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Abstract
Background: Brain, heart and skeletal muscle share similar properties of excitable tissue,
featuring both discrete behavior (all-or-nothing response to electrical activation) and continuous
behavior (recovery to rest follows a temporal path, determined by multiple competing ion flows).
Classical mathematical models of excitable cells involve complex systems of nonlinear differential
equations. Such models not only impair formal analysis but also impose high computational
demands on simulations, especially in large-scale 2-D and 3-D cell networks. In this paper, we show
that by choosing Hybrid Automata as the modeling formalism, it is possible to construct a more
abstract model of excitable cells that preserves the properties of interest while reducing the
computational effort, thereby admitting the possibility of formal analysis and efficient simulation.

Results: We have developed CellExcite, a sophisticated simulation environment for excitable-cell
networks. CellExcite allows the user to sketch a tissue of excitable cells, plan the stimuli to be
applied during simulation, and customize the diffusion model. CellExcite adopts Hybrid Automata
(HA) as the computational model in order to efficiently capture both discrete and continuous
excitable-cell behavior.

Conclusions: The CellExcite simulation framework for multicellular HA arrays exhibits
significantly improved computational efficiency in large-scale simulations, thus opening the
possibility for formal analysis based on HA theory. A demo of CellExcite is available at http://
www.cs.sunysb.edu/~eha/.
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Background
An excitable cell has the ability to propagate an electrical
signal—known at the cellular level as the Action Potential
(AP)—to surrounding cells. An AP corresponds to a
change of potential across the cell membrane, and is
caused by the flow of ions between the inside and outside
of the cell. The major ion species involved in this process
are sodium, potassium and calcium; they flow through
multiple voltage-gated ion channels as pore-forming pro-
teins in the cell membrane. Excitation disturbances can
occur in the behavior of these ion channels at the cell
level, or in the propagation of the electrical waves at the
cell-network level. Examples of excitable cells are neurons,
cardiac myocytes and skeletal muscle cells. Excitable cell
networks are important in the normal functioning and in
the pathophysiology of many biological processes. In par-
ticular, the rhythmic, pump-like function of the heart is
driven by muscle contractions, which are in turn triggered
by cell-generated electrical signals (excitations). Of special
interest are cardiac arrhythmias: disruptions of the normal
excitation process due to faulty processes at the cellular
level, single ion-channel level, or at the level of cell-to-cell
communication. The clinical manifestation is a rhythm
with altered frequency (tachycardia or bradycardia) or the
appearance of multiple frequencies (polymorphic Ven-
tricular Tachycardia) with subsequent deterioration to a
chaotic signal (Ventricular Fibrillation). VF [1] is a typi-
cally fatal condition in which there is uncoordinated con-
traction of the cardiac muscle of the ventricles in the heart.
As a result, the heart fails to adequately pump the blood,
and hypoxia may occur.

Excitable tissue is modeled in terms of reaction-diffusion
systems. Thus, a typical continuous representation would
involve partial differential equations (PDEs) for the dif-
fusing species (typically the transmembrane potential),
and a system of nonlinear ordinary differential equations
describing all other state variable that are normally con-
sidered non-diffusing. These may include ion-channel
gating variables and ion concentrations. The first mathe-
matical model of ionic processes that underly cell excita-
tion was empirically developed in 1952 by Hodgkin and
Huxley (HH) for a squid giant axon [2]. This provided the
basis for subsequent models of increasing complexity,
using multiple continuous state variables (voltage, ion-
channel gates, ion concentrations) to describe APs in dif-
ferent cell types [3-5]. Current models of cardiac cells
include more than 20 such state variables and a large
number of fitted parameters. Detailed models of cardiac
excitation are perceived as over-determined systems and,
as such, make both qualitative—i.e. checking general
properties—and quantitative analysis—i.e. by simula-
tion—at the organ or even tissue level impractical. At the
opposite end of the spectrum, completely discrete models
based on cellular automata (CA) have emerged [6,7].

The first generation of CA models used nearest-neighbor
diffusion modeling (Neumann and Moore neighbor-
hoods) and a small number of discrete states, resulting in
unrealistic AP shape and wave propagation. Second-gen-
eration CA models [7] focused on correct representation
of wavefront curvature effects by employing more com-
plex neighborhood functions, such as Gaussian, circular
templates or randomized lattices. Furthermore, the transi-
tions rules for the relaxation states were updated to reflect
a higher threshold for excitation and to effectively repre-
sent the relative and absolute refractory period. The latest
generation is exemplified by Barkley's model [8], in which
a standard finite-difference method is used to calculate
the diffusive term, but CA-like rules govern the kinetics of
the two model variables, with adjustable thresholds.
Recently, modified CA models have been used to study
cardiac excitability and for comparison with experimental
data [6,9]. A body of literature provides clear links
between the classical continuous PDE representation and
the more ad hoc CA-based approach as an alternative
description of reaction-diffusion systems. The purely dis-
crete nature of CA presents some difficulties in capturing
subtle non-stepwise features of excitation.

