
Appendix A

User and System Manual

A.1 Combinatorial Optimization with DIS-

CROPT

DISCROPT is a time-sensitive combinatorial optimizer; it finds the best
solution possible within a limited computing budget. These terms need to
be clarified.

A (computational) problem has an associated parameter, its size. For
example, here’s a problem: given a map of 100 cities find a tour that vis-
its each city exactly once. Here, 100 is the size of this particular problem.
Algorithms and heuristics are methods that find desirable solutions of all
sizes. When we talk about a particular problem, we always have in mind all
possible instances and sizes.

An optimization problem asks for the “best” solution subjected to an
objective function. For example: given a map (of any number of cities), find
the best tour that visits each city exactly once. The objective function in this
case can be the usual Euclidean metric or measure of distance defined by the
user. In DISCROPT, “best” always means “minimized”; it attempts to find
a solution with the (almost) smallest or minimized objective value.

Combinatorial means the discrete or finite property of the problem.
This means each solution to the problem must be made up in a certain man-
ner by a countable, finite number of “elements”. In the above examples, a
solution is a tour or an ordering of all cities. The elements are cities. Fur-
ther, a solution (i.e a tour) can be represented as a circular permutation.
We observe that many optimization problems can be represented by either

1

“permutations”, “subsets”, or “set partitions”. Hence, these representations
together with their slight variants are currently supported.

A user must know and specify which combinatorial representation implied
by his optimization problem in order to use DISCROPT. A user only needs
to provide an objective function which takes as input an already-defined
solution representation and provides its objective value. When DISCROPT is
run, it uses already-defined search heuristics to find the best solution within
a specified running time. To be flexible and efficient, users are given the
options of defining additional functions that altogether serve as an objective
function in a local search framework.

Interestingly, running time is a user input. DISCROPT uses its search
strategies to find the most minimized solution within this specified running
time. This distinct time-sensitive feature is born out of our observation
that an abstract optimization problem might have applications with drasti-
cally different computing budgets. In one case, a user simply demands for
the best possible solution. In others, perhaps more realistic considering the
(NP-)hardness of most optimization problems, one can only hope for the best
possible within his computing budget.

In the following sections, we will describe by example the process of im-
plementing an optimization problem, a search heuristic, and a solution rep-
resentation.

A.2 Example: Implementing TSP

We will go through the process of using DISCROPT to optimize the Traveling
Saleperson problem (TSP): Given N cities find a shortest tour that visits all
vertices, each exactly once. Each instance of this problem can be abstractly
represented as a weighted complete graph of N vertices. The weight of edge
(i, j) is the distance between city i and j. A solution, i.e a tour, can be
abstractly represented as a circular permutation of N numbers. For example,
the circular permutation π0π1 · · ·πN−1 represents the tour starting from city
π0, to π1, · · · , to πN−1, then coming back to π0. Then the subjective cost of
this solution is:

d(πN−1, π0) +
N−2∑
i=0

d(πi, πi+1)

To use DISCROPT, these following functions must be defined:

2

1. double ObjectiveFunction::cost(CircularPermutation & sol) –
takes a solution of type circular permutation and return the objective
cost of the solution. This function must be defined so that the lower
the cost, the better the solution.

2. double ObjectiveFunction::delta cost(CircularPermutation & sol,

const mutation element & mut el) – takes a solution and a muta-
tion, returns the cost of the change from the solution to the neighboring
solution obtained by mutating “sol” using the mutation “mut el”. This
function is used by such heuristics as simulated annealing and hill climb
heuristics.

3. double ObjectiveFunction::extend cost(CircularPermutation &

sol, const mutation element & mut el) – takes a partial solution
and a mutation, returns the cost of the extension from the solution to
the extended neighbor obtained by extending “sol” using the mutation
“mut el”. This is used by the greedy heuristic.

4. double ObjectiveFunction::correctness(CircularPermutation &

sol) – computes the degree of correctness or feasibility of the given so-
lution. The correctness of a correct solution is 0; a lower number means
the solution is more correct.

5. double ObjectiveFunction::delta correctness(CircularPermutation

& sol, const mutation element & mut el) – is similar to delta cost.
It is used by simulated annealing and hill climb heuristics.

