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Abstract. We address the problem of specifying and detecting emer-
gent behavior in networks of cardiac myocytes, spiral electric waves in
particular, a precursor to atrial and ventricular fibrillation. To solve this
problem we: (1) Apply discrete mode-abstraction to the cycle-linear hy-
brid automata (CLHA) we have recently developed for modeling the
behavior of myocyte networks; (2) Introduce the new concept of spatial-
superposition of CLHA modes; (3) Develop a new spatial logic, based
on spatial-superposition, for specifying emergent behavior; (4) Devise
a new method for learning the formulae of this logic from the spatial
patterns under investigation; and (5) Apply bounded model checking to
detect (within milliseconds) the onset of spiral waves. We have imple-
mented our methodology as the Emerald tool-suite, a component of
our EHA framework for specification, simulation, analysis and control
of excitable hybrid automata. We illustrate the effectiveness of our ap-
proach by applying Emerald to the scalar electrical fields produced by
our CellExcite simulator.

1 Introduction

One of the most important and intriguing questions in systems biology is how
to formally specify emergent behavior in biological tissue, and how to efficiently
predict and detect its onset. A prominent example of such behavior is electrical
spiral waves in spatial networks of cardiac myocytes (heart cells). Spiral waves
of this kind are a precursor to a variety of cardiac disturbances, including atrial
fibrillation (AF), an abnormal rhythm originating in the upper chambers of the
heart. AF afflicts 2-3 million Americans alone, putting them at risk for clots and
strokes. Moreover, the likelihood of developing AF increases with age.

In this paper, we address this question by proposing a simple and efficient
method for learning, and automatically detecting the onset of, spiral waves in car-
diac tissue. See Figure 1 for an overview of our approach. Underlying our method
is a linear spatial-superposition logic (LSSL) we have developed for specifying
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Fig. 1. Overview of our method for learning and detecting spiral waves.

properties of spatial networks. LSSL is discussed in greater detail below. Our
method also builds upon hybrid-automata, image-processing, machine-learning,
and model-checking techniques to first learn an LSSL formula that character-
izes such spirals. The formula is then automatically checked against a quadtree
representation [15] of the scalar electrical field (SEF), produced by simulating
a hybrid automata network modeling the myocytes, at each discrete time step.
The quadtree representation is obtained via discrete mode-abstraction and hier-
archical superposition of the elementary units within the SEF.

The electrical behavior of cardiac myocytes is hybrid in nature: they exhibit
an all-or-nothing electrical response, the so-called action potential, to an external
excitation. Despite their hybrid nature, networks of myocytes have traditionally
been modeled using nonlinear partial differential equations. While highly accu-
rate in describing the molecular processes underlying cell behavior, these models
are not particularly amenable to formal analysis and typically do not scale well
for the simulation of complex cell networks.

In [11], we showed that it is possible to automatically learn a much simpler
Cycle-Linear Hybrid Automaton (CLHA) for cardiac myocytes, which describes
their action potential up to a specified error margin. Moreover, as we have shown
in [2], one can use a variant of this model [19, 20] to efficiently (up to an order
of magnitude faster) and accurately simulate the behavior of myocyte networks,
and, in particular, induce spirals and fibrillation.

A key observation concerning our simulations (see Figure 2) is that mode-
abstraction, in which the action-potential value of each CLHA in the network
is discretely abstracted to its corresponding mode, faithfully preserves the net-
work’s waveform and other spatial characteristics. Hence, for the purpose of
learning, and detecting the onset of, spirals within CLHA networks, we can ex-
ploit mode-abstraction to dramatically reduce the system state space. A similar
mode-abstraction is possible for voltage recordings in live cell networks.