One way to reduce the complexity of models based on dif-
ferential equations while preserving the fundamental fea-
tures of these systems is to construct a more abstract
model that preserves the properties of interest. One prom-
ising approach is based on the use of Hybrid Automata
(HA) [10,11] as a modeling formalism for complex bio-
logical processes. More formally, HA are an extension of
finite automata that allows one to associate a continuous
behavior with each state. The approach of [12] demon-
strated the feasibility of using HA as a modeling formal-
ism for excitable cells. The biological behavior of such
cells is intrinsically hybrid in nature, featuring both dis-
crete (all-or-nothing response to electrical behavior) and
continuous behavior (recovery to rest follows a temporal
path, determined by multiple competing ion flows). Start-
ing from a biological interpretation of their APs, 4-state
HA models have been derived in [12] for several classical
excitable-cell types. In this paper, we present CellExcite, a
sophisticated simulation environment for excitable-cell
networks based on these 4-state models.

Results and discussion
CellExcite allows the user to sketch a tissue of excitable
cells, plan the stimuli to be applied during simulation,
and customize the diffusion model. As Figure 1 illustrates,
the architecture of CellExcite consists of two main compo-
nents:

CellExcite Graphical User Interface (GUI) This compo-
nent provides several panels that the user can access in
order to customize the features of an excitable-cell net-
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work. Using the Tissue Panel, the user can specify the tissue
size, simulation time, and list of stimuli to be applied dur-
ing simulation. The Parameters Panel allows the user to
select the desired 4-state hybrid automaton representing
the behavior of a particular type of excitable cell: HH for
neuron, NNR for cardiac myocytes. Furthermore a user
can specify the distance between two neighboring cells,
the membrane capacitance, and the time step of the sim-
ulation. The Diffusion Panel enables the user to select from
among different lattices that could better approximate the
disposition of cells in a 2D tissue. Through this panel, the
user can also choose the radius of the voltage influence a
cell has on its neighbors.

Event-Driven HA-based Simulator This component has
been implemented by extending the event-driven
approach described in [13] with the following new fea-
tures:

• The event priority queue is optimized: duplicate events,
i.e. multiple events of the same type for the same cell and
time step generated by neighboring cells, are eliminated.

• Several neighborhood functions are added: cell net-
works can be represented both as a triangular and square
lattice. The diffusion and electrical propagation within a
cell network are modeled with an exponential neighbor-
hood function.

• Colored snapshots and video representing both the dis-
crete and continuous behavior of the system can be gener-
ated.

An example in-silico simulation of excitable cells
In this section, we provide an example simulation of an
excitable-cell network using CellExcite. The goal is to first
simulate ventricular fibrillation and then defibrillation on

General Architecture of CellExciteFigure 1
General Architecture of CellExcite.
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a tissue of NNR (neonatal rat) cardiac myocytes arranged
in a 400x400 array. We wish to simulate this network for
the first 500 ms with a time step of 1!3 ms.

Sketching a tissue and planning the stimuli to be applied 
using the Tissue Panel
To carry out the simulation, we must first perform the fol-
lowing operations:

• Resize the tissue to 400x400 cells.

• Set the simulation time to 500 ms.

• Apply at the beginning of the simulation, for 1 ms, a first
stimulus of 800 "A/cm2 to a rectangular area of the tissue,
from row 310 on the top of the tissue to row 395 on the
bottom, and from column 5 on the left to column 15 on
the right.

• Apply 145 ms after the beginning of the simulation, for
1 ms, a second stimulus of 1000 "A/cm2 to a rectangular
area of the tissue, from row 235 on the top of the tissue to

row 245 on the bottom, and from column 0 on the left to
column 150 on the right.

• Apply 400 ms after the beginning of the simulation, for
1 ms, a third stimulus of 800 "A/cm2 to a rectangular area
of the tissue, from row 4 on the top of the tissue to row
394 on the bottom, and from column 4 on the left to col-
umn 394 on the right.

