
22nd IEEE Computer Security Foundations Symposium (CSF 2009)
Short Talks Session (Session Chair: Anupam Datta)

July 9, 2009 (16:00 - 17:15)

1) From Information-Flow Policies to Cryptographic Mechanisms: A Secure Compiler
for Distributed Programs
Cedric Fournet, Microsoft Research
Gurvan le Guernic, MSR-INRIA
Tamara Rezk, INRIA

We enforce information flow policies in programs that run at multiple
locations, with diverse levels of security. We build a compiler from a small
imperative language with locality and security annotations down to distributed
code linked with concrete cryptographic libraries. Our compiler splits source
programs into local threads; inserts checks on auxiliary variables to enforce
the source control flow; implements shared distributed variables using instead
a series of local replicas with explicit updates; and finally selects
cryptographic mechanisms for securing the communication of updates between
locations. We establish computational soundness for our compiler: under
standard cryptographic assumptions, all confidentiality and integrity
properties of the source program also hold with its distributed code, despite
the presence of active adversaries that control all communications and some of
the program locations. We also present experimental results for the code
obtained by compiling sample programs.

2) Intersection and Union Types for Secure Implementations
Michael Backes (Saarland University - MPI-SWS)
Catalin Hritcu (Saarland University)
Matteo Maffei (Saarland University)
Thorsten Tarrach (Saarland University)

We present a static analysis technique for verifying implementations of
cryptographic protocols written in RCF, a core calculus of ML with support for
concurrency. Security properties are formalized as authorization policies and
statically enforced by a novel type system, which extends prior work on
refinement types [Bengtson et al., CSF 2008] with intersection, union, and
polymorphic types.

The expressiveness of our type system allows us to analyze implementations of
important protocol classes that were out of the scope of existing static
analysis techniques, such as protocols based on zero-knowledge proofs as well
as protocols based on nested cryptography, signatures of private data, and
public-key encryption of authenticated data.

Cryptographic primitives are considered as fully reliable building blocks and
represented symbolically using a sealing mechanism. Zero-knowledge proofs, in
particular, are specified in a high-level language and automatically compiled
down to a symbolic implementation using seals.

We discuss ongoing work on applying our analysis technique to the Direct
Anonymous Attestation protocol and to the recently proposed Civitas electronic
voting system.

3) Modular Verification of Security Protocol Code by Typing
Karthikeyan Bhargavan, Microsoft Research
Cedric Fournet, Microsoft Research
Andrew D. Gordon, Microsoft Research

We propose a method for verifying the code of security protocols. Our method
relies on invariants for cryptographic structures. We use predicates to
characterize cryptographic structures, and we define pre- and post-conditions
on cryptographic algorithms so as to maintain invariants. We present a theory
to justify the soundness of code verification via our method. Our
implementation uses F7, a type-checker for refinement types, that is, types
including formulas to record invariants. As illustrated by a series of
examples, our method can flexibly deal with a range of different cryptographic
algorithms. We evaluate the method on a series of larger examples of protocol
code, previously checked using a whole-program analysis performed by a tool
chain relying on ProVerif, a leading domain-specific tool for cryptographic
protocols. Our results indicate that compositional verification by
typechecking with refinement types is more scalable than the best whole-program
analysis currently available.

4) A generic security API for symmetric key management on cryptographic devices
Véronique Cortier
Graham Steel

We describe a new generic API for managing symmetric keys on a trusted
cryptographic device. We state and prove security properties for the API. In
this talk, we will in particular compare our API and its security properties to
the one proposed by Cachin and Chandran, which will be presented in the main
CSF programme the day before the 5 minute talk session.

5) Security Theorems via Model Theory
Joshua D. Guttman (MITRE and Worcester Polytechnic Institute)

 A model-theoretic approach can establish security theorems for cryptographic
protocols. Formulas expressing authentication and non-disclosure properties of
protocols have a special form. They are quantified implications

 for all xs . (phi implies for some ys . psi).

 Models (interpretations) for these formulas are *skeletons*, partially
ordered structures consisting of a number of local protocol behaviors.
Realized skeletons contain enough local sessions to explain all the behavior,
when combined with some possible adversary behaviors.