The state space of a 400× 400 CLHA network is still prohibitively large,
even after applying the above-described abstraction: it contains 4160,000 modes,
as each CLHA has four mode values. To combat this state explosion, we use a
spatial abstraction inspired by [12]: we regard the mode of each automaton as
a probability distribution and define the superposition of a set of CLHAs-mode
as the probability that an arbitrary CLHA’s-mode in this set has a particu-
lar value. By successively applying superposition to the network, we obtain a
tree structure, the root of which is the mode-superposition of the entire CLHA

network, and the leaves of which are the modes of the individual CLHA. The par-
ticular superposition tree structure we employ, quadtrees, is inspired by image-
processing techniques [15]. We shall refer to quadtrees obtained in this manner
as superposition-quadtrees (SQT).



Our LSSL logic is an appropriate logic for reasoning about paths in SQTs, and
the spatial properties of CLHA networks in which we are interested, including
spirals, can be cast in LSSL. For example, we have observed that the presence
of a spiral can be formulated in LSSL as follows: Given an SQT, is there a
path from its root leading to the core of a spiral? Based on this observation, we
build a machine-learning classifier, the training-set records for which correspond
to the probability distributions associated to the nodes along such paths. Each
distribution, for mode value stimulated, corresponds to an attribute of a training-
set record, with the number of attributes bounded by the depth of the SQT. An
additional attribute is used to classify the record as either spiral or non-spiral.
For spiral-free SQTs, we simply record the path of maximum distribution.

For training purposes, we use the CellExcite simulator [2] to generate, upon
successive time steps, snapshots of a 400× 400 CLHA network and their mode-
abstraction; see Figures 1,2. Training data for the classifier is then generated
by converting the hybrid-abstracted snapshots into SQTs and selecting paths
leading to the core of a spiral (if present). The resulting table is input to the
decision-tree algorithm of the Weka machine-learning tool suite [8], which pro-
duces a classifier in the form of a predicate over the node-distribution attributes.

The syntax of LSSL is similar to that of linear temporal logic, with LSSL’s
Next operator corresponding to concretization (anti-superposition). Moreover, a
(finite) sequence of LSSL Next operators corresponds to a path through an SQT.
The classifier produced by Weka can therefore be regarded as an LSSL formula.
An SQT path can be thought of as a magnifying glass, which starting from the
root, produces an increasingly detailed but more focused view of the image. This
effect is analogous to concept hierarchy in data mining [13] and arguably similar
to the way the brain organizes knowledge: a human can recognize a word or a
picture without having to look at all of the characters in the word or all of the
details in the picture, respectively.

We are now in a position to view spiral detection as a bounded-model-
checking problem [3]: Given the SQT Q generated from the discrete SEF of
a CLHA network and an LSSL formula ϕ learned through classification, is there
a finite path π in Q satisfying ϕ? We use this observation to check every second
during simulation, whether or not a spiral has been created. More precisely, the
LSSL formula we use states that no spiral is present, and we thus obtain as a
counterexample one or all the paths leading to the core of a spiral. In the latter
case, we can identify the number of spirals in the SEF and their actual position.

The above-described method (including user-guided path selection) has been
fully implemented as the Emerald tool suite for automated spiral learning and
detection. Emerald is written in Java, and it is a new component of our EHA

environment for the specification, simulation, analysis and control of networks
of Excitable Hybrid Automata. It is freely available from [10].

The rest of the paper is organized as follows. Section 2 reviews excitable-
cell networks and their modeling with CLHA. Section 3 defines superposition
and quadtrees, the essential ideas underlying linear spatial-superposition logic,
the topic of Section 4. Section 5 describes our learning and bounded-model-



checking techniques; their implementation is considered in Section 6, along with
our experimental results. Section 7 discusses related work. Section 8 offers our
concluding remarks and directions for future research.

2 Biological Background

An excitable cell has the ability to propagate an electrical signal, known at
the cellular level as the Action Potential (AP), to neighboring cells. An AP

corresponds to a change of potential across the cell membrane, and is caused by
the flow of ions between the inside and outside of the cell through ion channels.
Generally, an AP is an externally triggered event: a cell fires an action potential
as an all-or-nothing response to a supra-threshold stimulus, and each AP follows
the same sequence of phases and maintains the same magnitude regardless of
the applied stimulus. During an AP, generally no re-excitation can occur.

