
Modular Specification of Hybrid Systems in

Charon

Rajeev Alur, Radu Grosu, Yerang Hur, Vijay Kumar, and Insup Lee

Department of Computer and Information Science, University of Pennsylvania,
Philadelphia PA 19104-6389, USA,

alur,grosu,yehur,kumar,lee@cis.upenn.edu,
URL: http://www.cis.upenn.edu/~alur,grosu,yehur,kumar,lee

Abstract. We propose a language, called Charon, for modular spec-
ification of interacting hybrid systems. For hierarchical description of
the system architecture, Charon supports building complex agents via
the operations of instantiation, hiding, and parallel composition. For hi-
erarchical description of the behavior of atomic components, Charon
supports building complex modes via the operations of instantiation,
scoping, and encapsulation. Features such as weak preemption, history
retention, and externally defined Java functions, facilitate the description
of complex discrete behavior. Continuous behavior can be specified using
differential as well as algebraic constraints, and invariants restricting the
flow spaces, all of which can be declared at various levels of the hierar-
chy. The modular structure of the language is not merely syntactic, but
can be exploited during analysis. We illustrate this aspect by presenting
a scheme for modular simulation in which each mode can be compiled
solely based on the locally declared information to execute its discrete
and continuous updates, and furthermore, submodes can integrate at a
finer time scale than the enclosing modes.

1 Introduction

A hybrid system typically consists of a collection of digital programs that interact
with each other and with an analog environment. The design and implementa-
tion of hybrid systems remains a challenging task. We believe that availability
of a specialized design language for hybrid systems will aid the developers sig-
nificantly and lead to opportunities for greater design automation. Traditional
tools for modeling and simulation of dynamical systems, such as Matlab (see
www.mathworks.com), provide little support for modular specifications. On the
other hand, modern software design languages, such as Statecharts [Har87]
and Uml [BJR97], provide no support for describing continuous behavior. In
this paper, we introduce a language, called Charon, for hierarchic specifica-
tion of interacting hybrid systems. The design of our language was guided by
two concerns. First, the language should support state-of-the-art modeling con-
cepts such as encapsulation, reuse, preemption, and hierarchy. Second, it should
be possible to give a modular formal semantics to the language which can be
exploited during simulation, verification, and code generation.

In Charon, a system is described as a collection of agents communicating
via shared variables, and the behavior of each agent is specified by a hierarchical
state machine. Key features of Charon are summarized below.

Architectural hierarchy. The building block for describing the system ar-
chitecture is an agent that communicates with its environment via shared
variables. The language supports the operations of composition of agents to
model concurrency, hiding of variables to restrict sharing of information, and
instantiation of agents to support reuse.

Behavior hierarchy. The building block for describing flow of control inside an
atomic agent is a mode. A mode is basically a hierarchical state machine, that
is, a mode can have submodes and transitions connecting them. Variables
can be declared locally inside any mode with standard scoping rules for
visibility. Modes can be connected to each other only via well-defined entry
and exit points. We allow sharing of modes so that the same mode definition
can be instantiated in multiple contexts. Finally, to support exceptions , the
language allows group transitions from default exit points that are applicable
to all enclosing modes, and to support history retention, the language allows
default entry transitions that restore the local state within a mode from the
most recent exit.

Discrete updates. Discrete updates are specified by guarded actions label-
ing transitions connecting the modes. We assume interleaving semantics for
concurrency (i.e., only one atomic agent is executed in a discrete round),
run-to-completion semantics for individual agents (i.e., once an agent is cho-
sen for discrete update, it keeps executing its transitions as long as there are
enabled ones), and higher priorities for inner modes (i.e., group transitions
from the default exit of a mode are examined only when there are no enabled
transitions inside).

Continuous updates. Some of the variables in Charon can be declared ana-
log, and they flow continuously during continuous updates that model pas-
sage of time. The evolution of analog variables can be constrained in three
ways: differential constraints (e.g. by equations such as ẋ = f(x, u)), alge-
braic constraints (e.g. by equations such as y = g(x, u)), and invariants (e.g.
|x− y| ≤ ε) which limit the allowed durations of flows. Such constraints can
be declared at different levels of the mode hierarchy.

