
Learning and Detecting Emergent Behavior
in Networks of Cardiac Myocytes

Radu Grosu
Department of Computer Science

Stony Brook University
Stony Brook, NY 11794-4400, USA

grosu@cs.sunysb.edu

Flavio Corradini
Department of Mathematics and

Computer Science
University of Camerino

Camerino (MC), I-62032, Italy

flavio.corradini@unicam.it

Emilia Entcheva
Department of Biomedical

Engineering
Stony Brook University

Stony Brook, NY 11794-8181, USA

emilia.entcheva@sunysb.edu

Scott A. Smolka
Department of Computer Science

Stony Brook University
Stony Brook, NY 11794-4400, USA

sas@cs.sunysb.edu

Anita Wasilewska
Department of Computer Science

Stony Brook University
Stony Brook, NY 11794-4400, USA

anita@cs.sunysb.edu

Ezio Bartocci
∗

Department of Mathematics and
Computer Science

University of Camerino
Camerino (MC), I-62032, Italy

ezio.bartocci@unicam.it

ABSTRACT
We address the problem of specifying and detecting emer-
gent behavior in networks of cardiac myocytes, spiral electric
waves in particular, a precursor to atrial and ventricular fib-
rillation. To solve this problem we: (1) Apply discrete mode
abstraction to the cycle-linear hybrid automata (clha) we
have recently developed for modeling the behavior of my-
ocyte networks; (2) Introduce the new concept of spatial-
superposition of clha modes; (3) Develop a new spatial
logic, based on spatial superposition, for specifying emergent
behavior; (4) Devise a new method for learning the formulae
of this logic from the spatial patterns under investigation;
and (5) Apply bounded model checking to detect the onset of
spiral waves. We have implemented our methodology as the
Emerald tool suite, a component of our eha framework for
specification, simulation, analysis and control of excitable
hybrid automata. We illustrate the effectiveness of our ap-
proach by applying Emerald to the scalar electrical fields
produced by our CellExcite simulation environment for
excitable-cell networks.

1. INTRODUCTION
One of the most important and intriguing questions in sys-

tems biology is how to formally specify emergent behavior in
biological tissue, and how to efficiently predict and detect its
onset. A prominent example of such behavior is electrical
spiral waves in spatial networks of cardiac myocytes (heart
cells). Electrical impulses regularly circulate through car-

An earlier version of this paper appeared in Proc. 11th
International Conference on Hybrid Systems: Computation
and Control (HSCC’08), Springer, LNCS 4981, April 2008.
∗Currently visiting the Department of Computer Science,
Stony Brook University, Stony Brook, NY.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2008 ACM 0001-0782/08/0X00 ...$5.00.

BMC: Bounded Model Checking

Superposition
SQT

CX−Simulation
SEF

Discrete

QTPSelection

SQT Path

Network

CLHA

SQT SQT Path

BMChecking Classification
Formula

LSSL

CX: CellExcite Tool

SEF: Scalar Electrical Field

SQT: Supeposition QuadTree QTP: QuadTree Path

Figure 1: Overview of our method.

diac tissue and cause the heart’s muscle fibers to contract.
In a healthy heart, these electrical impulses travel smoothly
and unobstructed, like a water wave that ripples gently in
a pond. These waves can, however, sometimes develop into
troublesome, whirlpool-like spirals of electrical activity. Spi-
ral waves of this nature are a precursor to a variety of cardiac
disturbances, including atrial fibrillation (af), an abnormal
rhythm originating in the upper chambers of the heart. af
afflicts two-three million Americans alone, putting them at
risk for clots and strokes. Moreover, the likelihood of devel-
oping af increases with age.

In this paper, we address this question by proposing a
simple and efficient method for learning, and automatically
detecting the onset of, spiral waves in cardiac tissue. See
Figure 1 for an overview of our approach. Underlying our
method is a linear spatial-superposition logic (lssl) we have
developed for specifying properties of spatial networks. lssl
is discussed in greater detail below. Our method also builds
upon hybrid automata, image processing, machine learning,
and model-checking techniques to first learn an lssl formula
that characterizes such spirals. The formula is then auto-
matically checked against a quadtree representation [20] of
the scalar electrical field (sef) produced at each discrete
time step by a simulation of a hybrid-automata network
modeling the myocytes. A scalar field is a function that
associates a scalar value, which in our case is an electric po-
tential, to every point in space. The quadtree representation
is obtained via discrete mode abstraction and hierarchical
superposition of the elementary units within the sef.

The electric behavior of cardiac myocytes is hybrid in na-
ture: they exhibit an all-or-nothing electrical response, the
so-called action potential (ap), to an external excitation. An
ap can thus be viewed as triggering a discrete mode transi-
tion from the cell’s resting mode of continuous behavior to its
excited mode of continuous behavior. Despite their discrete-
continuous hybrid nature, networks of myocytes have tra-
ditionally been modeled using nonlinear partial differential
equations [13, 17]. While highly accurate in describing the
molecular processes underlying cell behavior—nonlinear dif-
ferential equations allow one to closely match the values of a
multitude of state variables to their actual physical values—
these models are not particularly amenable to formal anal-
ysis and typically do not scale well for the simulation of
complex cell networks.

In [11], we showed that it is possible to automatically learn
a much simpler hybrid automaton (HA) [12] model for car-
diac myocytes, which explicitly captures, up to a prescribed
error margin, the mixed discrete and continuous behavior
of the ap. To highlight its cyclic structure and its linear
dynamics, which may vary in interesting ways from cycle to
cycle, we called it a cycle-linear hybrid automaton (clha).
Moreover, as we showed in [24, 25, 2], one can use a variant
of this clha model to efficiently (up to an order of magni-
tude faster) and accurately simulate the behavior of myocyte
networks, and, in particular, induce spirals and fibrillation.