6. double ObjectiveFunction::extend correctness(CircularPermutation

& sol, const mutation element & mut el) – is similar to extend cost.
It is used by the greedy heuristic.

7. double ObjectiveFunction::true cost(CircularPermutation & sol)

– measures the “real” objective cost of a solution. Often, as in TSP, it
is the same as cost, but for some problems cost may be different from
true cost, and the users may want to trace the values of both during
search. DISCROPT, however, tries to find the lowest solution with
respect to cost, not true cost.

8. double ObjectiveFunction::true correctness(CircularPermutation

& sol) – measures the “real” correctness of a solution; similarly defined
as true cost.

3

A.2.1 TSP’s Cost

The objective cost of TSP is defined as:

d(πN−1, π0) +
N−2∑
i=0

d(πi, πi+1)

In DISCROPT, this is written as:

double ObjectiveFunction::cost(CircularPermutation & sol)

{

int current, next, size = sol.get_permutation_size();

double weight=0;

current = sol.first_index();

for(int i=0; i<size; i++){

next = sol.next_index(current);

weight += search_space->edge_weight(sol[current], sol[next]);

current = next;

}

return weight;

}

A few observations:

• ObjectiveFunction::search space stores the data structure of the prob-
lem instance, in this case a graph. It contains the method edge weight
that gives the weight of an edge. The data structure of search space
must have a public static method called get size() that returns the
size of a solution (of type circular permutation). In TSP, a circular
permutation contains all vertices, and therefore get size() returns the
number of vertices in the graph. This function is mandatory as it is
used by DISCROPT to generate a random solution.

In DISCROPT, we use the Graph Template Library (GTL) to provide
the graph data structure for TSP. There is no need for GTL if the user
provides his own data structure helped to define the objective function.

• The type CircularPermutation has several public methods accessible to
users. In this example, the user uses methods get permutation size()

4

to get the size of the permutation, and first index() and next index()
to enumerate the indices of a circular permutation solution.

For permutation, subset, and partition representations, their ele-
ments can still be accessed or enumerated through theindexing mecha-
nism: first index(), last index(), next index(), []. For example,
the first element of a circular permutation s is s[s.first index()].

It must be reminded that DISCROPT minimizes, i.e. if s1 is subjectively
better than s2, then cost(s1) must be lower than cost(s2).

A.2.2 TSP’s delta cost

Local search heuristics such as simulated annealing and hill climb move from
one solution to a neighboring solution to find the best one. Instead of recom-
puting the cost, we can use delta cost to save a factor of O(n) computation.

Delta costs takes a solution and a mutation and returns the cost of the
change a solution to the neighboring solution obtained by mutating the given
solution. Different solution representations have different definitions of mu-
tation (implementation details are in operator.cpp):

1. Circular permutation, permutation – a mutation means exchang-
ing two random indices. The indices are stored in mutation element::first
and mutation element::second.

Therefore, a neighbor of s has the same permutation as s except at two
indices.

The difference is that a circular permutation is equivalent (i.e. same
objective cost) to all of its cyclic orders; the search space is narrower.

2. Subset – a mutation means taking a random item and reversing its
position: if the randomly selected element is in the subset solution, it is
removed from the subset; conversely, if the randomly selected is not in
the subset solution, it is placed in the solution. This random element
is stored in mutation element::first.

Therefore, a neighbor of s has the same subset as s except one element
whose position is flipped.

5

3. Partition – a mutation means moving a random element (stored in
mutation element::first) to different random parts (stored in mu-
tation element::second).

Therefore, A neighbor of s, has the same partition as s except an
element is moved to another (possibly new) part.

Relevant files to look at are: combinatorial solution.h, (circular)permutation.h,
subset.h, partition.h, operator.cpp, basic types.h.