Despite differences in AP duration, morphology and underlying ion currents,
the following major AP phases can be identified across different species and
different excitable-cell types: resting, stimulated, upstroke, early repolarization,
plateau and final repolarization. We shall subsequently use the following abbre-
viations for these phases: r (resting and final repolarization), s (stimulated), u
(upstroke), and p (plateau and early repolarization).

Using these AP phases as a guide, we have developed, for several represen-
tative excitable-cell types, Cycle-Linear Hybrid Automata (CLHA) models that
approximates their AP and other bio-electrical properties with reasonable accu-
racy [19, 20, 11]. This derivation was first performed manually [19, 20]. We sub-
sequently showed in [11] how to fully automate this process by learning various
biological aspects of the AP of the different cell types. The CLHA we obtained are
fairly compact in nature, employing two or three continuous state variables and
four to six modes. The term Cycle-Linear is used to highlight the cyclic structure
of CLHA, and the fact that while in each cycle they exhibit linear dynamics, the
coefficients of the corresponding linear equations and mode-transition guards
may vary in interesting ways from cycle to cycle.

The dynamics of excitable-cell networks play an important role in the phys-
iology of many biological processes. For cardiac cells, on each heart beat, an
electrical control signal is generated by the sinoatrial node, the heart’s internal
pacemaking region. Electrical waves then travel along a prescribed path, exciting
cells in atria and ventricles and assuring synchronous contractions. Of special in-
terest are cardiac arrhythmias: disruptions of the normal excitation process due
to faulty processes at the cellular level, single ion-channel level, or at the level of
cell-to-cell communication. The clinical manifestation is a rhythm with altered
frequency, tachycardia or bradycardia, or the appearance of multiple frequen-
cies, polymorphic Atrial Tachycardia (AT), with subsequent deterioration to a
chaotic signal, Atrial Fibrillation (AF). AF is a serious condition in which there
is uncoordinated contraction of the cardiac muscle of the atria in the heart. As a
result, the heart fails to adequately pump blood, putting 2-3 million Americans
alone at risk for clots and strokes. Moreover, AF likelihood increases with age.
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Fig. 2. Simulation of continuous and discrete behavior of CLHA network.

In order to simulate the emergent behavior of cardiac tissue, we have devel-
oped CellExcite [2], a CLHA-based simulation environment for excitable-cell
networks. CellExcite allows the user to sketch a tissue of excitable cells, plan
the stimuli to be applied during simulation, and customize the arrangement of
cells by selecting the appropriate lattice. Figure 2 presents our simulation results
for a 400× 400 CLHA network. The network was stimulated twice during simu-
lation, at different regions. The results we obtain demonstrate the feasibility of
using CLHA networks to capture and mimic different spatiotemporal behavior of
wave propagation in 2D isotropic cardiac tissue, including normal wave propaga-
tion (1-150 ms); the creation of spirals, a precursor to fibrillation (200-250 ms);
and the break-up of such spirals into more complex spatiotemporal patterns,
signaling the transition to ventricular fibrillation (250-400 ms).

As can be clearly seen in Figure 2, a particular form of discrete abstraction,
in which the action-potential value of each CLHA in the network is discretely ab-
stracted to its corresponding mode, faithfully preserves the network’s waveform
and other spatial characteristics. Hence, for the purpose of learning and detect-
ing spirals within CLHA networks, we can exploit discrete mode-abstraction to
dramatically reduce the system state space.

3 Superposition and Quadtrees

A key benefit of hybrid automata compared to nonlinear ODEs is their explicit
support for finite mode abstraction: the infinite range of values of a hybrid
automaton’s continuous state variables can be abstracted to the automaton’s



discrete finite set of modes. As discussed in Sections 1,2, abstracting the AP

(voltage) of the constituent CLHA in a CLHA network to their corresponding
mode (s, u, p or r) turns out to faithfully preserve the network’s waveform and
other spatial characteristics. This allows us to reduce the spiral-onset verification
problem to a finite-state verification problem.