It should be noted that Charon is a modeling language: it supports nonde-
terminism for both discrete and continuous updates, it is suitable for describing
the system as well as the assumptions about the environment in which the system
is supposed to operate, and for describing the same system at different levels of
abstraction. The language constructs primarily facilitate the description of con-
trol flow, but it also supports calls to externally defined Java functions which
can be used to write complex data manipulations.

After introducing the language in the next two sections, we proceed to il-
lustrate how to exploit the modular structure during simulation. Since modes
are hierarchical, multiple modes within an atomic agent can be active simulta-
neously, and a large number of transitions may be applicable in a given state.

2

In our modular scheme for discrete updates, each mode gets compiled into a
function which gets control at one of its entry points along with an input global
state, and returns the control at one of its exit points together with a modified
global state. Such a modular scheme is possible since Charon modes have ex-
plicit entry and exit points including the default ones, and inner transitions have
higher priorities over the outer ones.

Introducing modularity in simulation of time rounds is more challenging.
Since time is global, update of analog variables of all agents must be synchro-
nized. Furthermore, within a single agent multiple modes are active, and the
constraints on continuous update may be defined at any level of the hierar-
chy. This implies that simulating a flow requires solving constraints of all active
modes of all agents simultaneously. In a modular scheme, we wish to compile
each mode independently of the other.
Concurrency. To handle concurrency, we propose a scheme for distributed sim-

ulation in which each agent has its own local clock. The scheme ensures that
the differences among local clocks are bounded. In any time round, we up-
date the analog variables of only one of the agents keeping the state of the
remaining agents unchanged.

Hierarchy. Each mode is responsible for integrating the variables whose update
laws are defined locally, at a time scale of its own choice based on the local
control laws and the invariants. A mode M is invoked from higher level with
an input state, a bound δ on integration time, and an invariant constraint
on the local variables of M . The integration within M assumes that the
variables whose update laws are defined outside M stay unchanged. It can
choose to integrate at time intervals shorter than δ, and can use integration
routines of its submodes as black-boxes.
In summary, instead of solving the entire set of constraints simultaneously,

the modular scheme computes the approximate solutions by layering the con-
straints as dictated by the modular specification.
Related work. Early formal models for hybrid systems include phase transition
systems [MMP91] and hybrid automata [ACH+95]. There has been a lot of
research concerning analysis of hybrid automata leading to the model checker
HyTech [AHH96,HHW95]. Models such as hybrid I/O automata [LSVW96]
and hybrid modules [AH97] allow compositional treatment of concurrent hybrid
behaviors. None of these models admit hierarchical specifications.

The notion of hierarchical state machines was introduced in State-
charts [Har87], and is present in many software design paradigms such as
Uml [BJR97]. Our treatment of hierarchy is closest to hierarchical reactive mod-
ules [AG00] which shows how to define a modular semantics for hierarchical
(discrete) modes.

The languages Shift [DGS97] and HyCharts [GSB98] allow hierarchal
specifications of hybrid behavior, and Stateflow (see www.mathworks.com) al-
lows hierarchal specifications of dynamic behavior. However, modular simulation
has not been a concern in the design of these languages. Furthermore, Charon
supports new features such as preemption and reuse that are important from a
programming perspective.

3

2 Language Overview

A hybrid system is described in Charon by a set of agents communicating over
a set of shared variables in an asynchronous way.

The agents may be grouped together in a hierarchical way into composed
agents starting from the most primitive ones called atomic agents. Information
flow inside a composed agent may be hidden to the outside world. The grouping
of agents into composed agents gives the architecture of the hybrid system. A
composed agent may also be understood as an architectural pattern that may
be instantiated, i.e., reused in different contexts that match the pattern.

For example, at a lower level, a robot may be understood as the composition
of a sensing agent, a controller agent, and an actuator agent. At a higher level,
one may consider a team of cooperating robots, communicating with each other
in order to achieve a common goal.

The behavior of an atomic agent is given by a set of modes that are linked
together by a set of transitions. Each mode represents a particular behavior of the
agent and has an associated dynamics given by a set of algebraic and differential
constraints. The dynamics may be further constrained by a set of invariants.
Modes may also be grouped together in a hierarchical way to form composed
modes starting from the most primitive ones called leaf modes. Moreover, each
mode may declare its own set of local variables that is hidden outside the mode,
but is accessible to its submodes.