For TSP, any two neighboring circular permutations differ by an exchange
of two indices. In other words, if s and δs are neighbors, then they are exactly
the same except at two indices, say i and j, where s[i] = δs[j] and s[j] = δs[i].
Suppose |i − j| 6= 1, then we can define delta cost(s, δs) as:

−d(sπ(i−1), sπ(i)) − d(sπ(i), sπ(i+1)) − d(sπ(j−1), sπ(j)) − d(sπ(j), sπ(j+1))

+d(sπ(i−1), sπ(j)) + d(sπ(j), sπ(i+1)) + d(sπ(j−1), sπ(i)) + d(sπ(i), sπ(j+1))

We also need to address the special case when |i− j| = 1. In DISCROPT, it
is written as follows (details omitted):

double ObjectiveFunction::delta_cost(CircularPermutation & sol,
const mutation_element &mut_el)

{
int i = mut_el.first;
int j = mut_el.second;
int first = sol[i];
int before_first = sol[sol.previous_index(i)];
int after_first = sol[sol.next_index(i)];

int second = sol[i];
int after_second = sol[sol.next_index(j)];
int before_second = sol[sol.previous_index(j)];

double d = 0;
if((first != before_second) && (second != before_first)){

d -= search_space->edge_weight(before_first, first);
d -= search_space->edge_weight(first, after_first);
d -= search_space->edge_weight(before_second, second);
d -= search_space->edge_weight(second, after_second);

6

d += search_space->edge_weight(before_first, second);
d += search_space->edge_weight(second, after_first);
d += search_space->edge_weight(before_second, first);
d += search_space->edge_weight(first, after_second);

}
\\ other cases are omitted...

}

Delta cost must be defined so that

cost(ns) = cost(s) + delta cost(s, m)

where ns is a neighbor of s obtained by mutating s by m.

A.2.3 TSP’s extend cost

One of the powerful heuristics we use is based on the traditional greedy
method, by which a solution is constructed incrementally from most-promising
elements selected from a pool of possible extensions. We generalize this ab-
stract greedy strategy to a local-search greedy method, by viewing each possi-
ble extension as a neighboring solution so that the act of extending a solution
is considered as moving from one solution to its most promising neighbor.

Extend cost takes a solution and a mutation and returns the cost of the
extension from the solution to an extending neighbor obtained by extend-
ing the given solution. Extension is defined by inserting an element e into
a position p; mutation element::first indicates a position p, and muta-
tion element::second indicates the element to be inserted into p. The
meaning of this extension (p and e) depends on the solution representation:

1. Circular permutation, permutation – There are n + 1 possible
positions for p. If the solution is s[s1 · · · sj−1sj · · · sn], then inserting an
element e into a position p creates the solution: s[s1 · · · sp−1 esp · · · sn].

2. Subset – There are two possible positions for p: 0 and 1, which means
either inserting the element e into the subset solution or not inserting
e into the subset solution. In either case, e is inserted into the set that
contains the subset solution.

3. Partition – If m is the number of parts in the given partition, then
there are m + 1 possible positions for p. Inserting e into one of the

7

parts creates a new extension. When p = m + 1, e is inserted into a
new part.

For TSP, extend cost is:

d(sπ(j−1), sπ(i)) + d(sπ(i), sπ(j)) − d(sπ(j−1), sπ(j))

In DISCROPT, it is written as:

double ObjectiveFunction::extend_cost(CircularPermutation & sol,
const mutation_element &mut_el)

{
double weight=0;
int pos = mut_el.first, prev_pos = sol.previous_index(mut_el.first);
int new_ele = mut_el.second;

if(pos > sol.last_index()) pos = sol.first_index();

weight = search_space->edge_weight(sol[prev_pos], new_ele)
+ search_space->edge_weight(new_ele, sol[pos])
- search_space->edge_weight(sol[prev_pos], sol[pos]);

return weight;
}

Delta extend must be defined so that

cost(ns) = cost(s) + extend cost(s, m)

where ns is an extension of s obtained by inserting element me into the
position mp of s.

A.2.4 Correctness, delta correctness, and extend correctness

For TSP on complete graphs, all solutions are correct (feasible). For prob-
lems such as Graph Coloring are may be incorrect solutions, which must
be penalized in some way. Our current implementation of Graph Coloring
penalizes incorrect solutions (improper colorings) inside the cost function.
Therefore, correctness, delta correctness, extend correctness need not be de-
fined. Users have the option of defining a measure of correctness separately
from the cost function and rely on DISCROPT’s ability to combine them. In

8

such cases, correctness, delta correctness, and extend correctness are defined
in a similar fashion as cost, delta cost, and extend cost.

