
FROM MSCS TO STATECHARTS
Ingolf Krüger, Radu Grosu,

Peter Scholz, Manfred Broy1

1. Introduction

Message Sequence Charts (MSCs) have gained wide acceptance for scenario-based
specifications of component behavior (see, for instance, [IT96, BMR+96, Rat97,
BHKS97]). In particular, they have proven useful in the requirements capture phase of
the software development process. However, up to now, most development methods
do not assign a precise meaning to this graphical description technique. Moreover,
MSCs are often used only for documentation purposes, and are not seamlessly inte-
grated into the development process. Therefore, a lot of their potentials are usually left
unexploited. Besides the interaction oriented system view provided by MSCs, state-
based specification languages, such as Statecharts, are of particular importance in later
development stages. For Statecharts, concepts for refinement, verification, and code
generation have recently been developed. Aiming at a seamless development process,
an integration of both description techniques seems necessary and promising. As a
step towards this goal we show how to derive Statecharts from MSCs schematically.
To that end, we discuss various interpretations of MSCs with respect to their applica-
bility within the development process we target at, and show how to translate a subset
of MSC specifications into Statecharts models.

1.1. MSCs and Development Processes

Typical software development processes of today [V97, Boe86, Boe88, Roy70] sug-
gest to develop the intended product not in one single step, but in successive devel-

1 Institut für Informatik, Technische Universität München, Arcisstr. 21, D-80290
München, Germany; email: {kruegeri,grosu,scholzp,broy}@in.tum.de

We present a first step towards a seamless integration of MSCs
into the system development process. In particular, we show how
scenario-based system requirements, captured in the early system
analysis phase using MSCs, are translated into state-based de-
scription techniques like Statecharts. To this end, we sketch a
schematic integration of MSCs and Statecharts.

From MSCs to Statecharts

opment phases. Four common phases across different development processes are re-
quirements capture, design, validation, and implementation.

MSCs have gained wide acceptance particularly during requirements capture for
all classes of systems, including both business and embedded systems. Due to their
intuitive notation MSCs have proven useful as a communication tool between cus-
tomers and developers, thus helping to reduce misunderstandings in early develop-
ment stages. In later phases, the most common use of MSCs today is for documenta-
tion or explanatory purposes. A lot of information that is illustrated using MSCs is not
systematically exploited when transiting from requirements capture to design, let
alone the transitions between the development activities occurring even later. This
means that, in general, there exists no seamless integration of MSCs into an overall
software development process. As a first step towards achieving such an integration,
we consider the combination of MSCs and state-based specification techniques, such
as Statecharts. The latter are mainly employed during design, and, increasingly often,
during validation and implementation of distributed embedded systems. In particular,
we aim at deriving Statecharts from a set of given MSCs such that the former exhibit
the same interaction behavior as the latter. The resulting Statecharts can then be re-
fined towards an implementation.

1.2. A closer look at MSCs

One of the major obstacles at increasing the integration of MSCs into the overall
software development process is that their semantics with respect to other system
views, such as the component distribution or state transition views, is either left un-
specified, or restricted to a purely scenario-based specification style. The potential for
confusion arising in both cases manifests itself in the slightly adapted saying “Every-
body understands MSCs, but everybody understands them differently”.

Traditionally, the graphical syntax of most MSC dialects provides the following
basic symbols: labeled axes, representing part of a component's existence, and labeled
arrows, representing message exchange, directed from the sender to the recipient of a
message. For simple scenarios these symbols already suffice. Frequently, additional
constructs that increase the expressiveness of the notation are added. Examples of
such constructs are sequential and parallel composition, choice, repetition, and even
hierarchic decomposition (see, for instance, the graphical syntaxes discussed in [IT96,
Rat97, BMR+96]). Most of these turn out to be essential when transiting from sce-
narios to more elaborate system descriptions. To perform this transition, we have to
state precisely what we mean when we draw an MSC. To show that there is indeed a
lot of room for discussion and, therefore, (mis)interpretation, we raise the following
questions. First, what does an MSC mean with respect to the set of components within
the system under development? Answering this question results in three different in-
terpretations: the system consists exactly, at most, or at least of the components refer-
enced in the MSC. Second, how “complete” is the information we obtain from a given
MSC with respect to the components involved and the messages they exchange? The
interaction between the components referenced in the MSC is determined either com-
pletely, i.e. there do not occur other message sequences between the components, or
partially, i.e. other message sequences are explicitly allowed. Third, at what time in-
stants do successive message exchanges occur? This addresses a problem that is of