As Figure 2 shows, the Tissue Panel of the CellExcite GUI
allows the user to insert all these data using a convenient
visual framework. Figure 2 contains a snapshot of the GUI
while the user is planning the second stimulus on the tis-
sue.

Setting the cell parameters
The next step is to set the single-cell parameters, such as
the choice of 4-state HA model, the distance between two
neighboring cells, the cell's membrane capacitance, and
the time step of the simulation. For our example, we pro-
ceed as follows:

Planning a stimulus using Tissue PanelFigure 2
Planning a stimulus using Tissue Panel.
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• Choose NNR as the 4-state HA model representing the
behavior of a single cell

• Set the distance between two neighboring cells to 0.01
cm

• Set the membrane capacitance to 1 "F/cm

• Set the simulation time step to 0.001 msec

Figure 3 a) is a snapshot of the GUI while the user is set-
ting the single-cell parameters.

Selecting a diffusion model
To complete the experiment, we need to specify the lattice
on which we would like to dispose the cell network. The
DiffusionPanel of CellExcite provides two different lattices:

triangular and square. Furthermore, a user can specify a
cell's radius of influence with respect to neighbor cells. A
gradient of colors, from yellow to red, indicate respec-
tively the minor or major weight, based on a normalized
exponential function, of neighbor cells with respect to the
cell disposed in the middle of the panel. The higher the
weight, the larger the number of neighbor cells taken into
account. In this case, the simulation of the diffusion proc-
ess is more precise but also more computationally inten-
sive, as the number of computations is increased. As
Figure 3 b) shows, for our experiment, we choose a trian-
gular lattice with a radius of 4.

Results of simulation
Figure 4 shows the results obtained with CellExcite, by
simulating our in-silico experiment. The top of the figure
depicts the continuous behavior of the tissue during the

Setting parameters and diffusion panelFigure 3
Setting parameters and diffusion panel.
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simulation. This is a quantitative analysis showing the
voltage of each cell of the tissue at a particular time step.
The bottom of the figure depicts the discrete behavior of
the tissue. This is a qualitative analysis showing, for each
cell of the tissue and for each time step, the AP state of the
hybrid automaton: resting, stimulated, upstroke and pla-
teau. As the sequence of pictures shows, the first stimulus
has a normal propagation, while the second generates two
counter-clockwise spirals because there is not enough
space for normal propagation. After 150 ms, the heads of
the two spirals collide and generate other spirals. This
degeneration of the electrical propagation is the cause of
fibrillation. A third stimulus at is applied at 400 ms to all
cells in the tissue in order to recover them the resting state.
This phenomena is comparable to defibrillation.

Performance comparison
To illustrate the performance gains achieved in an HA-
based simulation framework for excitable cells versus a
traditional ODE-based one, consider Table 1. There we
give the CPU times required for the two frameworks on a
2-second simulation of NNR tissue, with the tissue size
ranging from a 2x2 cell array to a 400x400 cell array. On
the more substantial cases (i.e., array sizes of 16x16 on
up), it can be seen that the HA-based simulation frame-
work enjoys an almost 8-fold speedup over the ODE-
based one. All results, which were originally reported in
[12], were produced on a PC equipped with a Pentium
Intel 4 CPU 3.00GHz with 1GB of memory.

Availability and requirements
• Project Name: Excitable Hybrid Automata (EHA)

• Project HomePage:[14]

• Operating System: Windows, Linux

• Programming Language: C, Java

• Licence: The CellExcite software package is available
under the GNU Less General Public License (LGPL)
license. Please contact the first author for details.

Conclusions and future work
We developed CellExcite, a hybrid-automata-based visual-
ization framework for excitable-cell networks. CellExcite
provides a user interface that allows the user to sketch a
tissue of excitable cells, plan the stimuli to be applied dur-

Table 1: Performance comparison for 2-second simulation

cell array size original hybrid

2 × 2 cell array 5 s 3 s
4 × 4 cell array 9 s 3 s
8 × 8 cell array 26 s 6 s
16 × 16 cell array 93 s 14 s
32 × 32 cell array 365 s 51 s
64 × 64 cell array 1460 s 198 s
400 × 400 cell array 17 h 10 m 33 s 2 h 13 m 38 s

Results of the simulationFigure 4
Results of the simulation.
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ing simulation, and customize the diffusion model. The
use of multicellular HA to model networks of excitable
cells is a reasonable compromise to reduce the computa-
tional demands of large scale 2D cell-network simula-
tions, without losing the ability to capture important
features of the action potential such as restitution and
refractoriness.