When these functions are not defined, we must set:

const bool ObjectiveFunction::correctness_defined = false;
double ObjectiveFunction::correctness(CircularPermutation & sol)
{

return 0;
}
double ObjectiveFunction::delta_correctness(CircularPermutation & sol,

const mutation_element &mut_el)
{

return 0;
}
double ObjectiveFunction::extend_correctness(CircularPermutation & sol,

const mutation_element &mut_el)
{

return 0;
}

A.2.5 Compilation

• For our TSP problem, the subdirectory is called TSP and the objective
function is defined in TSP/tsp.cpp. The data structures are declared
and defined TSP/tsp graphs.h and TSP/tsp graph.cpp.

• TSP/Makefile serves as the standard template. Two flags PROB-
LEM FLAG and REPRESENTATION FLAG must be set correctly;
look into problem defs.h for detailed information. For TSP, these
two flags are set in TSP/Makefile as follows:

export PROBLEM_FLAG = TSP

export REPRESENTATION_FLAG = CIRCULARPERMUTATION

• To let TSP/Makefile know the appropriate files, we specify where the
objective function is defined (stored in obj func file variable) and where
the data structure is defined (stored in the search space file variable).
The output program name is stored in PROG.

9

obj_func_file = tsp

search_space_file = tsp_graphs

PROG = tsp

Note that the files are declared without extension (e.g. .cpp).

• Since we use the Graph Library Template (GTL) to implement the
graph data structure, we must specify where the GTL libraries are:

LINKING=dynamic

GTL_DIR=/home/phan

ifeq ($(LINKING),static)

GTL_LIB=$(GTL_DIR)/lib/libGTL.a

else

GTL_LIB=-L$(GTL_DIR)/lib -lGTL

endif

• To let DISCROPT know about the files, the user must define appro-
priate entries in problem defs.h. For TSP, it is:

#if TSP

#include "TSP/tsp_graphs.h"

typedef Graph InputType;

#endif

The general form is:

#if PROBLEM_FLAG

#include "ProblemDirectory/search_space_data_structure.h"

typedef DataStructureClass InputType;

#endif

Once the files are placed and set up properly, issue the commands:

$cd TSP

$make kernel

$make tsp

10

A.2.6 Running TSP

Assuming the output program is called tsp, we run DISCROPT by issuing
the command:

tsp -i input_file -h which_heuristic -t how_many_seconds

This will take the input file, build a data structure based on it using the
user-defined data structure, and optimize it using the chosen heuristics. For
more information, type:

tsp --help

A.2.7 Summary

To add a new optimization problem to DISCROPT, the user should:

1. Define cost, which computes the objective cost of the solution

2. Define delta cost, which computes the cost of moving from a solution
(with known cost) to a neighbor. This function must be defined so that

cost(ns) = cost(s) + delta cost(s, m)

where ns is a neighbor of s obtained by mutating s by m.

3. Define delta extend, which computes the cost of extending a solution
(with known cost) to another solution with more more element. This
function must be defined so that

cost(ns) = cost(s) + extend cost(s, m)

where ns is an extension of s obtained by inserting element me into the
position mp of s.

4. correctness, which computes the degree of correctness of feasibility of
the solution. Users can define it separately on inclusively in cost.

5. delta correctness, if correctness is defined, this function computes
the degree correctness of moving from a solution to a neighbor.

6. extend correctness, if correctness is defined, this function computes
the degree of correctness of extending a solution.

11

Basic Search

+overhead_time()
+search_specific_display()
+search()

Simulated Annealing

+overhead_time()
+search_specific_display()
+search()

Engine

+single_search()
+combine_search()

Figure A.1: Heuristic Hierarchy

A.3 Example: Implementing Time-sensitive

Simulated Annealing

The Simulated Annealing class, derived from an abstract class Basic Search
class, implements three abstract virtual functions:

• double overhead time() – returns the minimal time needed by the
search to give meaningful results.

