1 +
1
n

)n

=
1
e

< 1

By D’Alembert’s Criterium the series,

∞

∑
n=1

n!

nn converges



Exercise

Exercise
Prove that

lim
n→∞

cn

n!
= 0 for c > 0

Solution:
We have proved in Example

∞

∑
n=1

cn

n!
converges for c > 0



Exercise

Theorem says:

IF
∞

∑
n=1

an converges THEN lim
n→∞

an = 0

Hence by Example and Theorem we have proved that

lim
n→∞

cn

n!
= 0 for c > 0

Observe that we have also proved that n! grows faster
than cn



CHAPTER 2: Some Problems

Homework Problem 1
Part 1 Prove that

∑
n
k=2

(−1)k

2k −1
=−∑

n−1
k=1

(−1)k

2k + 1
Part 2 Use partial fractions and Part 1 result (must use it!)
to evaluate the sum

S = ∑
n
k=1

(−1)kk
(4k2−1)

Homework Problem 2
Show that the nth element of the sequence:

1,2,2,3,3,3,4,4,4,4,5,5,5,5,5, .....

is b
√

2n + 1
2c

Hint: Let P(x) represent the position of the last occurrence
of x in the sequence. Use the fact thatP(x) = x(x+1)

2
Let the nth element be m. You need to find m



CHAPTER 3
INTEGER FUNCTIONS

Here are the proofs in course material you need to know
for Final
Plus, of course the regular Homework Problems



PART1: Floors and Ceilings

Prove the following
Fact 3
For any x ,y ∈ R

bx + yc= bxc+ byc when 0≤ {x}+{y}< 1

and

bx + yc= bxc+ byc+ 1 when 1≤ {x}+{y}< 2

Fact 5
For any x ∈ R, x ≥ 0 the following property holds⌊√

bxc
⌋

=
⌊√

x
⌋



PART1: Floors and Ceilings

Prove the Combined Domains Property
Property 4

∑
Q(k)∪R(k)

ak = ∑
Q(k)

ak + ∑
R(k)

ak − ∑
Q(k)∩R(k)

ak

where, as before,
k ∈ K and K = K1×K2 · · ·×Ki for 1≤ i ≤ n
and the above formula represents single ( i =1)
and multiple (i > 1) sums



Spectrum

Definition
For any α ∈ R we define a SPECTRUM of α as

Spec(α) = {bαc,b2αc,b3αc · · ·}

Spec(
√

2) = {1,2,4,5,7,8,9,11,12,14,15,16, · · ·}

Spec(2 +
√

2) == {3,6,10,13,17,20, · · ·}



Spectrum Partition Theorem

Spectrum Partition Theorem
1. Spec(

√
2) , ∅ and Spec(2 +

√
2) , ∅

2. Spec(
√

2)∩Spec(2 +
√

2) = ∅
3. Spec(

√
2)∪Spec(2 +

√
2) = N−{0}



Finite Partition Theorem

First, we define certain finite subsets An, Bn of
Spec(

√
2) and Spec(2 +

√
2), respectively

Definition

An = {m ∈ Spec(
√

2) : m ≤ n}

Bn = {m ∈ Spec(2 +
√

2) m ≤ n}

Remember
An and Bn are subsets of {1,2, . . .n} for n ∈ N−{0}



Finite Partition Theorem

Given sets
An = {m ∈ Spec(

√
2) : m ≤ n}

Bn = {m ∈ Spec(2 +
√

2) : m ≤ n}

Finite Spectrum Partition Theorem
1. An , ∅ and Bn , ∅
2. An∩Bn = ∅
3. An∪Bn = {1,2, . . .n}



Counting Elements

Before trying to prove the Finite Fact we first look for a
closed formula to count the number of elements in
subsets of a finite size of any spectrum
Given a spectrum Spec(α)

Denote by N(α,n) the number of elements in the
Spec(α) that are ≤ n, i.e.