A key observation concerning our simulations, see Fig-
ure 3, is that mode abstraction, in which the ap value of
each clha in the network is abstracted to its corresponding
mode, faithfully preserves the network’s waveform and other
spatial characteristics. Hence, for the purpose of learning,
and detecting the onset of, spirals within clha networks,
we can exploit mode abstraction to dramatically reduce the
system state space. A similar mode abstraction is possible
for voltage recordings in live cell networks.

The state space of a 400× 400 clha network is still pro-
hibitively large, even after applying the above-described ab-
straction: it contains 4160,000 modes, as each clha has four
mode values. To combat state explosion, we use a spatial
abstraction inspired by [14]: we regard the mode of each au-
tomaton as a probability distribution and define the mode
superposition of a set of clhas as the probability that an
arbitrary clha in this set is in a particular mode. By suc-
cessively applying superposition to the network, we obtain
a tree structure, the root of which is the mode superposi-
tion of the entire clha network, and the leaves of which
are the modes of the individual clha. The particular struc-
ture we employ, quadtrees, is inspired by image-processing
techniques [20]. We shall refer to quadtrees obtained in this
manner as superposition-quadtrees (sqt).

Our lssl logic is an appropriate logic for reasoning about
paths in sqts, and the spatial properties of clha networks
in which we are interested, including spirals, can be cast in
lssl. For example, we have observed that the presence of a
spiral can be formulated in lssl as follows: Given an sqt,
is there a path from its root leading to the core of a spi-
ral? Based on this observation, we build a machine-learning
classifier, the training-set records for which correspond to
the probability distributions associated with the nodes along
such paths. Each distribution, for mode value stimulated,
corresponds to an attribute of a training-set record, with
the number of attributes bounded by the depth of the sqt.
An additional attribute is used to classify the record as ei-

ther spiral or non-spiral. For spiral-free sqts, we simply
record the path of maximum distribution.

For training purposes, our CellExcite simulator [2] gen-
erates, upon successive time steps, snapshots of a 400× 400
clha network and their mode abstraction; see Figures 1,3.
Training data for the classifier is then generated by convert-
ing the abstracted snapshots into sqts and selecting paths
leading to the core of a spiral (if present). The resulting
table is input to the decision-tree algorithm of the Weka
machine-learning tool suite [8]. This produces a classifier,
in the form of a path-predicate, constraining the distribu-
tion of the attribute stimulated in each node along the path.

The syntax of lssl is similar to that of linear temporal
logic, with lssl’s Next operator corresponding to concretiza-
tion (anti-superposition). Moreover, a sequence of lssl Next
operators corresponds to a path through an sqt. The classi-
fier produced by Weka can therefore be regarded as an lssl
formula. An sqt path can be thought of as a magnifying
glass, which starting from the root, produces an increasingly
detailed but more focused view of the image (i.e. abstracted
snapshot). This effect is analogous to concept hierarchy in
data mining [16] and arguably similar to the way the brain
organizes knowledge: a human can recognize a word or a
picture without having to look at all of the characters in the
word or all of the details in the picture, respectively.

Although the lssl logic and its underlying semantics (Krip-
ke structures) allow us to reason about infinite paths through
recursive structures (fractals), physical considerations—such
as the number of myocytes in a cardiac tissue or the screen
resolution—impose a maximum length k on such paths. We
therefore maintain k as a parameter in lssl’s semantic def-
inition, permitting us to accommodate any finite number
of myocytes or screen resolution. Defining lssl’s semantics
in this manner places us within the framework of bounded
model checking [3].

Our spatial-superposition logic might also be understood
as a Scale logic, as it allows us to examine an image at various
scales or levels of detail. The notion of scale is prevalent
in biological systems, ranging from genetic scale to societal
scale. The built-in notion of scale in our logic therefore
makes it well suited for reasoning about biological systems.

We are now in a position to view spiral detection as a
bounded-model-checking problem [3]: Given the sqt Q gen-
erated from the discrete sef of a clha network and an lssl
formula ϕ learned through classification, is there a finite
path π in Q satisfying ϕ? We use this observation to check
every time step during simulation whether or not a spiral
has been created. More precisely, the lssl formula we use
states that no spiral is present, and we thus obtain as a
counterexample one or all the paths leading to the core of
a spiral. In the latter case, we can identify the number of
spirals in the sef and their actual position.

The above-described method, including user-guided path
selection, has been fully implemented as the Emerald tool
suite for automated spiral learning and detection. Emerald
is written in Java, and it is a new component of our eha
environment for the specification, simulation, analysis and
control of clha networks. eha stands for Excitable Hybrid
Automata, as we have used clha to model various types of
excitable cells, including neurons and cardiac myocytes [25].
The eha environment is freely available from [10].

The rest of the paper is organized as follows. Section 2 re-
views excitable-cell networks and their modeling with clha.

Figure 2: clha model of cardiac myocytes.

Section 3 defines superposition and quadtrees, the essential
ideas underlying linear spatial-superposition logic, the topic
of Section 4. Section 5 describes our learning and bounded-
model-checking techniques; their implementation is consid-
ered in Section 6, along with our experimental results. Sec-
tion 7 discusses related work. Section 8 offers our concluding
remarks and directions for future research.

2. BIOLOGICAL BACKGROUND
An excitable cell (ec) has the ability to propagate an elec-

trical signal, known at the cellular level as the action poten-
tial (ap), to the neighboring cells. An ap corresponds to a
change of potential across the cell membrane, and is caused
by the flow of ions between the inside and outside of the cell
through the membrane’s ion channels.

An ap is an externally triggered event (with duration):
an ec fires an ap as an all-or-nothing response to a supra-
threshold stimulus, and each ap follows the same sequence
of phases (described below) and exhibits roughly the same
waveform regardless of the applied stimulus. During most
of the ap no re-excitation can generally occur (the ec is in
a refractory period).