From MSCs to Statecharts

particular importance when designing reactive systems: may, for instance, two suc-
cessive message exchanges occur during the same system step? Considering the inter-
pretations obtained by answering these questions yields a classification of possible
MSC semantics. Each element of this classification can be investigated for its useful-
ness in enabling a methodical transition from MSCs to state-based description tech-
niques. To base this discussion on more solid grounds we formalize our notion of
systems and interaction.

1.3. Statecharts

Statecharts are a graphical description technique for the state-based, behavioral speci-
fication of control-oriented systems [Har87]. The language was developed for the
description of reactive systems. Statecharts combine the operational notions of Mealy
machines (sequential automata) with graphical structuring mechanisms to concisely
describe large state spaces.

The main concept of Statecharts is that of sequential automata. These automata
consist of states and transitions. An automaton's state denotes a section of a complex
state of a reactive system. Transitions connect consecutive system states. A transition
is labeled with a pair, consisting of the condition that must be fulfilled in order to
trigger the transition and an action that specifies more detailed system behavior to be
executed when the transition is performed.

To enable description of practically relevant systems, these automata can be com-
posed to larger specifications using two principal structuring mechanisms: parallel
composition and hierarchic decomposition. Here, the basic assumption is that auto-
mata composed in parallel proceed in lock-step with respect to a common clock.
Without any further assumptions, these automata do not interact at all. However, if
specified by the user, they also can exchange messages in order to mutually influence
each other's behavior. Reactive systems may have complex system states. Hence, sin-
gle automaton states may not be appropriate for a detailed description of these sys-
tems, and more elaborate techniques are needed. Statecharts allow the designer to
structure single states of sequential automata by hierarchic decomposition. The State-
chart that describes the system's behavior in a specific state in more detail is simply
(graphically) inserted into this state. The behavior of a hierarchically decomposed
Statechart is comparable with the one of procedure calls in an imperative program-
ming language.

However, a specification formalism is of limited value without its integration into
an appropriate system development process. What we need is to give guidelines how
to develop a concrete implementation or realization from an abstract system specifi-
cation. This transition from an abstract specification to a concrete implementation
covers a number of different development steps such as specification, verification,
efficient compilation, and refinement. For the Statecharts dialect µ-Charts, such a
development process has been presented in [Sch98a].

1.4. Integrating MSCs and Statecharts

In the development process using Statecharts as sketched above, we factored out the
requirements engineering phase. Hence, there is still a gap between this phase and the

From MSCs to Statecharts

state-based description of a reactive system with Statecharts. This gap can be filled by
applying techniques that are based on MSCs. In contrast to Statecharts, these provide
a possibility for event- or scenario-based development of a system in its early design
phase. In order to get a seamless development process that also covers requirements
engineering, it is interesting to develop an appropriate MSC-like description technique
that is based on the same semantic model as Statecharts and therefore can be auto-
matically translated to an equivalent Statechart specification. Furthermore, these
MSC-like techniques can serve to represent counter-examples and witnesses from
model checking results, or simply as a front end for the input language of an appropri-
ate model checker. Finally, MSCs can be used to restrict communication between
Mealy machines combined in parallel to only those signal interactions that are free of
causality errors [Sch98b], which is one of the major problems when specifying larger
systems with Statecharts.