In other words, a mode is a sequential, communicating, hierarchical state
machine with well defined dynamics, interfaces, and scoping rules for variables
similar to structured programming languages. It may be also regarded as a be-
havioral pattern that may be instantiated.

For example, at a lower level, one may consider for a robot the modes walk-
Forward, walkLeft, walkRight and walkBackward. At a higher level one may
consider the modes avoidObstacle and trackWall. avoiding obstacles.

Note that an atomic agent is nothing but a hierarchical mode. Its variables
and behavior are completely determined by the mode. Moreover, a hierarchical
agent is nothing but a set of hierarchical modes with local variables determined
by the agent hierarchy. So why do we distinguish between modes and agents? The
answer is that encapsulating modes inside agents prevents parallel composition
inside modes, i.e., modes are entities composed in a purely hierarchic way.

2.1 Variables

Discrete and analog variables. A hybrid agent has a finite set of typed
variables denoted A.V . Some of these variables are updated in a discrete fashion
and the others change in an analog fashion when time elapses. Accordingly, the
set A.V is partitioned in two sets, the set A.dscV of discrete variables and the
set A.anaV of analog variables.
Differential and algebraic variables. In control theory it is common to com-
pute the values of the analog variablesA.anaV by using algebraic and differential
equations. For example, ẋ=f(x, u) is a differential equation whereas y=g(x, u)
is an algebraic equation. Regarding f and g as functional blocks and x, y, u as

4

wires, it is easy to see that the wire x is a feedback loop of f . As a consequence,
the current value of the output x of f depends on the previous (infinitisimal)
value of x. In contrast, the current value of the output y of g depends only on the
current values of the inputs x and u. Hence, an algebraic equation is very similar
to a combinational circuit whereas a differential equation is similar to a sequen-
tial circuit. In Charon we generalize algebraic equations also to inequalities. We
call the differential equations and algebraic equations generically as constraints.
The variables defined by algebraic constraints are called algebraic variables and
the variables defined by differential constraints are called differential variables.
Hence, A.anaV = A.diffV ∪ A.algV . We insist that A.diffV ∩ A.algV = ∅. Note
that hybrid automata don’t make any distinction between these two kinds of
variables.
Permitted read/write accesses. The variables A.V of an agent A are classi-
fied according to their visibility and update permissions into three sets: the set
A.lclV of local variables that cannot be read or written by other agents, the set
A.wrtV of write variables that are written by A, and can be read by other agents,
and the set A.readV of read variables that are read by A, and may be written by
other agents. The sets A.readV and A.wrtV need not be disjoint. Similarly, the
set of local variables A.lclV may be both read and written. The set of read and
write variables A.gblV = A.readV ∪A.wrtV is used for communication and it is
called the set of global variables. The set A.updV = A.wrtV ∪A.lclV of write and
local variables is called the set of updated variables. Hence, our communication
model is that of asynchronous communication over shared variables. This model
is a very general and allows to define channels as a special case.
States and actions. Given a set V of typed variables, a state over V is a
function mapping variables to their values. Given two sets V andW of variables,
an action from V to W is a binary relation between the states over V and the
states over W . In Charon specifications, an action consists of an action guard
over V and an action body from V to W . We say that an action is enabled
(disabled) at a state s if its guard is true (false) at that state.

2.2 Hierarchical Modes
Hierarchy. A mode in Charon has a very refined control structure, given by
a hierarchical, hybrid state machine. It basically consists of a set of submode
references connected by transitions such that at each moment of time only one
of the submode references is active. A submode reference has associated again a
mode and we require that the modes form an acyclic graph with respect to this
association. By using modes and mode references several references may share
the same mode. This is highly desirable because modes in a definition are never
simultaneously active. A mode resembles an or state in Statecharts, but it
has more powerful structuring mechanisms.
Variables. A mode has global as well as local variables. Global variables are
used to share data with the mode’s environment, and are partitioned into the
set readV of read variables and a set wrtV of write variables. The set gblV =
readV ∪wrtV is called the set of global variables. The set of local variables lclV
of a mode is accessible only by its transitions and submodes. Thus, the scoping