Despite differences in duration, morphology and underly-
ing ion currents, the following major ap phases can be iden-
tified across different species and ec types: resting, stim-
ulated, upstroke, early repolarization, plateau and final re-
polarization. We abbreviate them as r (resting and final
repolarization), s (stimulated), u (upstroke), and p (plateau
and early repolarization).

Using the ap phases as a guide, we have developed, for
several representative ec types, cycle-linear hybrid automata
(clha) models that approximate the ap and other bio-elec-
trical properties with reasonable accuracy. Their derivation
was first performed manually [24, 25]. We subsequently
showed in [11] how to fully automate this process by learning
various biological aspects of the ap of different cell types.

Intuitively, a hybrid automaton [12] is an extended finite-
state automaton, the states of which encode the various
phases of continuous dynamics a system may undergo, and
the transitions of which are used to express the switching
logic between these dynamics. The clha we obtained are
fairly compact in nature, employing two or three continuous
state variables and four to six modes. The term cycle-linear
is used to highlight the cyclic structure of clha, and the
fact that while in each cycle they exhibit linear dynamics,
the coefficients of the corresponding linear equations and
mode-transition guards may vary in interesting ways from
cycle to cycle.

Figure 2 presents one of our clha models. To understand
the model, first note that when an ec is subjected to re-
peated stimuli, two important time periods can be identified:
ap duration (apd), the time the cell is in an excited state,
and diastolic interval (di), the time between the“end”of the
ap and the next stimulus. Figure 2(a) illustrates the two in-
tervals. The function relating apd to di is called the apd
restitution function. As shown in Figure 2(b), the relation-
ship is nonlinear and captures the phenomenon that a longer
recovery time is followed by a longer apd. A physiological
explanation of a cell’s restitution is rooted in the ion-channel
kinetics as a limiting factor in the cell’s frequency response.

The clha model itself, superimposed over the image of a
typical ap, is given in Figure 2(c). Each mode has associ-
ated a linear dynamics ẋ = Ax+Bu, v = Cx, where x is the
clha state, u is the input, and v (for voltage) is the output.
A mode also has an associated invariant in v, forcing the
outgoing transition to be eventually taken. The concept of
mode dynamics and invariant is illustrated in Figure 2(c) for
mode p (plateau and early repolarization); see that mode’s
callout. Transition labels are of the form e ∧ g/a, where e
is an (optional) event, g is a guard, and /a is an optional
set of assignments. The only events in the model, represent-
ing the start and end of stimulation, are denoted by s and
s, respectively. Observe the per-mode and transition-guard
dependence on the di, which is measured with the help of
clock variable t.

The dynamics of excitable-cell networks play an impor-
tant role in the physiology of many biological processes. For
cardiac cells, on each heart beat, an electrical control sig-
nal is generated by the sinoatrial node, the heart’s inter-
nal pacemaking region. Electrical waves then travel along
a prescribed path, exciting cells in atria and ventricles and
assuring synchronous contractions. Of special interest are
cardiac arrhythmias: disruptions of the normal excitation
process due to faulty processes at the cellular level, single
ion-channel level, or at the level of cell-to-cell communica-
tion. The clinical manifestation is a rhythm with altered fre-
quency, tachycardia (rapid heart beat) or bradycardia (slow
heart beat), or the appearance of multiple frequencies, poly-
morphic ventricular tachycardia, with subsequent deteriora-
tion to a chaotic signal, ventricular fibrillation (vf). vf is a
typically fatal condition in which there is uncoordinated con-
traction of the cardiac muscle of the ventricles in the heart.
As a result, the heart fails to adequately pump blood. and
hypoxia (lack of oxygen) may occur.

In order to simulate the emergent behavior of cardiac tis-
sue, we have developed CellExcite [2], a clha-based simu-
lation environment for excitable-cell networks. CellExcite
allows the user to sketch a tissue of excitable cells, plan
the stimuli to be applied during simulation, and customize

Resting
Stimulated Upstroke

Plateau

Continuous Behavior Discrete Behavior

-80 -66 -52 -38 -24 -10 4 18 32 46 60

mV

1° Stimulus

Normal Wave
Propagation

Ventricular
Fibrillation

1 ms

50 ms

100 ms

2° Stimulus150 ms

200 ms

250 ms

300 ms

350 ms

400 ms

Figure 3: Simulation of continuous and discrete be-
havior of a clha network.

the arrangement of cells by selecting the appropriate lattice.
Figure 3 presents our simulation results for a 400× 400 clha
network of cardiac myocytes. Nine 50-ms. simulation steps
are shown, during which (steps 1 and 4) the network was
stimulated twice, at different regions. The results we obtain
demonstrate the feasibility of using clha networks to cap-
ture and mimic different spatiotemporal behavior of wave
propagation in 2D isotropic (homogeneous) cardiac tissue,
including normal wave propagation (1-150 ms); the creation
of spirals, a precursor to fibrillation (200-250 ms); and the
break-up of such spirals into more complex spatiotemporal
patterns, signaling the transition to ventricular fibrillation
(250-400 ms).

As can be clearly seen in Figure 3, mode abstraction, in
which the action-potential value of each clha in the network
is discretely abstracted to its corresponding mode, faithfully
preserves the network’s waveform and other spatial charac-
teristics. Hence, for the purpose of learning and detecting
spirals within clha networks, we can exploit mode abstrac-
tion to dramatically reduce the system state space.