Integrating MSCs and Statecharts to form a seamless development process, a num-
ber of interesting questions have to be solved. First of all, both languages have to be
unified on the semantic level. To this end, we define their semantics by means of a
relational stream semantics. The stream semantics of one component, specified either
as an MSC or as a Statechart reflects its, potentially non-deterministic, input/output
behavior. Dealing with a non-deterministic semantics has the advantage that we can
treat abstract specifications and concrete, implementation-level descriptions with the
same mathematical machinery. Furthermore, this approach makes it possible to allow
mixed MSC and Statechart specifications. This is a prerequisite to capture the behav-
ior also of those systems under development, where different system parts reside in
different development phases. Of course, a common, homogenous semantic model
further eases specification of complex systems: not only can components in different
development phases be described with different techniques, but also those in identical
phases. Thus, it is possible that some system parts are merely specified in MSCs and
others just in Statecharts.

2. Translating MSCs into Statecharts

In this section we discuss a general procedure for deriving state-based component
descriptions from a set of MSCs. To that end, we first sketch the underlying semantic
framework that we use to achieve a smooth integration of Statecharts and MSCs
(Section 2.1). We give an overview of our translation scheme in Section 2.2, and pre-
sent an example of its application in Section 2.3.

2.1. Semantic Model

As we have mentioned already in Section 1, there is a lot of freedom in interpreting
MSCs. Here, we introduce a simple, yet expressive formal framework, on top of
which we can both discuss possible MSC semantics, and establish an integration of
MSCs and Statecharts.

The systems we are interested in consist of a set of components, and a set of di-
rected channels. Components that have to communicate must be connected by chan-
nels. Each component operates by reading input on its input channels, calculating its

From MSCs to Statecharts

output, and writing the output to its output channels. Furthermore, we assume that the
system is driven by some global, discrete clock. This is a quite natural assumption
considering the current hardware technology and it allows us to determine exactly at
what time unit a message occurs on a given channel. We call the sequence of mes-
sages passed along a channel over time a channel history. Our basic assumption here
is that communication happens message-asynchronously: the sender of a message is
never blocked by the receiver of the message. A simple strategy to assure this kind of
communication is buffering messages.

Given a system specification Sys and an MSC msc, we can now define how the two
relate. Each such relationship defines one possible interpretation of msc. There are
two interesting questions concerning the semantics of any given MSC: what se-
quences of messages does it represent, and when – with respect to a complete execu-
tion of the system under design – do they occur. We assume that we know the set of
sequences defined by an MSC so we can focus on answering the second question.
Suppose the system Sys is characterized by a set of channel histories V and that msc,
msc0 and msc1 are MSCs. We distinguish the following interpretations of the MSCs
with respect to Sys:

exact: the interaction sequences specified by msc occur exactly once
in all v ∈ V, and no other interactions are possible;

existential: there are elements v ∈ V that exhibit the interaction sequences
specified by msc;

universal: all elements v ∈ V exhibit the interaction sequences specified
by msc;

trigger condition: we say that msc0 triggers msc1, if, after an interaction sequence
as specified by msc0 has occurred in a valuation v ∈ V, an in-
teraction sequence as specified by msc1 will also occur in v
within a finite amount of time;

negation: using logical negation, we obtain the dual interpretations of the
ones given above.

Each of these interpretations has its place within the software development proc-
ess. During requirements capture each of them is of value and in use. The exact inter-
pretation is the one we use for the transition from MSCs to Statecharts. For testing,
and documentation the most prominent use of MSCs today is under the existential,
and universal interpretation, together with their negations. The bottom line of this
discussion is that in whatever phase of the development process we employ MSCs, we
should state clearly what interpretation we have in mind.

2.2. Roadmap for the translation procedure

In the previous section we have explained the semantic model for the systems we are
interested in, together with a number of possible interpretations for MSCs in that
model. Here, we select the exact interpretation in a slightly modified form as the basis
for our translation procedure from MSCs to Statecharts.