5

m n

b

e

d

f

a de

c dx

j h g

q

t
p

r i

wrt z, lcl u

m
constr_m

p

read x, wrt y, lcl z

constr_p

s

read z, lcl v

n
constr_n

Fig. 1. Scoping rules and transition types

rules for variables are as in standard structured programming languages. For
example, in Figure 1 left, the transitions of the mode p (like r, s and t) may
refer only to the variables x, y and z. These variables are global to the modes
referred to by m and n. However, the variables local in the mode referred to by
m may not be used in the mode referred to by n. For example, in Figure 1 left,
the variable z may be accessed both in m and n but the variables u and v are
private to m and n, respectively .
Dynamics. A mode has an associated set of constraints. These include dif-
ferential equations, algebraic equations and invariants that are differential and
algebraic inequalities. The constraints define the flows of the mode, i.e., the way
analog variables are updated while the agent is in this mode. The invariants de-
fine conditions that have to be satisfied by the variables in this mode, i.e., they
define allowed durations. The scoping rules also apply for these constraints. For
example, in Figure 1, constr p may only refer to x, y and z and constr m may
refer only to z and u. For each differential and algebraic variable updated by
a mode we require that the variable is either updated by the mode itself or it
is updated by all submodes of this mode. For example, in Figure 1, the local
variable z is either updated by a differential constraint in the mode p or by
differential constraints in both submodes m and n.
Interfaces. To obtain a modular language, we require the modes to have well
defined control points classified into entry points (marked as white bullets) and
exit points (marked as black bullets). The transitions connect the control points
of a mode and its submode references to each other. For example, in Figure 1
right, a is an entry transition, g, h and j are exit transitions, b is an entry/exit
transition and c and i are internal transitions. Between these transitions there is
a subtle difference. Entry transitions initialize the local variables by reading only
from the global variables. Exit transitions forget the values of the local variables
by writing only to the global variables. It is only the internal transitions that
may both read and write the local variables.
Preemption. To model preemption we use the special default exit point dx.
A transition starting from the default exit point of a mode is called a group
transition. It may be taken whenever the control is inside the mode and no
internal transition is enabled. For example, in Figure 1 right, the group transition
d is taken if it is enabled and all the transitions c, g, h, i, and j are disabled.
Hence, inner transitions have a higher priority than the group transitions, i.e.,
we use weak preemption (like the weak kill in Unix, versus the strong kill -9).
This definition of priorities allows us to define in Section 4 a modular simulation.

6

History. To allow history retention, we use the special default entry point de.
A transition entering the default entry point of a mode restores the values of
all local variables along with the position of the control (a transition may enter
a default entry of a mode only if the mode was left along its default exit). For
example, both transitions e and f in Figure 1 right, enter the default entry
point. The transition e is called a self group transition. A self transition (like
e) or more generally a self loop like d, q, f may be understood as an interrupt
handling routine. While a self loop may be arbitrary complex, a self transition
may do simple things like counting the number of occurrences of an event (e.g.,
clock events).

The set of modes in aCharon specification is supposed to be globally accessi-
ble. Moreover, since a mode may refer to other modes we require that referencing
forms an acyclic graph.
Leaf and top level modes. A leaf mode is a mode with no submodes and a
default identity transition from its default entry point de to its default exit point
dx. A top-level mode is a mode M with a single explicit entry point e and no
exit points.
Mode operations. The mode definition can be viewed as an encapsulation
operator over its submodes, and thus, modes are constructed from leaf-modes
using encapsulation repeatedly in a non-recursive manner. Since encapsulation
may partially overlap, the mode structure looks like a directed acyclic graph,
rather than a tree, and this can be exploited during analysis.

2.3 Hierarchical Agents

An atomic agent is basically a top level mode whose global variables are used
for communication with other agents. As we already mentioned, atomic agents
may be composed to form composed agents and communication inside composed
agents may be hidden. Intuitively, composition of atomic agents is the union of
their modes and hiding is a declaration of local variables. To make the operations
over agents closed under composition and hiding, we define an agent as follows.
Definition 1. (Agent) An agent P is a tuple consisting of

Modes. A set of top-level modes M .
Local variables. A set lclV ⊆ ∪m∈Mm.gblV of local variables.
Global variables. A set gblV = (∪m∈Mm.gblV) \ lclV of globals variables.

