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Abstract. We present QMC, a one-sided error Monte Carlo decision pro-
cedure for the LTL model-checking problem S |= ϕ. Besides serving as
a randomized algorithm for LTL model checking, QMC delivers quantita-
tive information about the likelihood that S |= ϕ. In particular, given a
specification S of a finite-state system, an LTL formula ϕ, and param-
eters ε and δ, QMC performs random sampling to compute an estimate
epZ of the expectation pZ that the language L(B) of the Büchi automa-
ton B = BS × B¬ϕ is empty; B is such that L(B) = ∅ iff S |= ϕ. A
random sample in our case is a lasso, i.e. an initialized random walk
through B ending in a cycle. The estimate epZ output by QMC is an (ε, δ)-
approximation of pZ—one that is within a factor of 1±ε with probability
at least 1−δ—and is computed using a number of samples N that is opti-
mal to within a constant factor, in expected time O(N ·D) and expected
space O(D), where D is B’s recurrence diameter. Experimental results
demonstrate that QMC is fast, memory-efficient, and scales extremely well.

1 Introduction

Model checking [6, 22], the problem of deciding whether or not a property speci-
fied in temporal logic holds of a system specification, has gained wide acceptance
within the hardware and protocol verification communities, and is witnessing in-
creasing application in the domain of software verification. The beauty of this
technique is that when the state space of the system under investigation is finite-
state, model checking may proceed in a fully automatic, push-button fashion.
Moreover, should the system fail to satisfy the formula, a counter-example trace
leading the user to the error state is produced.

Model checking, however, is not without its drawbacks, the most promi-
nent being state explosion. This phenomenon can render model checking in-
tractable for many applications of practical interest; see e.g. [?], where it is shown
that the problem is PSPACE-complete for LTL. Over the past two decades,
a number of techniques have been developed to combat state explosion: sym-
bolic model checking, partial-order reduction, symmetry reduction, and bounded
model checking. See [5] for a comprehensive discourse on model checking.

We present in this paper an alternative approach to coping with state explo-
sion based on the technique of Monte Carlo estimation. Monte Carlo methods
are often used in engineering and computer-science applications to compute an
approximation of a solution whose exact computation proves intractable, being,
for example, NP-hard. Example applications include belief updating in Bayesian
networks [9], computing the volume of convex bodies [10], and approximating
the number of solutions of a DNF formula [17].

� R. Grosu was partially supported by the NSF Faculty Early Career Development
Award CCR01-33583.



Our approach makes use of the following idea from the automata-theoretic
technique of Vardi and Wolper [28] for LTL model checking: given a specification
S of a finite-state system and an LTL formula ϕ, S |= ϕ (S models ϕ) if and
only if the language L(B) of the Büchi automaton B = BS ×B¬ϕ is empty. Here
BS is the Büchi automaton representing S’s state transition graph, and B¬ϕ is
the Büchi automaton for the negation of ϕ. The presence in B of an accepting
lasso—a reachable cycle containing a final state—means that S is not a model
of ϕ. Hence, such a lasso can be viewed as a counter-example to S |= ϕ.

To decide if L(B) is empty, we have developed the QMC Monte Carlo approx-
imation algorithm for quantitative model-checking. Underlying the execution of
QMC is a Bernoulli random variable Z that takes value 1 with probability pZ and
value 0 with probability qZ = 1 − pZ . Intuitively, pZ is the expectation that
L(B) = ∅ and, in fact, pZ = 1 iff L(B) = ∅. In general, however, pZ is unknown
and difficult to compute. Thus, QMC seeks to estimate pZ QMC by taking N random
samples Zi from B, and uses the average p̃Z of the outcomes as the estimate.
A random sample in our case is an initialized random walk in B terminating in
a cycle, i.e., a lasso. Such a random walk is constructed on-the-fly to avoid the
a’ priori construction of B, which would immediately lead to state explosion. A
sample Zi = 1 if its associated lasso is non-accepting, and Zi = 0 otherwise.

To determine p̃Z and, concomitantly, N , QMC appeals to the OAA optimal
approximation algorithm of Dagum et al. [8]. OAA computes what is known as
an (ε, δ)-approximation: one that is within a factor of 1± ε with probability at
least 1 − δ. Through its reliance on OAA, the number of samples taken by QMC

is guaranteed to be optimal to within a constant factor. Now, in performing its
random sampling, should QMC encounter a Zi = 0 with associated accepting lasso
l, it returns false with l as a witness (counter-example). Otherwise, it returns
true with error margin ε and confidence ratio δ.