 We show two results. (1) If phi is the antecedent of a security goal, then
there is a skeleton A_phi such that, for every skeleton B, phi is satisfied in
B iff there is a homomorphism from A_phi to B. (2) A protocol enforces for
all xs . (phi implies for some ys . psi) iff every realized homomorphic image
of A_phi satisfies psi.

Hence, to verify a security goal, one can use the Cryptographic Protocol
Shapes Analyzer CPSA (TACAS, 2007) to identify minimal realized skeletons, or
"shapes," that are homomorphic images of A_phi. If psi holds in each of these
shapes, then the goal holds.

6) Tracking information flow in dynamic tree structures
Andrey Chudnov (Stevens Institute of Technology)

I am going to talk about the problem of tracking information flow in the
presence of dynamic tree structures. While investigating the problem of secure
information flow in JavaScript we have found that contemporary solutions do not
handle the operations with the Document Object Model (DOM) tree adequately.
This fact allows carefully constructed exploits to circumvent the policy and
leak secret information to a third-party.

The paper that covers the attacks as well as the proposed enforcement mechanism
in detail will appear in the proceedings of ESORICS'09. Joint work with
Alejandro Russo and Andrei Sabelfeld (Chalmers University of Technology).

7) Towards a provably secure design of anonymous webs of trust
Michael Backes (Saarland University, MPI-SWS)
Stefan Lorenz (Saarland University)
Matteo Maffei (Saarland University)
Kim Pecina (Saarland University)

Over the last years, the Web has evolved into the premium forum for freely and
anonymously disseminating and collecting information and opinions. However,
the ability to anonymously exchange information, and hence the inability of
users to identify the information providers and to determine their credibility,
raises serious concerns about the reliability of exchanged information.

We propose a method to exchange messages preserving the anonymity of the sender
while guaranteeing to the receiver the existence of a certain trust relation
between her and the sender. Our technique is compliant to the OpenPGP standard
so it can be used on top of any already existing web of trust implementing this
standard.

The trust relations among users consist of certificate chains involving digital
signatures. The fundamental idea of our method is to deploy non-interactive
zero-knowledge proofs: users assert their trust level by proving in
zero-knowledge the existence of such certificate chains. Since the proofs are
zero-knowledge, they provably do not reveal any information about the users
except for their trust levels; in particular, the proofs hide their identity.

We verify the security properties of our protocol in a fully automated manner.
The protocol is specified in the applied pi-calculus, trust policies are
formalized as authorization policies, and anonymity properties are defined in
terms of observational equivalence relations. The verification of these
properties is then conducted using an extension of recently proposed static
analysis techniques for reasoning about symbolic abstractions of zero-knowledge
proofs.

We intend to implement our protocol and incorporate our approach into GnuPG, a
free implementation of the OpenPGP standard, in a push-button manner: the
zero-knowledge proof creation and verification utilizes already existing webs
of trust without any effort on the user side. Additionally we plan to offer the
possibility to build new webs of trust using state-of-the-art signature schemes
and zero-knowledge proof schemes to reduce the computation as well as the
communication complexity and to give tighter security guarantees.

8) The Continuous Authentication
Ines Brosso (College of Computation and Informatics, Mackenzie Presbyterian University,
Sao Paulo - Brazil)
Graça Bressan and Wilson V Ruggiero (Laboratory of Computer Architecture and Networks,
 Department of Computer and Digital System Engineering, Polytechnic School of São Paulo
University, Sao Paulo - Brazil)

The continuous authentication of the user in application software is a
complement to the initial authentication and it is necessary to guarantee that
the user who was identified and authenticated in the beginning of a session is
the same. This work presents a mechanism of continuous authentication of user
using behavioral analysis, based on the evidences of the behavior, to establish
trust levels to authenticate continuously the user during application software.
In this context, this work developed a security system named KUCAS (Known User
Continuous Authentication System) that captures the environment context
information using the contextual dimensions (who, where, when, what, why)
defined by the Context-aware computing and analyzes the user behavior.

9) Catch Me If You Can: Permissive Yet Secure Error Handling
Aslan Askarov (Cornell) and Andrei Sabelfeld (Chalmers)

Program errors are a source of information leaks. Tracking these leaks is hard
because error propagation breaks out of program structure. Programming
languages often feature exception constructs to provide some structure to error
handling: for example, the try {} catch {} blocks in Java and OCaml. Mainstream
information-flow security compilers such as Jif and FlowCaml enforce rigid
rules for exceptions in order to prevent leaks via public side effects of
computation whose reachability depends on exceptions.