Besides quantitative analysis obtained by simulation, this
formal model opens up the possibility of qualitative anal-
ysis. To this end, as future work, we aim to extend CellEx-
cite with tools that allow the run-time verification of
specific spatio-temporal patterns such as the creation of
dangerous spirals. This could be helpful to find automat-
ically an energy-efficient strategy to counteract degenera-
tion of the normal electrical propagation. This model-
based control could be exploited for the construction of
the next-generation cardio defibrillator. Furthermore, we
would like to exploit agent-based technology to better dis-
tribute the computation on a grid-computing environ-
ment.

Methods
Action potential
The electrical signal at the cellular level is known as an
action potential (AP). Action potentials for ventricular cells
(the major cells in the heart) are externally triggered
events: a cell fires an action potential as an all-or-nothing
response to a supra-threshold electrical signal, and each
AP follows more or less the same sequence of events and
has the same magnitude regardless of applied stimulus.
An AP lasts for a couple of hundred milliseconds in most
mammals. During the AP, no re-excitation can occur,
which is a safety mechanism to ensure the reliable work-
ing of the heart. The early portion of an AP is known as the
“absolute refractory period” due to its non-responsiveness
to further simulation. The later portion of an AP is known
as the “relative refractory period”, during which an altered
secondary excitation event is possible if the stimulation
threshold is raised.

Despite differences in AP duration, morphology and
underlying ion currents between different species and dif-
ferent regions in the heart, the following major AP phases
can be identified: resting phase, rapid upstroke, early
repolarization phase, plateau or later repolarization
phase, and final repolarization (identical to the resting
state due to the cyclic nature of an AP). The resting state
features a constant transmembrane potential (difference
between the inside and outside potential of the cell) of
about !80 mV for most species; i.e. the membrane is
polarized at rest. During the AP upstroke, the transmem-
brane potential rapidly changes (over the course of a cou-
ple of milliseconds) from negative to positive; i.e. the
membrane depolarizes. This is followed by an early repo-

larization phase. A slower, plateau phase is present in
most mammalian action potentials, during which cal-
cium influx facilitates the muscle contraction. After this
phase, a faster initial repolarization brings the potential
back to the resting state. Because of the universal nature of
these AP features between species and regions, we use
them as a guide in the construction of HA models [12].

The Hodgkin-Huxley Model
The first quantitative description of cellular excitation was
empirically developed by Hodgkin and Huxley (HH) for
a squid giant axon [2]. The HH model includes three ionic
currents: fast inward sodium, outward potassium, and a
time-independent linear (leak) current. The generalized
form of HH model is as follows:

where V is the transmembrane voltage [mV], whose varia-
tion forms the AP;  are the maximum chan-

nel conductance [mS/" F] for the sodium (Na), potassium
(K) and the leakage channel (L), respectively; ENa, EK, EL

are the reversal potentials [mV] for the sodium, potassium
and the leakage channel, respectively; m, h, n are voltage-
and time-dependent ion channel gates, following the
same general differential equation in y, where yinf and #inf

represent the steady-state and the time constant of a gate;
C is the cell capacitance ["F], and Ist is the stimulation cur-

rent ["A/"F].

Luo-Rudy Guinea Pig Ventricular Cell Model
In a series of papers, Y Rudy et al. have developed some of
the most detailed cardiac cell models to date, targeting
guinea pig [5,15]. The ion-channel description in these
models follows the same framework as the HH model, but
a much larger number of ion currents is included. The
complexity of this class of models is further increased by
the addition of active ion pumps, intracellular compart-
ments for calcium transport and calcium buffers. The
detailed description of the LRd model is omitted here.

Neonatal Rat Ventricular Cell Model
Among the mammalian species, the mouse and the rat
have a substantially different AP morphology—much
more triangular with almost absent plateau phase—com-
pared to the AP simulated by the LRd model. Neonatal
rats are often used as an experimental model in cardiac
electrophysiology, and a computational model is a dera-
ble tool. A neonatal rat model (NNR) is being developed
by Entcheva et al., derived from the LRd model. In [12],
Pye et al. use a hybrid-automaton formulation (following
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the same structure as for LRd) with adjusted parameters to
replicate the behavior of this detailed ionic model.

Modeling Action Potential using Hybrid Automata
To permit formal analysis and to increase simulation effi-
ciency, it could be useful to perform abstraction on a set
of nonlinear differential equations describing the behav-
ior an excitable cell to obtain a hybrid automaton. For-
mally, a hybrid automaton is defined as follows.