Unfortunately, the state space of a 400×400 CLHA network, which would be
necessary to simulate the behavior of a tissue of about 16 cm2 in size, is still
too large for analysis purposes: it has 4160,000 mode values! To combat state
explosion, we use a spatial abstraction inspired by [12]: we regard the mode of
a CLHA as a degenerate probability distribution and define the superposition
of a set of (possibly superposed) modes as the mean of their distributions. By
successively applying superposition, we obtain a tree whose root is the mode-
superposition of the entire CLHA network, and whose leaves are the individual
mode of the component CLHA. The particular superposition tree structure we
employ, the quadtree, was inspired by image-processing techniques [15].

Let A be a 2k ∗ 2k matrix of CLHA modes. A quadtree Q = (V,R) repre-
sentation of A is a quaternary tree, such that each vertex v ∈ V represents a
sub-matrix of A. For example, the root v0 of the quadtree in Figure 3 represents
the entire matrix; child v1 represents the matrix {2k−1, . . . , 2k}× {0, . . . , 2k−1};
child v6 represents the matrix {2k−1, . . . , 3 ∗ 2k−2} × {0, . . . , 2k−2}; etc.
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Fig. 3. Quadtree representation

Definition 1 (Leaf distribution). Let N be a CLHA network whose con-
stituent CLHA have modes M = {s, u, p, r}, and let Q be the quadtree represen-
tation of N . Then each leaf node l ∈ Q has an associated degenerate leaf distri-
bution Dl, whose probability mass function (PMF) satisfies: ∃m∈M. pl(m) = 1.

The intuition is as follows. If the leaf occurs at the maximum depth of the
quadtree, then it corresponds to the mode of a CLHA. As CLHA are determin-
istic, their states assume one of the values in M with probability 1.4 If the leaf
does not occur at the maximum depth of the quadtree, then it corresponds to the
superposition of identical degenerate distributions, and no additional informa-
tion is obtained by decomposing the leaf into its four superposition components.
The visual interpretation is that a pixel has one definite color, and that nothing
is learned by decomposing an area in which all pixels have the same color.

Definition 2 (Interior-node distribution). Let N be a CLHA network whose
constituent CLHA have modes M = {s, u, p, r}, and let Q be the quadtree rep-
resentation of N . Furthermore, let i ∈ Q be an interior node with children
4 We will weaken this restriction at the end of the section.



i1, . . . , i4. Then i has an associated superposition distribution Di whose PMF

satisfies: ∀m∈M. pi(m) = 1/4
∑4

j=1 pij(m).

If all of i’s children are leaves, then, for each mode value m, i’s superposition
is the mean of the occurrences of m. Hence, the probability that the mode of
the parent is m is the probability that the mode of an arbitrary child is m. If i’s
children are interior nodes, it still holds that the probability that i’s mode is m
is the probability that the mode of an arbitrary leaf below i’s children is m.

We call a quadtree whose nodes are labeled with leaf and interior-node dis-
tributions a superposition quadtree (SQT). The distributions in an SQT are not
known in advance. The task of our learning algorithm is to determine these dis-
tributions for what we perceive to be spirals. The use of probability distributions
is justified by the fact that different spirals might have slightly different shapes;
i.e., slightly different values for the leaf nodes of their associated quadtrees.
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Fig. 4. Fractals as finite SQGs: (a) x = 2/3, (b) x = 5/11, y = 4/11, (c) x = 1/2.

The SQTs presented so far were constructed over a finite matrix A contain-
ing 2k ∗ 2k elements. In general, however, SQTs can be obtained via the finite
unfolding of a superposition quad-graph. Let 4= {1, . . ., 4}.

Definition 3 (Superposition quad-graph (SQG)). A superposition quad-
graph is a 4-tuple G = (V, v0, R, L) consisting of:

– A finite set of vertices V with initial vertex v0 ∈V ,
– A transition relation R⊆V ×4×V s.t. ∀v ∈V, i∈4∃u∈V. (v, i, u)∈R,
– A probability-distribution labeling L s.t. ∀v ∈V. L(v) = 1/4

∑
u∈R(v) L(u).