3. SUPERPOSITION AND QUADTREES
A key benefit of using hybrid automata compared to non-

linear odes is their explicit support for finitary abstractions:
the infinite range of values of a hybrid automaton’s contin-
uous state variables can be abstracted to the automaton’s

discrete finite set of modes. As discussed in Sections 1 and 2,
abstracting the ap (voltage) of the constituent clha in a
clha network to their corresponding mode (s, u, p or r)
turns out to faithfully preserve the network’s waveform and
other spatial characteristics. This simplifying approxima-
tion allows us to reduce the spiral-onset verification problem
to a finite-state verification problem.

Although in this paper we consider a clha network an ex-
ecution at a time, our ultimate goal is exhaustive simulation,
i.e. model checking. Within this context, the state space of
a 400×400 clha network, which would be necessary to sim-
ulate the behavior of a tissue of about 16 cm2 in size, is still
too large for analysis purposes: it has 4160,000 mode values!
To combat state explosion, we use a spatial abstraction in-
spired by [14]. Consider the state space of a clha network.
We regard the current mode of each clha in the network as a
degenerate probability distribution, and define the superpo-
sition of a set of (possibly superposed) modes as the mean
of their distributions. By successively applying superposi-
tion to the clha network, we obtain a tree whose root is the
mode superposition of the entire network, and whose leaves
are the individual modes of the component clha. The par-
ticular superposition tree structure we employ, the quadtree,
was inspired by image-processing techniques [20].

Let A be a 2k×2k matrix of clha modes. A quadtree Q =
(V,R) representation of A is a quaternary tree, such that
each vertex v ∈ V represents a sub-matrix of A. For exam-
ple, the root v0 of the quadtree in Figure 4 represents the en-
tire matrix; child v1 represents the matrix {2k−1, . . . , 2k} ×
{0, . . . , 2k−1}; child v6 represents the matrix {2k−1, . . . , 3 ∗
2k−2} × {0, . . . , 2k−2}; etc.

Due to superposition, a quadtree is in general a more ef-
ficient data structure than the matrix it represents: if the
subtree rooted at a node of a quadtree is of one“color”(mode
in our case), then there is no need to descend into the node’s
subtree as no additional information can be gleaned by doing
so. Moreover, given a quadtree representation of an image
and a property of the image in which one is interested—
such as determining whether a mode-abstracted snapshot of
a clha network contains a spiral—it may only be necessary
to follow a path through the quadtree (as opposed to ex-
ploring the entire tree) to determine if the property holds.
Moreover, the path need not necessarily descend all the way
to the leaf level, but rather may terminate at an interior
node. See Sections 4 and 5 for a further discussion of such
quadtree properties.

2

v8v7v6v5

v6 v5

v8v7 v
41

1 432

32

d=2

d=1

d=0

(b)(a)

v4v3

v

v0

v1

v1

v0
2

v4v3

Figure 4: Quadtree representation.

Definition 1. (Distributions). Let N be a clha net-
work whose constituent clha have (ordered) modes M =
{s, u, p, r}, and let Q be the quadtree representation of N .
Then each leaf node l∈Q has an associated degenerate leaf
distribution Dl whose probability mass function (also some-
times known as the point mass function, and in either case
abbreviated as pmf) pl is such that ∃!m∈M. pl(m) = 1.
Also, let i∈Q be an interior node with children i1, . . . , i4.
Then i has an associated superposition distribution Di whose
pmf pi is such that ∀m∈M.pi(m) = 1

4

P4
j=1 pij(m).

The intuition is as follows. If a leaf node occurs at the
maximum depth of the quadtree, then it corresponds to the
current mode of a clha. As clha are deterministic, they
assume one of the values in M with probability 1. (We will
weaken this restriction at the end of the section when we
consider superposition quad-graphs.) If the leaf does not
occur at the maximum depth of the quadtree, then it corre-
sponds to the superposition of identical degenerate distribu-
tions, and no additional information is obtained by decom-
posing the leaf into its four superposition components. The
visual interpretation is that a pixel has one definite color,
and nothing is learned by decomposing an area in which all
pixels have the same color.

As for the distribution of an interior node i, if all of i’s
children are leaves, then, for each mode value m, i’s super-
position is the mean of the occurrences of m. Hence, the
probability that the mode of the parent is m is the proba-
bility that the mode of an arbitrary child is m. If i’s children
are interior nodes, it still holds that the probability that i’s
mode is m is the probability that the mode of an arbitrary
leaf below i’s children is m.

We call a quadtree whose nodes are labeled with leaf and
interior-node distributions a superposition quadtree (sqt).
The distributions in an sqt are not known in advance; our
learning algorithm seeks to determine them for what we per-
ceive to be spirals. The use of probability distributions is
justified by the fact that different spirals might have slightly
different shapes; i.e., slightly different distributions of values
for the leaf nodes of their associated quadtrees.

(d)

1

(a)

(c)

(b)

1

x

y

3

1

4

1 2

x
2

1 4

2 3

4

x

1 0

y

1

1

4

3 3

4

1,3

x
2 3

2

4

1

2

1

1

0

1

0

0

1

0

0

Figure 5: Fractals as finite-state sqgs: (a) x= 2/3,
(b) x= 5/11, y= 4/11, (c) x= 1/2.

The sqts presented so far were constructed over a finite
matrix A containing 2k ∗ 2k elements. In general, sqts can
be obtained via the finite unfolding of a quad-graph.

Definition 2. (sqg). A superposition quad-graph (sqg)
is a 4-tuple G = (V, v0, R, L) consisting of:

• A finite set of vertices V with initial vertex v0 ∈V ,

• A transition relation R⊆V × [1..4]×V
s.t. ∀v ∈V, i∈ [1..4].∃u∈V. (v, i, u)∈R,

• A probability-distribution labeling L
s.t. ∀v ∈V. L(v)= 1/4

P
u∈R(v) L(u).