The basis for the translation is the procedure explained in detail in [BGK98]. We
assume given a set of MSCs that describe all the interaction sequences among a set of

From MSCs to Statecharts

components, i.e., we make a closed world assumption with respect to the interaction
sequences occurring in the system under development. The procedure we suggest
makes use of information on the component's control/data-state provided by the de-
signer, for instance, via the condition symbols found in the MSC standard [IT96,
IT98]. Each condition will be translated into a corresponding automaton state. We
assume further that we try to obtain an automaton for exactly one of the components,
say c, occurring in the MSCs. The second input we expect, besides the set of MSCs, is
the name of the starting state for c's automaton. The procedure for obtaining that
automaton consists of five successive phases: projection, normalization, transforma-
tion into an MSC-Automaton, transformation into an automaton, and optimization.

2.2.1. Projection
During the first phase we project each of the given MSCs onto the component c, i.e.
we remove all other instance axes, as well as message arrows that neither start, nor
end at c.

2.2.2. Normalization
Then, in the second phase, we normalize the projected MSCs. An MSC in our normal
form consists of exactly two condition symbols and a (possibly empty) sequence of
message arrows in between. To normalize an MSC that does not start or end with a
condition symbol, we add the one representing the given initial state. We split MSCs
that contain more than two conditions at any of the intermediate ones. Thus, we re-
place each such MSC by two new ones; the first of these is the original MSC up to
(and including) the condition at which we split, the second one is the original MSC
from that condition on.

2.2.3. Transformation into an MSC-Automaton
To obtain what we call an MSC-Automaton, we now identify the condition labels
occurring in the resulting MSCs with states of the automaton for component c. Fur-
thermore, we create a transition from state s0 to state s1 labeled by MSC M if and only
if there is a normalized MSC M whose start and end conditions are labeled with s0 and
s1, respectively. As the initial condition for this automaton we use the one provided as
an input to the procedure. The result of this phase is an automaton that provides a
high-level view on the states of the component we are interested in.

2.2.4. Transformation into an Automaton
In the fourth phase of our procedure we expand the transitions that are labeled with
MSCs by intermediate states and transitions. We replace all transitions that are labeled
with an MSC containing only conditions by an ε-transition. Let M be any other MSC
label. It defines k > 0 communication actions that we denote by (d1, n1, c1), ..., (dk, nk,
ck), recorded in the order of the corresponding arrows of M. Here di, ni, and ci repre-
sent the direction of the message exchange (“!” for an outgoing, and “?” for an in-
coming arrow), the message label, and the name of the corresponding sender or re-
ceiver, respectively (for 1 ≤ i ≤ k). For k = 1 we replace the transition labeled with M
by one labeled with (d1, n1, c1). For k > 1 we add k-1 new states, labeled by s1 through
sk-1, as well as k new transitions to the automaton. The first transition starts in the state
corresponding to the start condition of M, ends in s1, and its label is (d1, n1, c1). The k-

From MSCs to Statecharts

th transition, labeled with (dk, nk, ck), starts in the new state sk-1, and ends in the state
corresponding to the final condition of M . All other transitions start in state si-1, end
in state si, and their label is (di, ni, ci), for 1 < i < k. After applying these steps to all
transitions labeled with MSCs we obtain a nondeterministic automaton with in-
put/output actions.

2.2.5. Optimization
To optimize the resulting automaton we may now use standard algorithms from auto-
mata theory; examples of such algorithms are the elimination of ε-transitions, the sub-
set-construction, and the Myhill-Nerode construction for minimization (cf. [HU93]).
Other optimizations are motivated by the semantics of the underlying communication
system. For Statecharts we might, for instance, condense transition sequences of the
form “?, !, !, ..., !”2 into a single transition labeled with “?/!!...!”. The symbol “/” sepa-
rates input and output actions that occur during the same time instant [Sch98a]. This
corresponds to identifying the occurrence of a sequence of outputs with their trigger-
ing input.

The next section provides an example application of the procedure we have out-
lined here.

2.3. Example

As the running example we use a simplified specification of a central locking system
(CLS) for cars. This example is inspired by a case study from automotive industry.
The principal structure of the CLS is sketched in Figure 1; it gives an overview of the
locking system of a two-door car.