The condition on R ensures that each vertex in V has precisely four successors
in R. The condition on L ensures that the probability distributions are related
through superposition. Constructing SQTs as finite unfoldings of SQGs is more
powerful as it also supports the definition of infinite SQTs generated by recursion.
That is, it supports the definition of fractals.

Figure 4 gives the specification of three fractals and the unfolding of their
SQGs up to depth 3. Recursive nodes are labeled by distribution variables, the
values for which can be computed by solving a linear system. For example, x and
y in Figure 4(b) are computed by solving the linear system x=1/4 (x + 1 + y)
and y=1/4 (1 + x). In the pictures on the right, gray areas represent recursive
nodes. The four self-loops of the leaves are not shown for simplicity. Note that
leaves may now be associated with any constant distribution. Also note that
graphs (a) and (d) yield equivalent infinite SQTs.



4 Linear Spatial-Superposition Logic

Every finite SQT can be transformed into an SQG by adding to each leaf a
self-loop labeled by i, for i∈4. Moreover, an SQG can be transformed into a
Kripke structure by erasing (forgetting) the transition labeling, collapsing iden-
tical transitions, and assuming nondeterminism among transitions emanating
from the same node. For example, applying this forgetful transformation to the
SQGs of Figure 4 yields the Kripke structures of Figure 5, where the self-loops
are made explicit. The Kripke structure of Figure 5(d) can be seen as a minimal-
state equivalent of the one of Figure 5(b).
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Fig. 5. Kripke structures for SQGs of Figure 4.

Definition 4 (Kripke structure (KS)). A Kripke structure over a set of
atomic propositions AP is a four-tuple M = (S, I,R, L) consisting of:

– A countable set of states S, with initial states I ⊆S,
– A transition relation R∈S×S with ∀s∈S ∃ t∈S. (s, t)∈R,
– A labeling (or interpretation) function L : S→ 2AP .

The condition associated with the transition relation R ensures that every state
has a successor in R. Consequently, it is always possible to construct an infinite
path through the KS, an important property when dealing with reactive systems.
In our case, it means that we can reason about recursive SQTs, i.e. fractals.

The labeling function L defines for each state s∈S the set L(s) of atomic
propositions that are valid in s. Our atomic propositions are inequalities over
distributions. Syntactically, they are written as follows: P (D=m)∼ d, where D
is a distribution function, m∈M for M ⊂R is a discrete value (e.g. a mode),
d∈ [0..1], and ∼ is one of <, ≤, =, ≥, or >.

In order to verify properties of a reactive system modeled as a KS K, it
is customary to use either a linear-time or a branching-time temporal logic. A
model for a linear-time logic (LTL) formula is an infinite path π in K. A model
for a branching-time logic formula is K itself; given a state s of K, this allows
one to quantify over the paths originating from s. For our current purposes of
specifying, and detecting the onset of, spirals, LTL suffices.

Strictly speaking, our logic is a linear spatial-superposition logic (LSSL), as
a path π in K represents a sequence of concretizations (anti-superpositions).
Syntactically, however, our temporal-logic operators are the same as in LTL:
the next operator X with Xϕ meaning that ϕ holds in a concretization of the
current state; its inverse operator B; the until operator U , with ϕUψ meaning
that ϕ holds along a path until ψ holds; and the release operator R, with ψRϕ
meaning that ϕ holds along a path unless released by ψ.



Definition 5 (LSSL Syntax). The syntax of linear space-superposition logic
is defined inductively as follows:

ϕ ::= > | ⊥ | P [D = m] ∼ d | ¬φ | ϕ ∨ ψ | Xϕ | Bϕ | ϕUϕ | ϕRϕ
∼ ::= < | ≤ | = | ≥ | >

Although Kripke structures and the LSSL logic allow us to reason about infi-
nite paths, physical considerations—such as the number of myocytes in a cardiac
tissue or the screen resolution—impose a maximum length k on such paths. The
length k, however, is maintained as a parameter in LSSL’s semantic definition,
permitting us to accommodate any number of myocytes or any screen resolu-
tion. Defining LSSL’s semantics in this manner places us within the framework
of bounded-model-checking [3].