The condition on R ensures that each vertex in V has pre-
cisely four successors in R. The condition on L ensures
that the probability distributions are related through super-
position. The manner in which we construct sqts as finite
unfoldings of sqgs can be extended to support the definition
of infinite sqts generated by recursion. That is, it supports
the definition of fractals. Furthermore, just as we use sqts

(a) (b)

1

(c) (d)

1

y

1

x

x

0 1

y x

x

1

10

001

1 0 0

Figure 6: Kripke structures for sqgs of Figure 5.

to represent finite images, sqgs can be used to represent
infinite images; i.e. fractals.

Figure 5(a-c) gives sqgs representing the recursive speci-
fication of three fractals and a graphical depiction of the un-
folding of these sqgs up to depth 3. (The sqg of Figure 5(d),
for which no depiction is given, is considered below.) Note
the fractal-like nature of these pictures: the gray areas rep-
resent recursion and correspond to recursive nodes in the
sqgs. Such nodes are labeled by distribution variables, the
values for which can be computed by solving a linear system.
For example, x and y in Figure 5(b) are computed by solv-
ing the linear system x= 1/4 (x+1+ y) and y= 1/4 (1+x).
The four self-loops of the leaves are not shown for simplic-
ity. Note that leaves may now be associated with any con-
stant distribution. Also note that the finite-state sqgs of
Figure5 (b) and (d) yield equivalent infinite sqts.

4. LINEAR SUPERPOSITION LOGIC
In this section, we define linear spatial-superposition logic

(lssl). Although the lssl logic—especially its spatial ana-
logues of the temporal fixpoint operators of ltl [18]—and
its underlying semantics (Kripke structures) allow us to rea-
son about infinite paths, physical considerations such as the
number of myocytes in a cardiac tissue or screen resolution,
impose a maximum length k on paths. We therefore main-
tain k as a parameter in lssl’s semantic definition, placing
us within the framework of bounded model checking [3].

Every finite sqt can be transformed into an sqg by adding
to each leaf node a self-loop labeled by i, i∈ [1..4]. Moreover,
an sqg can be transformed into a Kripke structure by erasing
(forgetting) the transition labeling, collapsing all resulting
transitions that share the same source and target nodes into
one transition, and assuming nondeterminism among transi-
tions emanating from the same node. For example, applying
this forgetful transformation to the sqgs of Figure 5 yields
the Kripke structures of Figure 6, where the self-loops are
made explicit. The Kripke structure of Figure 6(d) can be
seen as the minimal-state equivalent of the one of Figure 6(b)
where nodes labeled by 0 or 1 are shared.

Definition 3. (Kripke structure). A Kripke structure
(ks) over a set of atomic formulas AF is a four-tuple M =
(S, I,R, L) consisting of:

• A countable set of states S, with initial states I ⊆S;

• A transition relation R∈S×S
with ∀s∈S.∃ t∈S. (s, t)∈R;

• A labeling (or interpretation) function L : S→ 2AF .

The condition associated with the transition relation R en-
sures that every state has a successor in R. Consequently, it
is always possible to construct an infinite path through a ks,
an important property when dealing with reactive systems.
In our case, it means that we can reason about recursive
sqts, i.e. fractals.

The labeling function L defines for each state s∈S the set
L(s) of atomic formulas that are valid in s. Atomic formulas
are inequalities over distributions of the form P [D=m]∼ d,

where D is a distribution function, m∈M is a discrete value
(e.g. a mode), d∈ [0..1], and∼ is one of<, ≤, =, ≥, or>. We
use P [D=m] as a more intuitive notation for p(m), where
p is the pmf associated with D. (This notation is also more
reminiscent of P [X =m], where X is a random variable.)
It should thus be noted that the 0-1 state labels used in
Figure 6, where the mode in question is s, are shorthand for
the atomic proposition P [D= s] = 0 or P [D= s] = 1.

In order to verify properties of a reactive system modeled
as a ks K, it is customary to use either a linear-time or a
branching-time temporal logic. A model for a linear-time
(ltl) formula is an infinite path π in K. A model for a
branching-time formula is K itself; given a state s of K, this
allows one to quantify over the paths originating from s. For
our current purposes of specifying and detecting the onset
of, spirals, ltl suffices.

Strictly speaking, our logic is a linear spatial-superposition
logic (lssl), as a path π in K represents a sequence of con-
cretizations (anti-superpositions). Syntactically, however,
our temporal-logic operators are the same as in ltl: the
next operator X, with Xϕ meaning that ϕ holds in a con-
cretization of the current state; its inverse operator B; the
until operator U , with ϕUψ meaning that ϕ holds along a
path until ψ holds; and the release operator R, with ψRϕ
meaning that ϕ holds along a path unless released by ψ.

Definition 4. (lssl Syntax). The syntax of linear space-
superposition logic is defined inductively as follows:

ϕ ::= > | ⊥ | P [D = m] ∼ d | ¬φ | ϕ ∨ ψ | Xϕ |
Bϕ | ϕUϕ | ϕRϕ

∼ ::= < | ≤ | = | ≥ | >

As discussed above, a bound k on the path length is main-
tained as a parameter in lssl’s semantic definition.

Definition 5. (lssl Semantics). Let K be a ks, π a
path in K, and f ∈ AF an atomic formula. Then, for k≥ 0,
π satisfies an lssl formula ϕ with bound k, written π |=k ϕ,
only if π |=0

k ϕ, where:

π |=i
k > and π 6|=i

k ⊥
π |=i

k f ⇔ f ∈ L(π[i])

π |=i
k ¬ϕ ⇔ π 6|=i

k ϕ

π |=i
k ϕ ∨ ψ ⇔ π |=i

k ϕ or π |=i
k ψ

π |=i
k Xϕ ⇔ i < k and π |=i+1

k ϕ

π |=i
k Bϕ ⇔ 0 < i ≤ k and π |=i−1

k ϕ

π |=i
k ϕUψ ⇔ ∃j. i ≤ j ≤ k. π |=j

k ψ and

∀n. i ≤ n < j. π |=n
k ϕ

π |=i
k ψRϕ ⇔ ∀j. i ≤ j ≤ k. π |=j

k ϕ or

∃n. i ≤ n < j. π |=n
k ψ

We say that K |=k ϕ if for all paths π in K, π |=k ϕ.