This work presents a general and permissive alternative to the rigid solution:
the programmer is offered a choice for each type of error/exception whether to
handle it or not. The security mechanism ensures that, in the former case, it
is never handled and, in the latter case, it is always handled with the
mainstream restrictions. This mechanism extends naturally to a language with
procedures and output, where we show the soundness of the mechanism with
respect to termination-insensitive noninterference.

10) From dynamic to static and back: Riding the roller coaster of information-flow
control research
Alejandro Russo (Chalmers) Andrei Sabelfeld (Chalmers)

Historically, dynamic techniques are the pioneers of the area of information
flow in the 70’s. In their seminal work, Denning and Denning suggest a static
alternative for information-flow analysis. Following this work, the 90’s see
the domination of static techniques for information flow. The common wisdom
appears to be that dynamic approaches are not a good match for security since
monitoring a single path misses public side effects that could have happened in
other paths. Dynamic techniques for information flow are on the rise again,
driven by the need for permissiveness in today’s dynamic applications. But they
still involve nontrivial static checks for leaks related to control flow. This
talk demonstrates that it is possible for a purely dynamic enforcement to be as
secure as Denning-style static information-flow analysis, despite the common
wisdom. We do have the trade-off that static techniques have benefits of
reducing runtime overhead, and dynamic techniques have the benefits of
permissiveness (this, for example, is of particular importance in dynamic
applications, where freshly generated code is evaluated). But on the security

side, we show for a simple imperative language that both Denning-style analysis
and dynamic enforcement have the same assurance: termination-insensitive
noninterference.

11) Automatic analysis of distance bounding protocols
Sreekanth Malladiy (Dakota State University)
Bezawada Bruhadeshwar, Kishore Kothapalli (International Institute of Information Technology)

Distance bounding protocols are used by nodes in wireless networks to calculate
upper bounds on their distances to other nodes. However, dishonest nodes in the
network can turn the calculations both illegitimate and inaccurate when they
participate in protocol executions. It is important to analyze protocols for
the possibility of such violations.

In this presentation, we show how the constraint solver tool could be used to
automatically analyze distance bounding protocols:

1. We first formulate a new trace property called Secure Distance Bounding
(SDB) that protocol executions must satisfy; 2. We then classify the scenarios
in which these protocols can operate considering the (dis)honesty of nodes and
location of the attacker in the network; 3. Finally, we extend the constraint
solver so that it can be used to test protocols for violations of SDB in these
scenarios and illustrate our technique on some published protocols (on-line
demo at http://homepages.dsu.edu/malladis/research/ConSolv/Webpage/).

12) A Logic of Secure Systems and its Application to Trusted Computing
Anupam Datta, Jason Franklin, Deepak Garg, Dilsun Kaynar (Carnegie Mellon University)

We present a logic for reasoning about properties of secure systems. The logic
is built around a concurrent programming language with constructs for modeling
machines with shared memory, a simple form of access control on memory, machine
resets, cryptographic operations, network communication, and dynamically
loading and executing unknown (and potentially untrusted) code. The
adversary’s capabilities are constrained by the system interface as defined in
the programming model (leading to the name CSI-ADVERSARY). We develop a sound
proof system for reasoning about programs without explicitly reasoning about
adversary actions. We use the logic to characterize trusted computing
primitives and prove code integrity and execution integrity properties of two
remote attestation protocols. The proofs make precise assumptions needed for
the security of these protocols and reveal an insecure interaction between the
two protocols.

13) Computational Soundness for Key Exchange Protocols with Symmetric Encryption
Ralf Kuesters and Max Tuengerthal

In this talk, we present the first general computational soundness result for
key exchange protocols with symmetric encryption. More specifically, we develop
a symbolic, automatically checkable criterion, based on observational
equivalence, and show that a key exchange protocol that satisfies this
criterion realizes a key exchange functionality in the sense of universal
composability. Our results hold under standard cryptographic assumptions.

14) An Epistemic Approach to Coercion-Resistance for Electronic Voting Protocols
Ralf Kuesters and Tomasz Truderung

Coercion resistance is an important and one of the most intricate security

requirements of electronic voting protocols. Several definitions of coercion
resistance have been proposed in the literature, including definitions based on
symbolic models. However, existing definitions in such models are rather
restricted in their scope and quite complex.