Definition 6 (LSSL Semantics). Let K be a KS and π a path in K. Then,
for k≥ 0, π satisfies an LSSL formula ϕ with bound k, written π |=k ϕ, if and
only if π |=0

k ϕ, where:

π |=i
k > and π 6|=i

k ⊥
π |=i

k p ⇔ p ∈ L(π[i])
π |=i

k ¬ϕ ⇔ π 6|=i
k ϕ

π |=i
k ϕ ∨ ψ ⇔ π |=i

k ϕ or π |=i
k ψ

π |=i
k Xϕ ⇔ i < k and π |=i+1

k ϕ

π |=i
k Bϕ ⇔ 0 < i ≤ k and π |=i−1

k ϕ

π |=i
k ϕUψ ⇔ ∃j. i ≤ j ≤ k. π |=j

k ψ and ∀n. i ≤ n < j. π |=n
k ϕ

π |=i
k ψRϕ ⇔ ∀j. i ≤ j ≤ k. π |=j

k ϕ or ∃n. i ≤ n < j. π |=n
k ψ

We say that K |=k ϕ if for all paths π in K, π |=k ϕ.

Our release operator R is a bounded version of the LTL’s R operator. Similarly,
the globally operator G, defined as Gϕ ≡ ⊥Rϕ, is a bounded version of LTL’s G
operator. The finally operator F is defined as usual as Fϕ ≡ >U ϕ. In general,
the unbounded LTL version of G is assumed to not hold. For example, Gϕ does
not hold as ϕ could be violated at k+1; to decide Gϕ in LTL wrt. a bound k,
one needs a more sophisticated analysis of the KS K, as discussed in [3].

As an example, consider an unfolding depth k of the KS in Figure 5(a), and
assume the distributions correspond to mode s. This KS has a path π such
that π |=k G (P [D= s] = 2/3) holds: the path that always returns to x. To
automatically find π we will model-check the negation of the above formula.
This will return π as a counterexample. By using the techniques in [3], one can
show that π also satisfies the unbounded LTL version of the formula.

5 Model Checking and Learning

Bounded model checking. Given a Kripke structure K, an LSSL formula ϕ, and
a bound k, a bounded model checker (BMC) efficiently verifies if K |=k ¬ϕ. If so,



it returns one or more paths π in K that violate ϕ; otherwise, it returns true.
Intuitively, a BMC applies the LSSL semantics inductively defined in Section 4
to each path π in K. We have implemented a simple prototype BMC for Kripke
structures K derived from SQTs and LSSL formulae. The BMC first enumerates
all paths in K, and then for each path, it applies the LSSL semantics. This
BMC is efficient enough to check within milliseconds the onset of spirals. We are
currently improving the BMC for safety formulae (formulae without F operator),
by traversing the SQT and pruning all subtrees of a vertex as soon as we detect
that the current path violates ¬ϕ. A more ambitious SAT-based BMC is also
under development.

Machine learning. Writing the LTL formulae that a reactive system should sat-
isfy is a nontrivial task. Developers often find it difficult to specify the system
properties of interest. The classification of LTL formulae into safety (something
bad should never happen) and liveness properties (something good should even-
tually happen) provides some guidance, but the task remains difficult.

Writing LSSL formulae describing emerging properties of CLHA networks is
even more difficult. For example, what is the LSSL formula for spiral onset? In the
following, we describe a surprisingly simple, machine-learning-based approach
that we have successfully applied to spiral detection. The main idea is to cast
the onset property as follows: Is there a path in the given SQT leading to the
core of a spiral? The implementation is simple as well. For an SEF produced by
the CellExcite simulator (see Figure 1), our Emerald tool set allows the user
to select a path through the SEF’s corresponding SQT simply by clicking on a
point in the SEF (e.g. in the core of a spiral). If no spiral is present, the SQT

path with maximum PMF (probability mass function) is returned. Note that this
method is not restricted to spirals: path selection via clicking on a representative
point can be applied to normal wave propagation, wave collision, etc.