• void search specific display(ostream *out) – displays information
that is specific to the Simulated Annealing heuristic such as tempera-
ture. The conventional format is (attribute, value).

• void search() – this is the actual search begins.

The function BasicSearch::get remaining time() returns how much
time remains whenever it is called. We’ll use a simple annealing schedule
based on constant reduction of temperature.

Main Makefile

These are partial excerpts from the Makefile that show what need to be done.

12

BASE_OBJECTS = simulated_anneal.o

main.o : main.cpp

$(HEURISTICS_DIR)/simulated_anneal.cpp \

$(CC) -c main.cpp

simulated_anneal.o : Heuristics/simulated_anneal.cpp basic_search.h

$(CC) -c Heuristics/simulated_anneal.cpp $(PSET)

basic types.h, shell input.cpp

A new type must be added for HeuristicType in basic types.h. Addition-
ally, the input must be parsed correctly when given the flag “-h”.

case ’h’:

if(strcmp(argv[i+1], "simulated_annealing")==0)

heuristic = h_simulated_annealing;

i++;

break;

engine.h

An instance of Engine is instantiated in main.cpp. Engine has as its mem-
ber an instance of BasicSearch. The search is then initialized and run.

#include "Heuristics/simulated_anneal.cpp"

template<class T>

void Engine<T>::initialize_search()

{

// Other irrelevant codes omitted

switch(heuristic_type){

case h_simulated_annealing:

the_search =

new SimulatedAnneal<T>(running_time, r_interval, cp_interval);

break;

}

13

}

Heuristic/simulated anneal.cpp

This file defines the working of the Simulated Annealing heuristic. We
do not intend to describe the details here, but simply specify the require-
ments. First, SimulatedAnneal must be derived from BasicSearch, and
consequently define three virtual functions: search() overhead time(),
search specific display(). The last one is meant to output information
specific to the heuristic at each report, which in this case, is the current
temperature.

The time-sensitive aspect of this particular version of the heuristic is
shown in the update temperature() method, when the annealing rate is
changed according to how much time is left.

template <class T>

class SimulatedAnneal : public BasicSearch<T> {

public:

SimulatedAnneal(double running_time, double r_interval,

double cp_interval);

//---virtual definition in BasicSearch<T>

void search();

void search_specific_display(ostream *out);

double overhead_time();

};

template<class T>

void SimulatedAnneal<T>::search_specific_display(ostream *out)

{

*out << "(temperature, "<< temperature << ")\n";

}

template<class T>

14

double SimulatedAnneal<T>::overhead_time()

{

return MinLength * Global<T>::get_neighbor_creation_time() +

Global<T>::get_solution_creation_time();

}

template<class T>

void SimulatedAnneal<T>::update_temperature()

{

current_time = get_remaining_time();

dtime = prev_time - current_time;

prev_time = current_time;

if(current_time > 0 && dtime > 0){

expected_trials = current_time/dtime;

dtemp = pow(low_temperature/temperature, 1.0/expected_trials);

if(dtemp > 0.9999999) dtemp = 0.9999999;

if(dtemp < 0.0001) dtemp = 0.0001;

}

temperature *= dtemp;

static int count = 0;

if(temperature <= low_temperature){

count++;

temperature = low_temperature;

}

if(count > 2) temperature_saturated = true;

}

A.3.1 Composition of Different Heuristics

An advanced search may consist of different type of search heuristics depend-
ing on several factors: problem, search space, time, etc. To compose different
existing heuristics, the user should look at

• engine.h to create a new method similarly to Engine::run once().

15

• BasicSearch Engine::the search. To create a new search:

the search = new SearchHeuristic<T> (running time, r interval,
cp interval)

The variables indicates the amount of time is given to each search, the
period of report information, and the period of gathering statistics for
various purposes such as determining if the search no longer makes any
progress statistically.

A.4 Example: Implementing Circular Permu-

tation

A combinatorial object is the basic entity of a local search; the object over
which a search space is defined. Examples are permutations, subsets,
etc. To work with a search space of solutions whose type has not been
included in the system, a user must add a new combinatorial solution type.
Its requirements are the same as those of existing types such as permutation,
subset, etc. The basic requirements are:

• The new combinatorial object must be derived from the basic Com-
binatorialObject class, and must implement the pure virtual function
specified there.