Definition 2. (Composition) If A and B are two agents, then the composition
A‖B is the agent with the set lclV = A.lclV ∪ B.lclV of local variables, the
set wrtV = A.wrtV ∪ B.wrtV of write variables, the set readV = A.readV ∪
B.readV of read variables and the set M = A.M ∪ B.M of top level modes.
Definition 3. (Variable Renaming) Let A be an agent, x ∈ A.gblV a global
variable of the agent and y �∈ A.V a variable of the same type as x but not
contained in A. Then the renaming A[x := y] is the agent obtained by consistently
renaming x by y in A.V and in all modes m ∈ A.M .
Definition 4. (Variable Hiding) Let A be an agent, x ∈ A.gblV a global variable
of the agent. Then the variable hiding hide x in A is the agent obtained by
replacing A.gblV with A.gblV \ {x} and A.lclV with A.lclV ∪ {x}.

7

3 Global Semantics

One alternative in giving a semantics to a hierarchical system is to consider
hierarchy as just a convenient syntactic abbreviation. This reduces the semantic
definition to two considerably easier subproblems: a) show how to construct a
flat system out of the hierarchical one and b) give a semantics to the flat system.

3.1 The Flattening Operation

Given a mode definition, the flattening operation recursively eliminates the sub-
mode references as follows: a) take for each referencem the associated definition,
b) prefix all elements of the mode definition by m, c) continue recursively until
all references point to a leaf mode definition. The set of elements obtained this
way are taken as the elements of the flat mode.

As a consequence of flattening, all elements of the resulting mode are pre-
fixed with a path m1:m2: . . . :mk from the root mode reference m1 down to the
containing mode reference mk of the original hierarchical mode. For example,
a control point c has now the form m1:m2: . . . :mk:c. The set of local variables
flat(M).lclV of the flattened mode flat(M) is the transitive closure of the local
variables of M and the local variables of its submodes.

In the semantic definitions of the next section we model paths by stacks.
Textually, we write stacks with the elements separated by colons and with the
topmost element on the left. For example s = a:b:s’ is the stack s with the top
element a, the second element b and the rest of the stack s’. To show how stacks
evolve in a pictorial way we use pattern matching. For example when we write if
((as = a:b:as’) & (bs = c:bs’)) (as,bs) = (c:as’, a:b:bs’) we mean
that if the current value of the stack as has topmost elements a and b and the
current value of the stack bs has the topmost element c then the next value of
as has discarded a and b and pushed c, and the next value of bs has discarded
c and pushed a and b.

3.2 Update Rounds

In an update round, the semantic function nondeterministically chooses one of
the modes of the resulting flat agent and executes the discrete update on that
mode. Using a pseudo-code like notation this can be described as shown below.

State updateRound (Agent a, State s){
return forany (m in subModes(a)) discreteUpdate(m, s); }

The discrete update of a mode is a sequence of enabled implicit and explicit
transitions starting at the default entry point of the mode and ending at the
default exit point of the mode. The algorithm for generating this sequences is
given below. In the first step it uses the global history variable hs, that is itself
a stack, to execute a series of default entry transitions down to the last control
point where the explicit execution got stuck, i.e., where all the explicit transitions
were disabled. A default entry transition restores the saved submode and point
by popping them from the history stack and pushing them on the control stack
ct.

8

State discreteUpdate (Mode m, State s) {
Stack ct = de:m:[]; State st = s; //put de and m
while (ct != dx:m:[]) { //while dx not reached

while (ct = de:ct’) //while de is the top point
if (st.hs = pt:md:hs’)
(ct, st.hs) = (pt:md:ct’, hs’); //default entry transition
else ct = dx:ct’; //default identity transition for leaf mode

while (enabledFanOut(ct, st) != {})
(ct, st) = forany (t in enabledFanOut(ct, st)) t(ct, st);

let (ct = pt:md:ct’) in
if (pt != de)
(ct, st.hs) = (dx:ct’, (pt=dx?de|pt):md:st.hs) }

return st; }
If the history stack hs is empty and the top point on the control stack ct is
the default entry point de then a leaf mode has been reached and the identity
transition of the leaf mode is executed.

In the second step, the algorithm executes a sequence of explicit, enabled
transitions starting at the control point obtained in the previous step and ending
at the control point where all the explicit transitions are disabled. The enabled
fanout of a mode reference is the set of enabled transitions in the associated
mode definition, with source point pt and with source state st.