The paths so obtained are then used to learn the LSSL formula for the
property we are interested in, such as spiral onset. The learning algorithm works
as follows: (1) For each path of length k, where k is the height of the SQT, we
define k attributes a1, . . ., ak such that each ai holds the PMF value of vertex vi,
for the mode we are interested in (for spirals, mode s); (2) Each path is classified
by Emerald as spiral or non-spiral, depending on whether or not the user clicked
on a point (core); the classification is stored as an additional classifier attribute
c; (3) All records (ai, . . ., ak, c) are stored in a table, which is provided to the
data classification phase; (4) At the end of this phase we obtain a path classifier
which we translate into an LSSL formula.

Data classification [17] is generally a two-step process: training and testing.
For training, we choose a classification algorithm that learns a set of descriptions
of our training data set. The form of these descriptions depends on the type of
classification algorithm employed. For testing, we use a test data set, disjoint
from the training set, and containing the class attribute with a known value.
The accuracy of the classifier on a given test set is the percentage of the test
records that are correctly classified. Various techniques can be used to obtain test
and training sets from an initial set of records, such as X-Cross Validation [8].



Classification algorithms also come in various flavors. We used a descriptive
classifier, as this returns a set of if-then rules called discriminant rules. Underly-
ing descriptive classifiers are either decision trees, rough sets, classification-by-
association analysis, etc. A rule r has the form (

∧
i∈ I ai = vi)⇒ (c= v), where

I is a subset of k. Usually, each class c has an associated set of rules r1, . . ., rn;
i.e. c is characterized by

∧n
i=1 ri. Using boolean arithmetic, this is equivalent to

(
∨n

i=1

∧
j ∈ Ii

aij = vij)⇒ (c= v). The antecedent formula
∨n

i=1

∧
j ∈ Ii

aij = vij is
called the class description formula of the class c.

As is customary, we built a classifier for one class only (the class c), called the
target class, using all other classes as one contrasting class. Hence the classifier
consists of only one class-description formula, describing the target class. We say
that we learned that formula. We have used Weka’s decision-tree algorithm, but
any other rule-based algorithm could have been used as well. The classifier we
have learned for spirals, is as follows:
if a7 <= 0.875 then {if a2 <= 0.04895 then ∼c else c}
else if a3 <= 0.078359 then {if a0 <= 0.025021 then ∼c else c} else ∼c
Its translation into linear spatial-superposition generated the following formula:

XX ( P(D= s)> 0.04895 ∧ XXXXX P(D= s)≤ 0.875 ) ∨
P(D= s)> 0.025021 ∧ XXX ( P(D= s)≤ 0.078359 ∧ XXXX P(D= s)> 0.875 )

This formula is an approximate description of a spiral which we used together
with Emerald’s BMC to detect spiral onset within milliseconds. In case the BMC

returned a false positive, we add the corresponding record to the classification
table as part of a retraining phase; see Figure 1.

6 Implementation and Experimental Results

Our techniques of Sections 2-5 have been implemented as the Emerald tool suite
of the EHA environment. Emerald is a Java application that can be used to
learn an LSSL formula for a particular spatial pattern, and to check the formula
against a set of images that reproduce the discrete behavior of a CLHA network.
For ease of use, Emerald provides two graphical panels, one for Preprocessing
(classification) and the other for Bounded Model Checking.

The Preprocessing panel (Figure 6(a)) enables users to browse the various
collections of images they have assembled for machine-learning purposes, and
to view their SQT representation. It comprises three graphical components: an
image viewer on the right, a quadtree viewer on the top-left, and a data-table
viewer on the bottom-left, where user-selected paths are displayed. In the image
viewer, the user selects a path leading to a spiral core by clicking on an appro-
priate stimulated point (in yellow) of the image. If the image does not contain
a spiral, the user can choose the maximum PMF path or a generic stimulated
point. Each path selected is stored in a data table in the form of the PMF se-
quence of stimulated modes in each node of the traversed SQT. All such paths
are subsequently exported to Weka in a common format. Presently, we have cus-
tomized Emerald for spiral detection, but we plan to extend the tool with the
capability to classify any generic spatial pattern.