Running QMC in the just-described manner yields a one-sided error Monte
Carlo decision procedure for LTL model checking that takes O(4 ln(2/δ)/ε) sam-
ples. QMC can also be run in estimation mode where rather than terminating and
deciding false upon encountering an accepting lasso, it continues sampling as
dictated by OAA to compute p̃Z . As explained in Section 4, QMC may not termi-
nate in estimation mode if the number of non-accepting lassos in B is less than
a certain quantity. The main features of QMC are the following.

– QMC performs random sampling of lassos in the Büchi automaton B = BS ×
B¬ϕ to yield a one-sided error Monte Carlo decision procedure for the LTL
model-checking problem S |= ϕ.

– Unlike other model checkers,1 QMC also delivers quantitative information—
in the form of an (ε, δ)-approximation of pZ—about the likelihood that an
arbitrary run of a system satisfies a given formula. This has allowed us to
observe, for example, that the expectation that a run of a system of n dining

1 We are referring here strictly to model checkers in the classical sense, i.e., those for
nondeterministic/concurrent systems and temporal logics such as LTL, CTL, and the
mu-calculus. Model checkers for probabilistic systems and logics, a topic discussed
in Section 7, also produce quantitative results.



philosophers is deadlock-free increases linearly with n, an observation that
is fairly obvious in retrospect, but to our knowledge has not been reported
previously in the literature.

– QMC is very efficient in both time and space. Its time complexity is O(N ·
D) and its space complexity is O(D), where D is B’s recurrence diameter.
Moreover, by virtue of its reliance on the OAA algorithm of [8], the number
of samples N taken by QMC is optimal to within a constant factor.

– Although we present QMC in the context of the classical model-checking prob-
lem for nondeterministic/concurrent systems, the algorithm works with little
modification on systems specified using stochastic modeling formalisms such
as discrete-time Markov chains.

– We have implemented QMC in the context of the jMocha model checker for
Reactive Modules [1]. A feature of the implementation is that the “next
state” along a random walk in search of an accepting lasso is generated by
randomly selecting both one of the guarded commands in a nondeterministic
choice construct and a valuation for the input variables.

– Our experimental results demonstrate QMC is fast, memory-efficient, and
scales extremely well. It consistently outperforms jMocha’s LTL enumer-
ative model checker, which uses a form of partial-order reduction.

The rest of the paper develops along the following lines. Section 2 reviews LTL
model checking. Section 3 provides an overview of the optimal Monte-Carlo esti-
mation algorithm of [8]. Section 4 presents QMC, our Monte Carlo model-checking
algorithm. Section 5 describes our jMocha implementation of QMC. Section 6
summarizes our experimental results. Section 7 discusses previous approaches to
randomized model checking. Section 8 contains our conclusions.

2 LTL Model Checking

Given a concurrent system S and temporal-logic formula ϕ, the model-checking
problem is to decide whether S satisfies ϕ. In case ϕ is a linear temporal logic
(LTL) formula, the problem can be elegantly solved by reducing it to the language
emptiness problem for finite automata over infinite words [28]. The reduction
involves modeling S and ¬ϕ as Büchi automata BS and B¬ϕ, respectively, taking
the product B = BS × B¬ϕ, and checking whether the language L(B) of B is
empty.2

The set of well-formed LTL formulas (wffs) is constructed from a finite set
of atomic propositions AP , the standard boolean connectives, and the temporal
operators “neXt state” (X) and “Until” (U).

Definition 1 (Syntax of LTL formulas). A well-formed LTL formula over
AP is defined inductively as follows:

1. Every p ∈ AP is an LTL wff.
2 The rationale behind this reduction is as follows: S |= ϕ iff L(BS) ⊆ L(Bϕ) iff

L(BS) ∩ L(Bϕ) = ∅ iff L(BS) ∩ L(B¬ϕ) = ∅ iff L(BS × B¬ϕ) = ∅



2. If ϕ and ψ are LTL wffs, then so are ¬ϕ, ϕ ∨ ψ, ϕ ∧ ψ, Xϕ, ϕ Uψ.

An interpretation for an LTL formula is an infinite word ξ = x0x1 . . . over the
alphabet P(AP ), i.e., a mapping from the naturals to P(AP ). We write ξi for
the suffix of ξ starting at xi.