• Additionally, it must define other methods, in the same manner as
other existing types such as permutation. Summarily, these methods
include constructors that generate empty, same, and random instances,
plus other basic utilities.

A.4.1 Relationships with Neighborhood and Objective
Function

Neighborhood Operator: the user must provide parameter-overriding dec-
larations and definitions of two methods for the basic class NeighborOp, as
well as all of its derived operators such as Swap. They are:

• gen neighbor element(): generates a random mutation m given a
solution s. This method does not change s; it simply generates m.

16

• commit(): given a solution and a mutation s, m respectively, make
the actual physical change specified by m on s.

Technically, we could commit the mutation in gen neighbor element() and
eliminate commit(). However, commit allows several neighbors of a solution
s to exist at the same time, specified only by a mutation and a pointer to
the physical solution structure of s without actually possessing it. This im-
plementation boots efficiency if we later discard most neighbors and choose
only one of them.

These two methods define the essence of a neighborhood structure in a
local search search setting. Paired with objective functions and a search
method, they traverse the search space from one solution to another.

Objective Function: the user must provide parameter-overriding dec-
larations of cost, delta cost, correctness, delta correctness member
functions of ObjectiveFunction class. These will be used when a new prob-
lem is added to the system.

Makefile

Define and direct dependencies.

BASE_OBJECT = circular_permutation.o

main.o : circular_permutation.h

circular_permutation.o : circular_permutation.cpp circular_permutation.h \

combinatorial_object.h

$(CC) -c circular_permutation.cpp

circular permutation.h, circular permutation.cpp

Declare and define CircularPermutation. The class must be derived from
CombinatorialObject whose pure virtual functions must also be defined
here. The utility methods should be sufficient for implementations of opti-
mization problems.If a special method to manipulate CircularPermutation
is not defined for a particular problem, users should feel free to add it here.
Similar implementations are in permutation.h, subset.h, partition.h.

17

#include "basic_types.h"

#include "combinatorial_object.h"

class CircularPermutation : public CombinatorialObject {

};

objective function.h, operator.h

Simply add an “include” in the header files.

#include ‘‘circular_permutation.h’’

Add these declarations in objective functions.h:

#ifdef CIRCULARPERMUTATION

static double true_cost(CircularPermutation & solution);

static double true_correctness(CircularPermutation & solution);

static double cost(CircularPermutation & solution) ;

static double correctness(CircularPermutation & solution);

static double delta_cost(CircularPermutation & solution, const mutation_element & mut_el) ;

static double delta_correctness(CircularPermutation & solution, const mutation_element & mut_el);

static double extend_cost(CircularPermutation & solution, const mutation_element & mut_el);

static double extend_correctness(CircularPermutation & solution, const mutation_element & mut_el);

#endif

where CIRCULARPERMUTATION is defined in problem defs.h.

operator.cpp

Local search is defined in terms of the neighborhood structure of the search
space. This is implemented in NeighborOp from which specific operators
such as Swap are derived. The user must define gen mutation() and com-
mit() for CircularPermutation specifically, using template specialization.

We illustrate the requirement in the SwapOp operator. In gen mutation(),
a random pair of indices of the solution, known as a mutation is generated.
In commit(), a pair of “mutation” is applied to the circular permutation
solution. The separation of these two methods is meant to make the system
more efficient because often several neighbors are generated but only one or
few committed, see chapter A.5.

18

template <>

void SwapOp<CircularPermutation>

::gen_mutation(const CircularPermutation &s,

mutation_element *mut)

{

element_index random1, random2;

random1 = (rand() % s.get_size()) + 1 ;

random2 = (rand() % s.get_size()) + 1;

while(random2 == random1) random2 = (rand() % s.get_size())+1;

mut->operation = Swap;

if(random1<random2) mut->set_mutation(random1, random2);

else mut->set_mutation(random2, random1);

}

template <>

void SwapOp<CircularPermutation>

::commit(CircularPermutation *s,

const mutation_element & mut)