Fig. 6. (a) Top: Preprocessing Panel. (b) Bottom: Bounded Model Checking Panel.

The BMC panel (Figure 6(b)) enables the user to check an LSSL formula
against the SQT representation of a specific image. As discussed in Section 5, the
LSSL formula encodes the classifier for the spatial pattern under investigation. If
the SQT in question fails to satisfy the formula, the resulting counter-examples
(spirals) are reported to the user both as rows in the counter-example table and
as red points marking the core of the spiral contained in the image.

Table 1 contains our preliminary experimental results. For training and test-
ing purposes, we used two different sets of images, each containing spirals and
normal wave propagation. The first set of images was used to train the classifier;
we supervised the training by discriminating between paths leading to a spiral
core versus those (of maximum PMF) belonging to images that did not contain
a spiral. From this first set we extracted 512 possible paths, and used Weka to
build a ruled-based classifier with a very high prediction accuracy (99.25%).

The test set was divided into increasingly larger sets of images: 500, 550,
600 and 650 images. Applying the rule-based classifier on the first 500 images
produced 67 wrongly classified paths. We used these paths to obtain a new,
retrained classifier. We then used both classifiers on the remaining sets of images,
and for each classifier and test set we computed the LSSL formula accuracy, as an



Path Classifier Test Set 550 Test Set 600 Test Set 650

Trained (512 Paths) 87.00% 88.83% 88.23%

Retrained (512 Paths + 67 Counter-Examples) 97.10% 97.33% 93.07%

Table 1. Experimental Results

estimate of how well the formula specifies the spatial pattern. As Table 1 shows,
retraining considerably improves accuracy, and can be repeated each time a false
classification is returned. Weka’s decision-tree algorithm took no more than 9s to
construct a rule-based classifier from the training (512 records) and retraining
(579 records) tables, respectively. Our model checker took between 1.67s and
7.09s, with an average of 4.72s to model check an SQT for a 400× 400 SEF if
no spiral was present, and between 1ms and 4.64s, with an average of 230ms if a
spiral was present. All results were produced on a PC equipped with a Centrino
2GHz processor with 1.5GB RAM.

7 Related Work

The use of hybrid automata to model and analyze spatial networks is a relatively
new subject area, and includes application to Delta-Notch signaling networks [9],
coordinated control of autonomous underwater vehicles [14], and aircraft tra-
jectories and landing protocols [7, 16]. In contrast, our focus is on emergent
behavior (in the form of spiral waves) in networks of cardiac myocytes, and
the use of spatial superposition as an abstraction mechanism. Predicting spi-
rals [4] in pure continuous models [18] is a more complicated process than what
is implemented in Emerald, where discrete SQT structures, obtained via mode-
abstraction and superposition, are used. Several logics have recently been pro-
posed for describing the behavior and spatial structure of concurrent systems [5,
6], and for reasoning about the topological aspects of modal logics and Kripke
structures [1]. Unlike LSSL, these logics are not based on an abstraction mech-
anism like spatial-superposition that can be used to alleviate state explosion
during model checking.

8 Conclusions

In this paper, we have presented a framework for specifying and detecting emer-
gent behavior in networks of cardiac myocytes. Our approach, which uses hybrid
automata, discrete mode-abstraction, and bounded model checking, is based on
a novel notion of spatial-superposition and its related logic LSSL, and a new
method for the automated learning of formulae in this logic from the spatial
patterns under investigation. Our framework has been fully implemented in the
Emerald tool suite. Our preliminary experimental results are very encouraging,
with a prediction accuracy of over 93% on a test set comprising 650 images. As
future work, we plan to extend our framework to the learning of branching-time
spatial-superposition properties, and the more intricate problem of specifying
and detecting spatiotemporal emergent behavior.
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