N(α,n) = | {m ∈ Spec(α) : m ≤ n} |



Spectrum Partitions

1. Justify that

N(α,n) = ∑
k>0

[
k <

n + 1
α

]
2. Write a detailed proof of

N(α,n) =

⌈
n + 1

α

⌉
−1

3. Write a detailed proof of Finite Fact

|An|+ |Bn|= n for any n ∈ N−{0}



Spectrum Partitions

Finite Spectrum Partition Theorem
1. An , ∅ and Bn , ∅
2. An∩Bn = ∅
3. An∪Bn = {1,2, . . .n}



Spectrum Partitions

Prove - use your favorite proof out of the two I have
provided
Spectrum Partition Theorem
1. Spec(

√
2) , ∅ and Spec(2 +

√
2) , ∅

2. Spec(
√

2)∩Spec(2 +
√

2) = ∅
3. Spec(

√
2)∪Spec(2 +

√
2) = N−{0}



Generalization

Prove
General Spectrum Partition Theorem
Let α > 0, β > 0, α, β ∈ R−Q be such that

1
α

+
1
β

= 1

Then the sets

A = {bnαc : n ∈ N−{0}}= Spec(α)

B = {bnβc : n ∈ N−{0}}= Spec(β )

form a partition of Z+ = N−{0}, i.e.
1. A , ∅ and B , ∅
2. A∩B = ∅
3. A∪B = Z+



PART3: Sums

Write detailed evaluation of

∑
0≤k<n

b
√

kc

Hint: use

∑
0≤k<n

b
√

kc= ∑
0≤k<n

∑
m≥0, m=b

√
kc

m



Chapter 4 Material in the Lecture 12



Theorems, Proofs and Problems

P1.
JUSTIFY correctness of the following example and be
ready to do similar problems upwards or downwards
Represent 19151 in a system with base 12
Example

19151 = 1595 ·12 + 11

1595 = 132 ·12 + 11

132 = 11 ·12 + 0

a0 = 11, a1 = 11, a2 = 0, a3 = 11

So we get
19151 = (11,0,11,11)12



Chapter 4

P2. Write a proof of Step 1 and Step 2 of the
Proof of Correctness of Euclid Algorithm
P3. Use Euclid Algorithm to prove the following
Fact 1 When a product ac of two natural numbers is
divisible by a number b that is relatively prime to a,
the factor c must be divisible by b
P4. Use Euclid Algorithm to prove the following
Fact 2

gcd(ka,kb) = k ·gcd(a,b)



Chapter 4

P5.
Prove:
Any common multiple of a and b is divisible by lcm(a,b)
P6.
Prove the following

∀p,q1q2...qn∈P (p |
n

∏
k=1

qk ⇒ ∃1≤i≤n (p = qi ) )

P7.
Write down a formal formulation (in all details ) of the
Main Factorization Theorem and its General Form



Chapter 4

P8.
Prove that the representation given by Main Factorization
Theorem is unique

Explain why and show that 18 =< 1,2 >

Prove

k = gcd(m,n) if and only if kp = min{mp,np}

k = lcd(m,n) if and only if kp = max{mp,np}

P9.
Let

m = 20 ·33 ·52 ·70 n = 20 ·31 ·50 ·73

Evaluate gcd( m, n) and k = lcd( m, n)



Exercises

P10.
Prove
Theorem
For any a,b ∈ Z+ such that lcm(a,b) and gcd(a, b) exist

lcm(a,b) ·gcd(a,b) = ab



Chapter 5

Study Lectures and Homework Problems
Use them to solve the following
Problem 1 Prove that

(x
m)
(m

k
)

= (x
k )
(

x−k
m−k

)
holds for all m,k ∈ Z and x ∈ R
Consider all cases and Polynomial argument
Problem 2 Prove the Hexagon property for n,k ∈ N

(
n−1
k −1

)(
n

k + 1

)(
n + 1

k

)
=

(
n−1

k

)(
n + 1
k + 1

)(
n

k −1

)



Chapter 5

Problem 3 Evaluate

∑
k

(
n
k

)3

(−1)k

use the formula

∑
k

(
a + b
a + k

)(
b + c
b + k

)(
c + a
c + k

)
(−1)k =

(a + b + c)!

a!b!c!