{

element first_element, second_element, tmp_element;

element_index first_index = mut.first_index;

element_index second_index = mut.second_index;

first_element = s->element_lookup(first_index);

second_element = s->element_lookup(second_index);

tmp_element = s->perm[first_index];

s->perm[first_index] = s->perm[second_index];

s->perm[second_index] = tmp_element;

tmp_element = s->inverse_perm[first_element];

s->inverse_perm[first_element] = s->inverse_perm[second_element];

s->inverse_perm[second_element] = tmp_element;

}

19

A.5 An Efficient Implementation of Local-Search

Landscapes

A local search traverses its energy landscape from solution to solution. Solu-
tions and their neighbors are generated and evaluated; most are discarded.
This is a common phenomenon of local search heuristics. In this system, we
implement an efficient way of solution (more precisely neighbors) generation.

The naive creation of random neighbor of a solution takes order O(n +
f(n)), where n is the size of the solution, and f(n) is the size of changes of
going from the solution to its neighbor defined by the neighborhood struc-
ture. The more sophisticated implementation takes order O(f(n)). Details
are discussed below.

This implementation is accomplished in Operator::gen mut(), Oper-
ator::gen commit(), and ObjectiveFunction::delta cost().

A.5.1 Lazy Implementation of Solution Objects

In a local search, it is often the case that several neighbors of a given solu-
tion are generated, evaluated to select of a few and discard the rest. To take
advantage of this characteristic, we design a Solution object that contains
a pointer to Combinatorial object and a Mutation object.

An unmutated solution s has an empty mutation, and a pointer to a
combinatorial object. Neighbors of s have non-empty mutation objects, and
their combinatorial object point to that of s. The discarded neighbors are
simply deleted, while the selected ones will now copy the combinatorial ob-
ject to which they point, and individualize them by committing their own
mutations.

The saving in copying the actual combinatorial object is usually signifi-
cant. The improvement depends on the improvement ratio of the delta objective
and objective functions. This in turn depends on the continuity of objective
function acting on the neighborhood defined by the neighborhood operator.
The smoother on the search space the objective function, the better: small
difference in structural solution, small difference in value.

20

In a more sophisticated implementation, we can have higher order of
referencing: a mutated solution of a mutated solution. However, I don’t
think that the implementation complexity justifies the saving.

A.5.2 Detailed Implementation of the Solution class

A Solution object contains a a mutation object, a combinatorial object (CO)
– permutation, subset, or partition – and its costs, computed by the specified
objective functions. Each combinatorial object has a reference count which
is manipulated by the Solution class to know when to copy, commit, and
discard the combinatorial object.

Since the system is time sensitive, generation of Solution objects are
stopped by a monitoring object when the system meets a time constraint
(e.g. reporting constraint, or deadline constraint). If the system meets the
reporting constraint, the search that requests a solution to be generated must
satisfy this constraint by reporting and then ask the monitoring object to lift
the block. To ease a specific search (e.g. simulated annealing) to deal with
these activities, they are handled in a BasicSearch class from which a spe-
cific search is derived. If the system meets the deadline constraint, it will
stop.

The Solution class generate solutions in three distinct manners, which
account for all the need of a typical local-search heuristic. Assuming time
constraints have been satisfied,

1. generate random solution:

• increment the new CO reference count (which was 0).

• set mutation attribute to NoOp.

• compute costs via user-defined objective functions.

2. generate a copy of a solution

• increment the new object reference count.

• set mutation attribute to the same as the one from which it is
copied.

21

• compute costs.

3. generate a random neighbor of a solution. This is where the real work
is achieved, carefully. When we want to create a random mutation of
a Solution object A,

• if it is not a mutated object, then simply create a random mutation
whose CO is pointed to A whose reference count is consequently
incremented.

• if it is a mutated object, then first its mutated CO must be com-
mitted before a new random mutation is created. Things must be
handled properly in both cases where the count is greater than 1
or not.

Deletion of a Solution object occurs only if the deleted object is the
sole possessor of the CO. Otherwise, the CO’s reference count is decremented.

In Assignment of a Solution object, the object to be assigned to
decrements its reference count and delete the CO if its no longer being re-
ferred to, before incrementing and pointing to the new referenced CO.

22