In this talk, we report about a new definition of coercion resistance in a
symbolic setting, based on an epistemic approach, that we have proposed
recently. Our definition is relatively simple and intuitive. It allows for a
fine-grained formulation of coercion resistance and can be stated independently
of a specific, symbolic protocol and adversary model. As a proof of concept, we
apply our definition to three voting protocols. In particular, we carry out the
first rigorous analysis of the recently proposed Civitas system. We precisely
identify those conditions under which this system guarantees coercion
resistance or fails to be coercion resistant. We also analyze protocols
proposed by Lee et al. and Okamoto.

15) Implicit flows in nonmalicious code
Alejandro Russo (Chalmers)
Andrei Sabelfeld (Chalmers)
Keqin Li (SAP)

Information-flow technology is a promising approach for ensuring security by
design and construction. However, recent experiments indicate that
information-flow technology has run into a practical obstacle: false alarms.
These alarms result from implicit flows, i.e., flows through control flow when
computation branches on secret data and performs publicly observed side effects
depending on which branch is taken.

The large body of literature exercises two extreme views on implicit flows:
either track them (striving to show that there are no leaks, and often running
into the problem of false alarms), or not track them (which reduces false
alarms, but all bets are often off in terms of security guarantees).

This short talk explores a middle ground between the two extremes. We observe
that implicit flows are often harmless in nonmalicious code: they cannot be
exploited to efficiently leak secrets. To this end, we are able to guarantee
strong information-flow properties with a combination of an explicit-flow and a
graph-pattern analyses. Case studies on secure logging and cross-site scripting
prevention suggest that our approach offers a desired combination of a
lightweight analysis, strong security guarantees, and no excessive false
alarms.

16) A Proof-Carrying File System
Deepak Garg (CMU)
Frank Pfenning (CMU)

There is a significant mismatch in the complexity of file access
policies prevalent in large organizations like intelligence and
military establishments, and the sophistication of mechanisms
currently available for their enforcement. Policies often rely on high
level motifs like delegation of rights, time-based expiration of
credentials, and attributes of individuals and files, whereas the only
available mechanism for enforcing these policies in file systems today
is access control lists. Translating the intent of complex policy
rules to these low level lists, and keeping the latter up-to-date with
respect to changing credentials requires substantial and continuous

manual effort and is a source of many policy enforcement errors.

Based on these considerations, we have recently designed and
implemented a file system, PCFS, that uses a combination of
proof-carrying authorization (PCA) and conditional cryptographic
capabilities to rigorously enforce policies written in a logic, where
high-level motifs can be represented directly. Our design makes two
technically challenging, foundational contributions that may have
practical implications even beyond PCFS. First, we introduce a new
authorization logic, BL, which allows representation of policies
depending on both explicit time (e.g., time-bound credentials), and
untracked system state (e.g., file meta data). The proof theory of BL
delicately balances expressiveness and the possibility of practical
implementation in tools like the automatic theorem prover that we have
built for PCFS.

Second, we develop an efficient mechanism for end-to-end enforcement
of BL's rich policies. As opposed to PCA, which requires that proofs
authorizing access be verified at each system call, our architecture
delegates proof verification to a trusted program that is outside the
system interface, and invoked in advance of file access. This trusted
program returns cryptographic capabilities which authorize access to
files. Capabilities can be checked 100-1000 times faster than proofs,
thus allowing a very high throughput in the file system backend. The
foundationally interesting idea here is that, in order to prevent
access through capabilities derived from stale proofs, all time and
state dependencies of a proof must be carried into capabilities
generated from it. Capabilities are therefore conditional on such
dependencies, and we prove formally that access due to stale proofs is
impossible in our architecture.

In ongoing work we are considering capabilities with new types of
conditions to enforce certificate revocation as well as credentials
that can be used once only. At the policy level, the latter may be
represented using ideas from linear logic.

17) Improving JavaScript Isolation using Rewriting Techniques
Sergio Maffeis (Imperial College)
Ankur Taly (Stanford University)

In this talk we complement the presentation of the paper "Language-Based
Isolation of Untrusted JavaScript" with a survey of further work by the
same authors on rewriting techniques for JavaScript. We present our
rewriting techniques, discuss the expressiveness of the resulting
JavaScript subset and its relation to Facebook FBJS.