Control

LM RM

ldn

unlcklck

rup

rmr

rdn

lup

lmr

Figure 1: Central locking system – structure and signals

2.3.1. Informal Description
The CLS consists essentially of three main parts: the Control and the two door motors
LM (short for “left motor”) and RM (short for “right motor”). These parts are com-
posed in parallel. In this system structure, we also describe the signal flow between
different components by arrows, which connect output and input interfaces of possi-
bly communicating components.

2Here we consider the direction of the communication only.

From MSCs to Statecharts

The default configuration of the system is that all doors are unlocked (UNLD) and
both motors are OFF. The Control is the central component of the central locking
system.

The driver can unlock or lock the doors either from outside by turning the key or
from inside by pressing a button. Locking and unlocking the doors leads to complex
signal interactions. Both actions generate the external signals lck (for “locking”) or
unlck (for “unlocking”). The Control generates the internal signals ldn and rdn and
changes to its locking configuration LCKD.

Instantaneously, influenced by ldn and rdn, respectively, both motors begin to lock
the doors by entering their DWN configurations. As the speeds of the motors depend
on external influences like their temperature, each motor either needs one or two time
units to finish the lowering process. Only when both motors have sent their ready
messages lmr (for “left motor ready”) and rmr (“right motor ready”), the Control en-
ters its LCKD configuration.

2.3.2. Scenario-based View
The MSCs of Figure 2 illustrate most of the requirements stated informally in the pre-
vious paragraphs; for reasons of brevity we have omitted the handling of simultaneity
and of the possibly different speeds of components.

lck

Control

UNLD

LCKD

LM

OFF

DWN

OFF

ldn

 rdn

RM

DWN

OFF

OFF

lmr
rmr

msc locking

unlck

Control

LCKD

UNLD

LM

OFF

UP

OFF

lup

 rup

RM

UP

OFF

OFF

lmr
rmr

msc unlocking

Figure 2: Central locking system – scenarios for locking and unlocking

Consider, for instance, MSC locking, which depicts the behavior of the Control,
LM, and RM during the locking operation of the CLS. The angular boxes in MSCs
denote the configurations or states that the corresponding component is in, according
to the informal description above. The depicted interactions also proceed along the
lines of the informal requirements capture. If the Control is in state UNLD and re-
ceives the lck signal, it emits the lup and rup messages to the two motors. After it has
received both the lmr, and the rmr signals it changes to the LCKD state. The transla-
tion of the other components' behavior, as well as the translation of the second sce-
nario (see MSC unlocking) are equally direct.

2.3.3. Translation into Statecharts
In this section we apply the translation procedure as described in Section 2.2 to the
MSCs depicted in Figure 2. We illustrate the results of the individual phases of the
procedure using the Control component.

In the first step we project the two MSCs onto the axes that represent Control. The
resulting MSCs (see Figure 3, left) are already in normal form. Note that we would

From MSCs to Statecharts

have to split the projections of LM and RM at the intermediate UP and DWN condi-
tions to obtain normal forms for these components. We derive the MSC-automaton
for Control as it appears in Figure 3, right, because MSCs LC and UC take that com-
ponent from state UNLD to LCKD, and from LCKD to UNLD, respectively.

lck

Control

UNLD

LCKD

ldn

 rdn

lmr
rmr

msc LC

unlck

Control

LCKD

UNLD

lup

 rup

lmr
rmr

msc UC

UNLD LCKD

LC

UC

Figure 3: Projected MSCs for component Control and corresponding MSC-Automaton

By expanding the MSC-labeled transitions in the fourth phase of the procedure, we
obtain the automaton depicted in Figure 4. Note that we have omitted the receiver in
the transition labels because in the broadcasting communication model of Statecharts
this information is redundant.

!rdn

?lck

!ldn ?lmr

?rmr

UL2

LU3

UL3

LU2

?rmr

?lmr !rup !lup

?unlck

UL1

LU4

UNLD

UL4

LU1

LCKD

Figure 4: Automaton for component Control

Using the optimization suggested in Section 2.2, and combining the result with the
result of deriving also the automata for LM and RM, we obtain the Statechart depicted
in Figure 5.