A Hybrid automaton H consists of the following [11]:

- As finite set X = x1, !, xn of real-numbered variables. The

number n is called the dimension of H. We write

 of dotted variables (which represent first

derivatives of variables in X), and X$ = x$1,!, x$n of primed

variables (which represent values of variables X at the con-
clusion of discrete steps).

- A finite, discrete control graph (V,E). The vertices in V are
called control modes. The edges in E are called control
switches.

- Three vertex labeling functions init, inv and flow that
assign to each control mode e % & V three predicates. Each
initial condition init(v) and invariant condition inv(v) is
a predicate whose free variables are from X. Each flow con-
dition flow(v) is a predicate whose free variables are from

.

- An edge labeling function jump that assigns to each con-
trol switch e & E a predicate. Each jump condition
jump(e) is a predicate whose free variables are from X ' X$

- A finite set ( of events, and an edge labeling function
event that assigns to each control switch an event.

The HA models chosen have four control modes: resting
and final repolarization (FR), stimulated, upstroke and, pla-
teau and early repolarization (ER). Initially, the cell is in the
resting and final repolarization mode. When (externally)
stimulated with the event VS, the cell enters the stimulated

mode and updates its voltage according to the stimulus
current. Upon termination of the stimulation, via event

, with a sub-threshold voltage, the cell returns back to

resting mode without firing AP. If the stimulus is supra-
threshold, i.e., Vs > VT holds, the excited cell will generate

an action potential by progressing to the upstroke mode.
The recovery course of the cell follows the transitions to
mode plateau and early repolarization and then to resting

and final repolarization. The guards on the control
switches monitor the transmembrane potential, rather
than imposing a rigid timing scheme. This approach
allows for AP adaptation (response to various pacing fre-
quencies).

HA for the HH model
The HA for the HH model is shown in Figure 5. Variables
%x and %y define a second-order system of linear differen-
tial equations in each control mode. They are an abstrac-
tion of the ionic currents and the gates. Ist is the excitation
current and VS is the stimulation event. The membrane
voltage is V = %x ! %y. The initial control mode is q0. The
mode invariants are given below the differential equa-
tions describing the transmembrane voltage. Like the
switch guards, they depend on three model-specific (see
Table 2): threshold voltage VT, overshoot voltage VO, and repo-
larization voltage VR. The transition guards are bracketed.

HA for the LRd model
The modeling framework for the LRd model is similar to
that for HH. However, to properly represent the longer
maintained plateau phase of the cardiac AP and to capture
its frequency adaptation, we extend the hybrid model
with additional variables. A third continuous variable, %z,
is added. The need for such a variable in the LRd and NNR
models can be explained by the major difference in the
ion fluxes between neurons and cardiac cells; namely, cal-
cium flux plays a profound role in the maintenance of the
AP plateau for proper cardiac muscle contraction to take
place.

Additionally, a new restitution-related continuous varia-
ble %$ is added to the LRd model, which is used to modify
the overall voltage by reflecting changes in the diastolic
interval (DI). DI is the time period between AP's recovery
and a new stimulation, i.e., the rest period between suc-
cessive stimulations. It is known that the immediate
memory of an excitable cell is directly linked to the DI: a
shorter DI results in a shorter following AP, while a longer
DI produces a longer AP [16]. This simple memory model
helps capture the proper response of AP to pacing fre-
quency, which is an essential feature of the cardiac excita-
tion. The resulting system of differential equations in the
corresponding modes is however no longer linear. The
hybrid automaton used to simulate LRd model is defined

in Figure 6 with .

HA for the NNR model

The HA for NNR is defined in Figure 7. Here, f()) = 1 + 2).
For improved modeling of cell-cell interactions in cardiac
excitation, the threshold voltages do not remain constant

! ! " !X x xn! 1 , ,

X X' !
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during simulation; instead, they also become a function
of ) = V$/VR, defined as follows:

 and 

Parameters definitions
The values of the coefficients and constants occurring in
the HH, LRd and NNR HA models are summarized in
Table 2. They were obtained either from the cited litera-
ture or empirically through experimentation.