Our until and release operators U and R are bounded ver-
sions of the ltl operators U and R. Similarly, the globally
operator G, defined as Gϕ ≡ ⊥Rϕ, is a bounded version of
ltl’s G operator. The finally operator F is defined as usual
as Fϕ ≡ >U ϕ. In general, the unbounded ltl version of G
is assumed to not hold. For example, Gϕ does not hold as ϕ
could be violated at k+ 1; to decide Gϕ in ltl with respect
to a bound k, one needs a more sophisticated analysis of the
ks K, as discussed in [3].

To illustrate lssl, consider a k-unfolding of the ks of Fig-
ure 6(a), and assume the distributions labeling the states
correspond to mode s. Then, this ks has a path π such
that π |=k G (P [D= s] = 2/3) holds: the path that always
returns to x. To automatically find π, we can model check
the negation of this formula; as discussed in Section 5, π
will be returned as a counterexample. Using the techniques
in [3], one can show that π also satisfies the unbounded ltl
version of the formula.

5. MODEL CHECKING AND LEARNING
Bounded model checking. Given a ks K, lssl formula
ϕ, and bound k, a bounded model checker (bmc) efficiently
verifies ifK |=k ϕ. If not, it returns one or more paths π inK
that violate ϕ (i.e., counterexamples); otherwise, it returns
true. Intuitively, a bmc applies the lssl semantics induc-
tively defined in Section 4 to each path π in K. We have
implemented a simple prototype bmc for kss derived from
sqts and lssl formulae, which first enumerates all paths in a
ks and then for each path, applies the lssl semantics. This
approach is efficient enough to check within milliseconds the
onset of spirals. We are currently improving our handling of
safety formulae (those without the F operator) by pruning,
during sqt traversal, all subtrees of a vertex as soon as we
detect that the current path satisfies ϕ. A more ambitious
sat-based bmc is also under development.

Machine learning. Writing the ltl formulae that a re-
active system should satisfy is a nontrivial task. Develop-
ers often find it difficult to specify the system properties
of interest. The classification of ltl formulae into safety
(something bad should never happen) and liveness prop-
erties (something good should eventually happen) provides
some guidance, but the task remains difficult.

Writing lssl formulae describing emerging properties of
CLHA networks is even more difficult. For example, what
is the lssl formula for spiral onset? In the following, we
describe a surprisingly simple, machine-learning-based ap-
proach that we have successfully applied to spiral detection.
The main idea is to cast the onset property as follows: Is
there a path in the given sqt leading to the core of a spiral? ,
where the core of a spiral is the central point from which the
spiral emanates, getting progressively farther away as it re-
volves around the point.

The implementation of our approach is simple as well.
For an sef (a 400×400 array of ap values) produced by the
CellExcite simulator (see Figure 1), our Emerald tool
set allows the user to select a path through the sef’s cor-
responding sqt simply by clicking on a point in the sef;
e.g. in the core of a spiral. If no spiral is present, the sqt
path with maximum pmf (probability mass function) is re-
turned. Note that this method is not restricted to spirals:
path selection via clicking on a representative point can be
applied to normal wave propagation, wave collision, etc.

The paths so obtained are then used to learn the lssl
formula for the property in question, such as spiral onset.
The learning algorithm works as follows: (1) For each path
of length k, where k is the height of the sqt, we define k
attributes a1, . . ., ak such that each ai holds the pmf value
of vertex vi, for the mode we are interested in (for spirals,
mode s). (2) Each path is classified by Emerald as spiral
or non-spiral depending on whether or not the user clicked
on a point (core); the classification is stored as an additional

classifier attribute c. (3) All records (ai, . . ., ak, c) are stored
in a table, which is provided to the data-classification phase.
(4) At the end of this phase, we obtain a path classifier which
we translate into an lssl formula.

Data classification [22] is generally a two-step process:
training and testing. For training, we choose a classification
algorithm that learns a set of descriptions of our training
data set. The form of these descriptions depends on the
type of classification algorithm employed. For testing, we
use a test data set, disjoint from the training set, and con-
taining the class attribute with a known value. The accuracy
of the classifier on a given test set is the percentage of the
test records that are correctly classified. Various techniques
can be used to obtain test and training sets from an initial
set of records, such as X-Cross Validation [8].

For classification purposes, we use a descriptive classifier
(dc), which returns a set of if-then rules called discrimi-
nant rules. Underlying dcs are decision trees, rough sets,
classification-by-association analysis, etc. A rule r has form

(
^
i∈ I

ai = vi)⇒ (c= v)

where I is a subset of [1..k]. Usually, each class c has an
associated set of rules r1, . . ., rn; i.e. c is characterized byVn

i=1 ri. Using boolean arithmetic, this is equivalent to

(

n_
i=1

^
j ∈ Ii

aij = vij)⇒ (c= v)

The antecedent formula
Wn

i=1

V
j ∈ Ii

aij = vij is called the
class description formula of the class c.