Definition 2 (Semantics of LTL formulas). Let ξ be an infinite word over
P(AP ). We define the satisfaction relation ξ |= ϕ inductively as follows:

1. ξ |= p iff p ∈ x0 for p ∈ AP

2. ξ |= ¬ϕ iff not ξ |= ϕ

3. ξ |= ϕ ∧ ψ iff ξ |= ϕ and ξ |= ψ

4. ξ |= ϕ ∨ ψ iff ξ |= ϕ or ξ |= ψ

5. ξ |= Xϕ iff ξ1 |= ϕ

6. ξ |= ϕ Uψ iff there is an i ≥ 0 s.t. ξi |= ψ and ξj |= ϕ for all 0 ≤ j < i.

A Büchi automaton is a finite automaton over infinite words.

Definition 3 (Büchi automaton). Let Σ be a finite set. A Büchi automaton
B over Σ is a five-tuple B = (Σ,Q,Q0, δ, F ) where:

1. Σ is the input alphabet.
2. Q is a finite set of states.
3. Q0 ⊆ Q is the set of initial states.
4. δ ⊆ Q×Σ ×Q is the transition relation.
5. F ⊆ Q is the set of accepting states.

Let ξ = x0x1 . . . be an infinite word in Σω. A run of B over ξ is a mapping σ =
s0s1 . . . from the naturals to Q such that s0 ∈ Q0 and for all i, (si, xi, si+1) ∈ δ.
We shall sometimes write a run σ over ξ as s0 x0 s1 x1 . . . and refer to it simply as
a “run”. A finite run is a finite prefix of a run. Let inf(σ) be the set of states that
appear infinitely often in a run σ over ξ. Then, σ is accepting if inf(σ)∩F �= ∅.
The language L(B) of B is the set of all infinite words ξ ∈ Σω having accepting
runs in B.

Every LTL formula ϕ can be translated to a Büchi automaton whose language
is the set of infinite words satisfying ϕ by using the LTL tableau construction
of [11]. Due to space constraints we omit the construction.

Definition 4 (Product of Büchi automata). Let B1 = (Σ,Q1, Q
0
1, δ1, F1)

and B2 = (Σ,Q2, Q
0
2, δ2, F2) be two Büchi automata. The product Büchi au-

tomaton B1 ×B2 = (Σ,Q,Q0, δ, F ) is defined as follows:
1. Q = Q1 ×Q2 × {0, 1, 2}, Q0 = Q0

1 ×Q0
2 × {0}, F = Q1 ×Q2 × {2},

2. ((s1, s2, x), α, (t1, t2, y)) ∈ δ iff (s1, α, t1) ∈ δ1 and (s2, α, t2) ∈ δ2 and

if x = 0 and t1 ∈ F1 then y = 1
if x = 1 and t2 ∈ F2 then y = 2
if x = 2 then y = 0
otherwise y = x



The x,y in the definition of δ ensure that accepting states of both B1 and B2

occur infinitely many times in an accepting run of B1×B2 even though they may
never occur simultaneously.

Checking (non-)emptiness of L(B) is equivalent to finding a strongly con-
nected component of B that is reachable from an initial state and contains an
accepting state. Due to the acceptance condition for Büchi automata, however,
this reduces to finding a reachable accepting cycle. Looking for such a cycle is
usually done by using the double depth-first search algorithm DDFS [7, 16] shown
below, where init(B) = Q0, next(s,B) = {t |(s,α,t)∈ δ} and acc(s,B) = (s∈ F). The
two depth-first searches DFS1 and DFS2 are interleaved. When DFS1 is ready to
backtrack from an accepting state after completing the search of its successors,
it starts DFS2 in search of a cycle through this state. If DFS2 fails to find such a
cycle, it resumes DFS1 from the point it was interrupted.

DDFS algorithm
input: Büchi automaton B = (Σ, Q, Q0, δ, F).
output: true if L(B) �= ∅; false otherwise.

(1) for all (q0 ∈ init(B)) if (DFS1(q0)) return true;
(2) return false;

DFS1 algorithm
global: B

input: State s∈ Q.

output: true if accepting cycle is reachable from s; false otherwise.

(1) add (s,0) to HashTbl;

(2) add s to Stack;

(3) for all (t∈ next(s,B)) if ((t,0) �∈ HashTbl && DFS1(t)) return true;
(4) if (acc(s,B) && (t,1) �∈ HashTbl && DFS2(s)) return true;
(5) delete s from Stack;

(6) return false;

DFS2 algorithm
global: B, HashTbl, Stack.

input: State s∈ Q.

output: true if s is in a cycle; false otherwise.