In the third step, the algorithm executes an implicit exit transition provided
that the last transition was not a self group transition (in this case, the top
point pt is equal to de). The default exit transition saves the relative value of
the control point from the previous step on the top of the history stack and passes
the control to the default exit of the parent mode. Note that, if the top point on
the control stack ct was the default exit point dx, then the exit transition saves
on the history stack hs the default entry point de. This assures that in the next
step, the deepest point is tried first.

Since the top of the control stack is dx and not de, the first step is skipped
when control is passed up to the parent mode. The second step in this case
amounts to executing a group transition if any enabled transition exists. If this
is not the case, the control is passed in the third step up again to the enclosing
parent mode and so on up to the top mode. If any of the group transitions
is enabled, then executing this transition (and possibly other), may return the
control to the default entry point de of the mode, and the algorithm proceeds
by skipping the third step and executing all the default entry transitions.

3.3 Time Rounds

In a time round, for a given state s1, the semantic function executes for a time
interval d, and produces a new state s2 = s(d), where s is any flow that is a
solution of the active set of control constraints, not violating the current set of
invariants and such that s(0) = s1. The semantic function is shown below, where
the type Constraints is assumed to contain a set of algebraic constraints, a set
of differential constraints and a set of invariants.

9

State timeRound (Agent a, State s) {
Constraints c = agentConstraints(a, s);
return forany ((f, d) in solution(c, s)) f(d); }

The set of active constraints for an agent is the union of the active constraints
of each mode in the agent.

Constraints agentConstraints (Agent a, State s) {
Constraints ac = {};
forall (m in modes(a))

ac = ac ∪ modeConstraints(m, s);
return ac; }

For each mode, the set of active constraints is easily recovered form the history
variable.

Constraints modeConstraints (Mode m, State s) {
Constraints mc = getConstraints(m); Stack hs = s.hs
while (hs = pt:md:hs’) {

mc = mc ∪ getConstraints(md);
hs = hs’; }

return mc; }
Hence, in a global semantics, the flows in all agents are synchronized with each
other.

3.4 Global execution

The semantic function for the execution of a hybrid agent nondeterministically
chooses in each step either an update round or a time round, as shown by the
following pseudo-code segment.

State macroStep (Agent a, State s) {
[] return updateRound(a, s);
[] return timeRound(a, s); }

4 Modular Simulation

The global semantics given in the previous section can be readily implemented
in an algorithmic way to obtain a precise simulation for any hybrid system
described in Charon. However, such a simulation has a big disadvantage: it
is not modular. In other words, one can not simulate the behavior of a mode
in isolation independent of other modes or the mode hierarchy. The lack of
modularity precludes efficient implementations. For example, all flows in the
previous section are synchronized on the same clock.

In this section we present an alternative, modular simulation for hybrid
agents. This simulation may have a very efficient implementation. However, its
disadvantage is that it only approximates the conceptually ideal solution.

10

4.1 Update Rounds
In a modular simulation, the time and the update rounds of the mode of an
atomic agent are constructed in a modular way from the time and the update
rounds of its submodes. The state passed along the modes is automatically co-
erced to the appropriate state for that mode, i.e., a mode can only access that
part of the state that corresponds to its own variables. In programming languages
terminology, the discreteUpdate and the timeRound functions are polymorphic.

In the modular version we do not have to work with path prefixed variables
and points because the structure of a hierarchical mode is not destroyed (flat-
tened). Moreover, in this case each mode has its own history variable, keeping a
tuple: the last visited submode and its associated point. The modular version of
the discrete update function is shown below. The initialization round of a mode
is obtained by calling discreteUpdate at the initialization entry point.
Point×State discreteUpdate (Mode m, Point p, State s){

Mode md = m; Point pt =p; State st = s;

repeat { //loop
if (md = m & pt = de) //control is at default entry point

(md, pt) = s.hs; //execute default entry transition
else //control is at regular entry

(md, pt, st) = forany (t in enabledFanOut(md,pt, st))
t(md, pt, st); //execute transition

if (md = m & pt in exitPts(m)) //control reached exit point
return (pt, st); //done

else //control reached submode
(pt, st) = discreteUpdate(md, pt, st);

until (enabledFanOut(md, pt, st) = {}); }
s.hs = (md, pt); //update history
return (dx, st); } //done

4.2 Time Rounds
Taking the idea of modularity seriously, in a time round each agent should be
able to integrate independently of the other agents, and the integration inside a
submode should be done independently of its supermodes.