As is customary, we built a classifier for one class only (the
class c), called the target class, using all other classes as one
contrasting class. Hence the classifier consists of only one
class-description formula, describing the target class. We
say that we learned that formula. We have used Weka’s
decision-tree algorithm, but any other rule-based algorithm
could have been used as well. The classifier we have learned
for spirals is as follows:

if a7 <= 0.875 then

if a2 <= 0.048 then ∼c else c

else if a3 <= 0.078 then

if a0 <= 0.025 then ∼c else c

else ∼c

Its translation into lssl, where Xk stands for k repetitions
of X, generated the following formula:

X2 P(D= s)> 0.048 ∧ X7 P(D= s)≤ 0.875 ∨
P(D= s)> 0.025 ∧ X3 P(D= s)≤ 0.078 ∧ X7 P(D= s)> 0.875

This formula is an approximate description of a spiral which
we use together with Emerald’s bmc to detect spiral onset
within milliseconds. In case the bmc returned a false pos-
itive, we add the corresponding record to the classification
table as part of a retraining phase; see Figure 1.

6. IMPLEMENTATION
Our techniques of Sections 2-5 have been implemented as

the Emerald tool suite of the eha environment. Emer-
ald is a Java application that can be used to learn an lssl
formula for a particular spatial pattern, and to check the
formula against a set of images (of the kind pictured on
the right-hand side of Figure 3) that reproduce the discrete

Figure 7: Emerald Bounded Model Checker.

behavior of a clha network. For ease of use, Emerald
provides two graphical tools, one for Preprocessing (classifi-
cation) and the other for Bounded Model Checking.

The Preprocessing tool enables users to browse the vari-
ous collections of images they have assembled for machine-
learning purposes, and to view their sqt representation. The
user can select a path leading to a spiral core by clicking on
an appropriate stimulated point (in yellow) of the image.
If the image does not contain a spiral, the user can choose
the maximum pmf path or a generic stimulated point. Each
path selected is stored in a data table in the form of the pmf
sequence of stimulated modes in each node of the traversed
sqt. All such paths are subsequently exported to Weka in a
common format. Presently, we have customized Emerald
for spiral detection, but we plan to extend the tool with the
capability to classify any generic spatial pattern.

The bmc applet (Figure 7) enables the user to check an
lssl formula against the sqt representation of a specific
image. As discussed in Section 5, the lssl formula encodes
the classifier for the spatial pattern under investigation. If
the sqt in question fails to satisfy the formula, the resulting
counter-examples (spirals) are reported to the user both as
rows in the counterexample table and as red dots marking
the core of the spiral contained in the image.

Table 1 contains our preliminary experimental results. For
training and testing purposes, we used two different sets of
images, each containing spirals and normal wave propaga-
tion. The first set of images was used to train the classifier;
we supervised the training by discriminating between paths
leading to a spiral core versus those (of maximum pmf) be-
longing to images that did not contain a spiral. From this
first set we extracted 512 possible paths, and used Weka
to build a ruled-based classifier with a very high prediction

Path Classifier Test Set Test Set Test Set

550 600 650

Trained (512 Paths) 87.00% 88.83% 88.23%

Retrained (512 Paths + 97.10% 97.33% 93.07%

67 Counterexamples)

Table 1: Experimental Results

accuracy (99.25%).
The test set was divided into increasingly larger sets of

images: 500, 550, 600 and 650 images. Applying the rule-
based classifier on the first 500 images produced 67 wrongly
classified paths. We used these paths to obtain a new, re-
trained classifier. We then used both classifiers on the re-
maining sets of images, and for each classifier and test set
we computed the lssl formula accuracy, as an estimate of
how well the formula specifies the spatial pattern. As Ta-
ble 1 shows, retraining considerably improves accuracy, and
can be repeated each time a false classification is returned.

Weka’s decision-tree algorithm took less than 9s to con-
struct a rule-based classifier from the training (512 records)
and retraining (579 records) tables, respectively. Our model
checker took between 1.67s–7.09s, with an average of 4.72s
to model-check the sqt for a 400× 400 sef if no spiral
was present, and between 1ms and 4.64s, with an aver-
age of 230ms otherwise. All results were obtained on a PC
equipped with a Centrino 2GHz processor with 1.5GB RAM.

7. RELATED WORK
The use of hybrid automata to model and analyze spatial

networks is a relatively new subject area, and includes ap-
plication to Delta-Notch signaling networks [9], coordinated
control of autonomous underwater vehicles [19], and aircraft
trajectories and landing protocols [7, 21]. In contrast, our
focus is on emergent behavior (in the form of spiral waves) in
networks of cardiac myocytes, and the use of spatial super-
position as an abstraction mechanism. Predicting spirals [4]
in pure continuous models [23] is a more complicated pro-
cess than what is implemented in Emerald, where discrete
sqt structures, obtained via mode abstraction and superpo-
sition, are used. Several logics have recently been proposed
for describing the behavior and spatial structure of concur-
rent systems [5, 6], and for reasoning about the topological
aspects of modal logics and Kripke structures [1]. Unlike
lssl, these logics are not based on an abstraction mecha-
nism like spatial-superposition that can be used to alleviate
state explosion during model checking.

8. CONCLUSIONS
In this paper, we have presented a framework for speci-

fying and detecting emergent behavior in networks of car-
diac myocytes. Our approach, which uses hybrid automata,
discrete mode abstraction, and bounded model checking, is
based on a novel notion of spatial-superposition and its re-
lated logic LSSL, and a new method for the automated learn-
ing of formulae in this logic from the spatial patterns under
investigation. Our framework has been fully implemented
in the Emerald tool suite. Our preliminary experimen-
tal results are very encouraging, with a prediction accuracy
of over 93% on a test set comprising 650 images. As fu-
ture work, we plan to extend our framework to the learn-

ing of branching-time spatial-superposition properties, and
the more intricate problem of specifying and detecting spa-
tiotemporal emergent behavior.