Diffusion Modeling in Multicellular HA
The spatially extended model of multiple connected excit-
able cells is defined as below, where the left-hand side rep-
resents the diffusion term (propagation of the
transmembrane voltage), while the right-hand side

describes the activity at each cell, according to the selected
model (detailed, PDE-based (1) or hybrid (2)):

(1) 

(2) 

where * is the Laplacian Operator in 2D; + is the 2x2 con-
ductivity tensor; , [cm!1] is the surface area to volume
ratio for the cells; Iion[mA/cm2] is the sum of all ion cur-
rents and Ist is the stimulus current. In a preliminary study
we coupled the HA description of each cell to classical
Laplacian-based diffusion modeling equations, solved by

g V VT T$ % $ %! ( #1 1 456. # h Vo Vo$ %! " (40 #

) ( ! # "$ % $ %$ % & &V C V t I Iion st/ ,

) ( ! # "$ % $ %$ % & & & &V C V t HA t Ist/ /

Hybrid automata for LRd modelFigure 6
Hybrid automata for LRd model.

!!"" ##

!!$"$% &" %#

!" % #

!!'" $ #

!!'" & #

!
"
#$#!"#$%&'()(*! !

%
#$#+$%,-./$"0

!
&
#$#1./$"/-()(*! !

'
#$#23#$456"

(!$" #) (!$" $ )

(!$" &%!*" #) (!$" &%!*" $ )

+!',-'
!
!' ( +! ),- )

!
! ) ( +! *,-*

!
!* +!', + %, ( +! ),- )

"
! ) ( +!*,-*

"
!*

!,!'.! )/!*

! -,!

!,!'.! )/!*

+!',-'
#
!' . 012 ( +! ),- )

#
! )

!,!'.! )/!*
+!*,- *

#
!*

+!',-'
$
!' ( +! ),- )

$
! ) ( +! *,-*

$
! *

!,!'.! )/!*

Hybrid automata for HH modelFigure 5
Hybrid automata for HH model.

!!"" ##

!!$" $% &" %#

!" % #

!!'" $ #

!!'"&#

!
"
#$#!"#$%&'()(*! !

%
#$#+$%,-./$"0

!
&
#$#1./$"/-()(*! !

'
#$#23#$456"

(!$" #) (!$" $ )

(!$" &%!*" #) (!$" &%!*" $ )

+!',-'
!
!' ( +! ),- )

!
! )

+!',-'
!
!' ( +! ),- )

!
! ) +!',-'

"
!' ( +! ),- )

"
! )

+!', ! %" ( +! ),- )

#
! )

!,!'.! ) !,!'.! )

!,!'.! )!,!'.! )



BMC Bioinformatics 2008, 9(Suppl 2):S3 http://www.biomedcentral.com/1471-2105/9/S2/S3

Page 10 of 13
(page number not for citation purposes)

a finite element numerical scheme [13]. Due to the matrix
operations involved, this solution is not the most compu-
tationally efficient. In this study we extended the spatial
modeling of coupled hybrid automata cells by employing
alternative diffusion modeling operators. For correct
modeling of the diffusion of the electrical potential, sim-
ulation data have to be consistent with the above equa-
tion for the medium of interest. The Laplacian-based
solution of the diffusion term has been substituted with
optimized neighborhood functions to match the experi-
mentally obtained dispersion curve, since the latter
requires extended neighborhoods, thus slowing computa-
tions. The exponential neighborhood function that we
used is defined as follows:

where rmax is maximum radius of influence of a cell respect
to its neighbor cells and d <rmax is the distance of a cell
from a particular neighbor cell. This function provides the
weight that assume the voltage of each cell respect to the
others. The closer a cell is to its neighbors, the greater the
influence of its voltage on its neighbor cells' voltage in the
next time step. This function is dependent on the chosen
lattice topology. As Figures 8 and 9 illustrate, in CellExcite
both triangular and square lattices are supported. Table 3

and 4 report the weights of the cells for each lattice as a
function of the distance.
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Table 2: Parameters for HH LRd and NNR 4-state HA models

VR VT VO -0
x -0

y -0
z -1

x -1
y -1

z -2
x -2

y -2
z -3

x -3
y -0

z

HH 10 10 83 !0.98 !0.16 N/A N/A !0.16 N/A 1.4 15 N/A !0.98 !0.16 N/A
LRd 20 20 138 !0.1 !0.1 !0.1 N/A !0.1 !0.1 200 0 100 !0.001 0.036 0.008
NNR 20 30 120 !0.025 !0.07 !0.2 N/A !0.07 !0.2 250 200 125 !0.025 !0.07 !0.2



BMC Bioinformatics 2008, 9(Suppl 2):S3 http://www.biomedcentral.com/1471-2105/9/S2/S3

Page 11 of 13
(page number not for citation purposes)

Square latticeFigure 9
Square lattice.
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