The independent integration of the subagents in a composite agent, or equiv-
alently the integration of the top modes of the associated flattened agent, is the
topic of the next section. In this section we are concerned with the hierarchical
integration for a mode. The main goal is to allow the modes to integrate at
different speeds without compromising too much the ideal solution.

Our main assumption is that the integration speed of the parent mode is of
an order of magnitude slower than the integration speed of the submodes. In
this case, we may assume that the values integrated in the parent mode, remain
constant while the submodes perform their own integration. For example, in
Figure 2 left, we assume that the integration speed for x is slower than the
integration speed for y that is also slower than the integration speed for z. This
idea is shown algorithmically below.

11

The time round function gets as input the mode, the state, the simplified
invariants of its parent mode and the integration step of its parent mode. It
first computes the current submodes and the set of invariants. Then it enters
the integration loop. In this loop it first simplifies the invariants according to
the variables integrated in its supermode (their values are assumed to be fixed)
and if the loop was traversed at least once, according to the variables declared
in this mode or above but integrated in the submodes. Then it predicts its own
integration step.
State×Time timeRound(Mode m, State s, Invariants i, Time t){

State st; Mode md; Time d, dt; //declare local variables
Invariants inv = getInv(m) ∪ i; //get invariants
(md, pt) = s.hs; //get active submode and point

for (Time tm = 0; tm < t; tm = tm + dt) { //while time left
inv = simplify(s, inv); //simplify invariants
dt = predict(inv, s, getConstraints(m), tm);//predict dt
(st, d) = timeRound(md, s, inv, dt); //execute submode
st = integrate(st, getConstraints(m), d); //integrate
if (d < dt | violated(inv, st, tm+d))

return (st, tm + d); } //violation return
return (st, tm); } //normal return

Then it calls its current submode (known from the history variable) to execute a
time round. It also constrains the integration time of the submode by passing its
own simplified invariants. When the submode returns, the mode synchronizes its
own differential variables with the differential variables owned by the submodes
by performing the integration step. If the submode returned before the assigned
integration time or the invariant of the mode was violated, the mode itself re-
turns. Otherwise it returns normally. In this way, all variables are synchronized
up to the top level.

4.3 Global Execution
In the modular simulation of the global execution we want to be able to inte-
grate each sub-agent of a composite agent (or equivalently each mode of the
corresponding flattened agent) at a possibly different speed and along intervals
of different length. This however inevitably leads to an out of synchronization
between the agents, because as long as an agent is integrating it cannot become
aware of the changes produced by the other agents.

The main idea of our approach is to keep the out of synchronization interval
between agents bounded, even if the agents proceed with different speeds. An
intuitive analogy would be that of a rubber band that surrounds the agents and
cannot be expanded more than a length, say dt.

For this purpose, each step in the global execution first picks up the modes
with minimum and second minimum local time. For example, in Figure 2 we
pick the modes M2 and M1. Then we compute the time round interval inc for the
minimum mode such that its local time may exceed by at most dt the current
local time of the second minimum mode. For example, in Figure 2, the increment
is inc.

12

M1 M2 M3

time

t+dt

t
ai inc

modes

x
.

y
.

z
.

Fig. 2. Time round and global execution
The time round may end before the time interval inc was finished if the

invariants of M2 get violated. Hence, the time round returns, as shown in Figure
2, with an actual time increment ai. In this case, the mode M2 also executes an
update round to synchronize the discrete variables with the analog ones. To be
able to compute the minimum and the second minimum time values and their
associated modes, we keep an array of current local times of modes. This idea is
presented algorithmically below.
Time[]×State macroStep(Time[] mTms, Agent a, State s){

Point p; Mode[] mds = modes(a); //initialization
int i = getMin(mTms); //compute index for min.
int j = get2ndMin(mTms); //compute index for second min.
m = mds[i]; //select mode with min. time
Time inc = mTms[j] - mTms[i] + dt; //compute time interval

(State s, Time ai) =
timeRound(m, s, {}, inc); //execute time round

mTms[i] = mTms[i] + ai; //update the actual time for m
if (ai < inc) (p, s) =

discreteUpdate(m, de, s); //execute update round
return (mTms, s) ; } //make new state and time visible