We also experimented with the SIFT (Scale-Invariant Fea-
ture Transform) algorithm, which detects and matches in-
teresting features in images while preserving invariance con-
straints for scaling, translation, and rotation [15]. We found
that SIFT performed matching well on images of spirals
that were related to one another through rigid transforma-
tions. It was less successful, due to an insufficient number of
matching keypoints, on spirals with more markedly different
shapes. Also, SIFT and other image-processing techniques
tend to process the entire image. Our approach, in con-
trast, uses logical formulae over sqt paths and densities of
a particular clha mode (stimulated) along such paths.

Acknowledgements.
We would like to thank the anonymous reviewers for their

valuable comments. Research supported in part by NSF
awards CCR-0133583, CNS-0509230 and CCF-0523863.

9. REFERENCES
[1] M. Aiello, J. Benthem, and G. Bezhanishvili.

Reasoning about space: The modal way. J. Log.
Comput., 13(6):889–920, 2003.

[2] E. Bartocci, F. Corradini, E. Entcheva, R. Grosu, and
S. A. Smolka. CellExcite: An efficient simulation
environment for excitable cells. BMC Bioinformatics,
9(Suppl 2):S3, 2008.

[3] A. Biere, A. Cimatti, E. Clarke, O. Strichman, and
Y. Zhu. Bounded model checking. In Adv. in
Comp. vol. 58: Highly Depend. Software. Acad. Press,
2003.

[4] M. A. Bray, S. F. Lin, R. R. Aliev, B. J. Roth, and
J. P. J. Wikswo. Experimental and theoretical analysis
of phase singularity dynamics in cardiac tissue. J
Cardiovasc Electrophysiol, 12(6):716–722, 2001.

[5] L. Caires and L. Cardelli. A spatial logic for
concurrency (part I). Inf. Comput., 186(2):194–235,
2003.

[6] L. Caires and L. Cardelli. A spatial logic for
concurrency (part II). Theor. Comput. Sci.,
322(3):517–565, 2004.

[7] I. deOliveira and P. Cugnasca. Checking safe
trajectories of aircraft using hybrid automata. In Proc.
of SAFECOMP 2002. Springer-Verlag, Sept. 2002.

[8] E. Frank, M. A. Hall, G. Holmes, R. Kirkby,
B. Pfahringer, I. H. Witten, and L. Trigg. WEKA: A
machine learning workbench for data mining. In The
Data Mining and Knowledge Discovery Handbook,
pages 1305–1314. Springer, 2005.

[9] R. Ghosh, A. Tiwari, and C. Tomlin. Automated
symbolic reachability analysis; with application to
Delta-Notch signaling automata. In HSCC, pages
233–248, 2003.

[10] R. Grosu, E. Bartocci, F. Corradini, E. Entcheva,
S. A. Smolka, and P. Ye. EHA: An environment for
the specification, simulation, analysis and control of
networks of excitable hybrid automata.
http://www.cs.sunysb.edu/~eha, 2008.

[11] R. Grosu, S. Mitra, P. Ye, E. Entcheva, I. V.
Ramakrishnan, and S. A. Smolka. Learning

cycle-linear hybrid automata for excitable cells. In
Proc. of HSCC’07, the 10th International Conference
on Hybrid Systems: Computation and Control, volume
4416 of LNCS, pages 245–258, Pisa, Italy, April 2007.
Springer Verlag.

[12] T. A. Henzinger. The theory of hybrid automata. In
Proceedings of 11th IEEE Symposium on Logic in
Computer Science, pages 278–293, 1996.

[13] A. L. Hodgkin and A. F. Huxley. A quantitative
description of membrane currents and its application
to conduction and excitation in nerve. J Physiol,
117:500–544, 1952.

[14] Y. Kwon and G. Agha. Scalable modeling and
performance evaluation of wireless sensor networks. In
IEEE RT Tech. and App. Symp., pages 49–58, 2006.

[15] D. G. Lowe. Object recognition from local
scale-invariant features. In Proceedings of the
International Conference on Computer Vision 2, pages
1150–1157, 1999.

[16] Y. Lu. Concept hierarchy in data mining:
Specification, generation and implementation.
Master’s thesis, Simon Fraser University, Dec. 1997.

[17] C. H. Luo and Y. Rudy. A dymanic model of the
cardiac ventricular action potential: I. simulations of
ionic currents and concentration changes. Circ Res,
74:1071–1096, 1994.

[18] Z. Manna and A. Pnueli. The Temporal Logic of
Reactive and Concurrent Systems: Specification.
Springer, 1992.

[19] F. Pereira and J. deSousa. Coordinated control of
networked vehicles: An autonomous underwater
system. Aut. and Remote Ctrl, 65(7):1037–1045, 2004.

[20] E. Shusterman and M. Feder. Image compression via
improved quadtree decomposition algorithms. IEEE
Trans. on Image Processing, 3(2):207–215, mar 1994.

[21] S. Umeno and N. Lynch. Safety verification of an
aircraft landing protocol: A refinement approach. In
Proceedings of HSCC 2007, Apr. 2007.

[22] A. Wasilewska and E. M. Ruiz. A classification model:
Syntax and semantics for classification. In RSFDGrC
(2), pages 59–68, 2005.

[23] N. A. Wedge, M. S. Branicky, and M. C. Cavusoglu.
Computationally efficient cardiac biolectricity models
toward whole-heart simulation. In Proc. of Intl. Conf.
IEEE Engineering in Medicine and Biology Society,
pages 1–4, 2004.

[24] P. Ye, E. Entcheva, R. Grosu, and S. Smolka. Efficient
modeling of excitable cells using hybrid automata. In
Proc. of CMSB’05, the 3rd Workshop on
Computational Methods in Systems Biology, pages
216–227, Edinburgh, Scotland, April 2005.

[25] P. Ye, E. Entcheva, S. A. Smolka, and R. Grosu.
Modeling excitable cells using cycle-linear hybrid
automata. IET Syst Biol, 2:24–32, Jan. 2008.