?lck/!ldn,!rdn

LU5

UL5
UNLD LCKD

?unlck/!lup,!rup

?lmr,?rmr

?lmr,?rmr

Control

OFF UPDOWN

?ldn

!lmr

?lup

!lmr

OFF UPDOWN

?rdn

!rmr

?rup

!rmr

LM

RM

lmr, rmr, ldn, rdn

Figure 5: Overall Statechart for component Control and both motors

From MSCs to Statecharts

Having translated the set of MSCs into a Statechart, we may further refine the
system under development towards the final implementation as shown in [Sch98b].

3. Conclusion

In this paper we showed how to translate scenario-based system requirements into
state-based system designs.

Although we presented the translation in a time-synchronous communication set-
ting, it is actually independent from the underlying communication mechanism. The
reason is that we associate a separate automaton to each component occurring in the
MSCs. Communication is captured by parallel composition of automata.

The composition can be adapted to the communication style chosen for MSCs. If
this communication is time-synchronous, one has to define a time-synchronous par-
allel composition of automata (as done in this paper). If the communication is time-
asynchronous, one has to define a time-asynchronous parallel composition. Similarly,
one can consider a communication mechanism using one, two or several communica-
tion buffers. In all these cases, our translation remains the same. One only needs to
change the automata composition.

Acknowledgments

Our work was partially supported with funds of the Deutsche Forschungsgemein-
schaft under the Leibniz program, by Siemens-Nixdorf within project SysLab, and by
the Bayerische Forschungsstiftung. We are grateful to the participants of DIPES’98
for interesting discussions about this subject.

References

[BGK98] Manfred Broy, Radu Grosu, and Ingolf Krüger. Deutsche Patentanmeldung, Ak-
tenzeichen 198 37 871.8, 1998.

[BHKS97] Manfred Broy, Christoph Hofmann, Ingolf Krüger, and Monika Schmidt. Using
extended event traces to describe communication in software architectures. In
Asia-Pacific Software Engineering Conference and International Computer Sci-
ence Conference, Hong Kong. IEEE Computer Society, 1997.

[BMR+96] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal. A System of
Patterns. Pattern-Oriented Software Architecture. Wiley, 1996.

[Boe86] B. Boehm. A spiral model of software development and enhancement. ACM SIG-
SOFT, pages 14 – 24, August 1986.

[Boe88] B. Boehm. A spiral model of software development and enhancement. IEEE Com-
puter, pages 61 – 72, May 1988.

[Har87] D. Harel. Statecharts: A Visual Formalism for Complex Systems. Science of Com-
puter Programming, 8:231–274, 1987.

[HU93] J. E. Hopcroft and J. D. Ullman. Einführung in die Automatentheorie, Formale
Sprachen und Komplexitätstheorie. Addison Wesley, 2. korrigierter Nachdruck,
1993.

From MSCs to Statecharts

[IT96] ITU-TS. Recommendation Z.120 : Message Sequence Chart (MSC). Geneva, 1996.
[IT98] ITU-TS. Recommendation Z.120 : Annex B. Geneva, 1998.
[Rat97] Unified modeling language, version 1.1. Rational Software Corporation, 1997.
[Roy70] W.W. Royce. Managing the development of large software systems. IEEE

WESCON, pages 1 – 9, August 1970.
[Sch98a] P. Scholz. A Refinement Calculus for Statecharts. In Proceedings of the

ETAPS/FASE'98, Lisbon (Portugal), March 30 - April 03, 1998, volume 1382 of
Lecture Notes in Computer Science. Springer, 1998.

[Sch98b] P. Scholz. Design of Reactive Systems and their Distributed Implementation with
Statecharts. Ph.D. thesis, Technische Universität München, 1998.

[V97] Entwicklungsstandard für IT-Systeme des Bundes, Vorgehensmodell. Allgemeiner
Umdruck Nr. 250/1. Juni 1997, BWB IT I5.