5 Conclusion

In this paper, we have presented a language for specification of hybrid systems
that supports concurrency and hierarchy in a modular fashion. We hope that
Charon is rich enough to support high-level modeling of embedded software,
and is formal enough to support analysis. In this paper, we have proposed only a
high-level outline for developing a modular simulator. We need to explore three
orthogonal issues. First, finding a solution to a set of differential and algebraic
constraints in presence of invariants requires careful detection of boundary cross-
ings (see, for instance, [PTVF92]). Second, we handle concurrency by allowing
agents to integrate separately based on their local clocks. When the guards and
invariants of one agent depends on the values updated by the other agents,
such a scheme may require detection and rollback. This is closely related to well
understood problems concerning global states in distributed systems (see, for
instance, [BT97]). Third, choosing different time scales for solving constraints at
different levels of the mode hierarchy requires good heuristics to predict the step

13

sizes. This can be done, in principle by determining the singular values of the lin-
earized equations and scaling the equations appropriately. However, choosing a
simple implicit integration scheme guarantees numerical stability and acceptable
results, albeit with poor efficiencies [PTVF92].
Acknowledgments. We thank Joel Esposito and George Pappas for helpful
discussions. Support from NSF grant CISE RI 9703220, NSF CARRER award
CCR-9734115, DARPA/NASA grant NAG2-1214, DARPA grants ITO/MARS
130-1303-4-534328-xxxx-2000-0000,ATO/TMR DAAH04-96-1-0007, ARO grant
MURI DAAH04-96-1-0007, ARO DAAG55-98-1-0393, and ARO DAAG55-98-1-
0466 is gratefully acknowledged.
References

[ACH+95] R. Alur, C. Courcoubetis, N. Halbwachs, T.A. Henzinger, P. Ho, X. Nicollin,
A. Olivero, J. Sifakis, and S. Yovine. The algorithmic analysis of hybrid
systems. Theoretical Computer Science, 138:3–34, 1995.

[AG00] R. Alur and R. Grosu. Modular refinement of hierarchic reactive machines.
In Proceedings of the 27th Annual ACM Symposium on Principles of Pro-
gramming Languages, 2000. To appear.

[AH97] R. Alur and T.A. Henzinger. Modularity for timed and hybrid systems.
In CONCUR ’97: Eighth International Conference on Concurrency Theory,
LNCS 1243, pages 74–88. Springer-Verlag, 1997.

[AHH96] R. Alur, T.A. Henzinger, and P.-H. Ho. Automatic symbolic verification of
embedded systems. IEEE Transactions on Software Engineering, 22(3):181–
201, 1996.

[BJR97] G. Booch, I. Jacobson, and J. Rumbaugh. Unified Modeling Language User
Guide. Addison Wesley, 1997.

[BT97] D.P. Bertsekas and J. N. Tsitsiklis. Parallel and Distributed Computation:
Numerical Methods. Athena Scientific, 1997.

[DGS97] A. Deshpande, A. Göllu, and L. Semenzato. Shift programming language
and run-time systems for dynamic networks of hybrid automata. Technical
report, University of California at Berkeley, 1997.

[GSB98] R. Grosu, T. Stauner, and M. Broy. A modular visual model for hybrid
systems. In Formal Techniques in Real Time and Fault Tolerant Systems
(FTRTFT’98), LNCS 1486. Springer-Verlag, 1998.

[Har87] D. Harel. Statecharts: A visual formalism for complex systems. Science of
Computer Programming, 8:231–274, 1987.

[HHW95] T.A. Henzinger, P. Ho, and H. Wong-Toi. HyTech: the next generation. In
Proceedings of the 16th IEEE Real-Time Systems Symposium, pages 56–65,
1995.

[LSVW96] N. Lynch, R. Segala, F. Vaandrager, and H. Weinberg. Hybrid I/O au-
tomata. In Hybrid Systems III: Verification and Control, LNCS 1066, pages
496–510, 1996.

[MMP91] O. Maler, Z. Manna, and A. Pnueli. From timed to hybrid systems. In
Real-Time: Theory in Practice, REX Workshop, LNCS 600, pages 447–484.
Springer-Verlag, 1991.

[PTVF92] W. Press, S. Teukolsky, W. Vetterling, and B. Flannery. Numerical Recipes
in FORTRAN. Cambridge University Press, 1992.

14