(1) add (s,1) to HashTbl;

(2) for all (t∈ next(s,B))

(3) if (t∈ Stack) return true;
(4) if ((t,1) �∈ HashTbl && DFS2(t)) return true;
(5) return false;

The state transition graph of a concurrent system S can be represented as a Büchi
automatonBS . Assuming that S is specified succinctly, then |BS | = O(2|S|). One
can avoid the explicit construction of BS by generating the states in init(BS)
and next(s, BS) on demand and performing the test for acceptance acc(s, BS)



symbolically. This on-the-fly approach considerably improves the space require-
ments of DDFS, since it constructs only the reachable part of BS .

3 Optimal Monte Carlo Estimation

Many engineering and computer science applications require the computation of
the mean value µZ for a random variable Z distributed in [0, 1]. When an exact
computation of µZ proves intractable, being, for example, NP-hard, Monte Carlo
methods are often used to compute an (ε, δ)-approximation of this quantity. The
main idea is to use N independent random variables (or samples) Z1, . . . , ZN

identically distributed according to Z with mean µZ , and to take µ̃Z = (Z1 +
. . . + ZN )/N as the approximation of µZ .

An important issue in such an approximation scheme is determining the value
for N . The zero-one estimator theorem [17] guarantees that if N is proportional
to Υ = 4ln(2/δ)/µZε

2 then µ̃Z approximates µZ with absolute error ε and with
probability 1− δ. More precisely:

Pr[µZ(1− ε) ≤ µ̃Z ≤ µZ(1 + ε)] ≥ 1− δ

When applying the zero-one estimator theorem, one encounters, however, two
main difficulties. The first is that N depends on 1/µZ, the inverse of the value
that one intends to approximate. This problem can be circumvented by finding
an upper bound κ of 1/µZ and using κ to compute N . Finding a tight upper
bound is however in most cases very difficult, and a poor choice of κ leads to
a prohibitively large value for N . An ingenious way of computing N without
relying on µZ or κ is provided by the Stopping Rule Algorithm (SRA) of [8].
When E[Z] = µZ > 0 and Σi=1Zi ≥ Υ , the expectation E[N ] of N equals Υ .

SRA algorithm
input: (ε, δ) with 0 < ε < 1 and δ > 0.
input: Random vars Zi with i > 0, independent and identically distributed.

output: eµZ approximation of µZ.

(1) Υ = 4 (e - 2) ln(2 / δ) /ε2; Υ1 = 1 + (1 + ε)Υ;

(2) for (N = 0, S = 0; S≤Υ1; N++) S = S +ZN;

(3) eµZ = S/N; return eµZ;

The second difficulty in applying the zero-one estimator theorem is the factor
1/µZε

2 in the expression for Υ , which can render the value of N unnecessarily
large. A more practical approach is offered by the generalized zero-one estimator
theorem of [8] which states that N is proportional to Υ ′ = 4ρZ ln(2/δ)/(µZε)2

where ρZ = max{σ2
Z , εµZ} and σ2

Z is the variance of Z. Thus, if σ2
Z , which

equals µZ(1− µZ) for Z a Bernoulli random variable, is greater than εµZ , then
σ2

Z ≈ µZ , ρZ ≈ µZ and therefore Υ ′ ≈ Υ . If, however, σ2
Z is smaller than εµZ ,

then ρZ = εµZ and Υ ′ is smaller than the Υ by a factor of 1/ε.
To obtain an appropriate bound in either case, [8] have proposed the optimal

approximation algorithm (OAA) shown above. This algorithm makes use of the



OAA algorithm
input: Error margin ε and confidence ratio δ with 0 < ε ≤ 1 and 0 < δ ≤ 1.
input: Random vars Zi, Z

′
i with i > 0, indep. and identically distrib.

output: eµZ approximation of µZ.

(1) Υ = 4 (e - 2) ln(2 / δ) /ε2; Υ2 = 2 (1 +
√

ε) (1 + 2
√

ε) (1 + ln(3/2) / ln(2/δ)) Υ;

(2) bµZ = SRA(min{1/2,√ε}, δ/3,Z);

(3) N = Υ2 ε / bµZ; S = 0;

(4) for (i =1; i≤ N; i++) S = S + (Z′
2i−1 -Z′

2i)
2 / 2;

(5) bρZ = max{S/N, ε bµZ};
(6) N = Υ2 bρZ / bµ2

Z; S = 0;

(7) for (i =1; i≤ N; i++) S = S +Zi;

(8) eµZ = S / N; return eµZ;

outcomes of previous experiments to compute N , a technique also known as
sequential analysis. The OAA algorithm consists of three steps. The first step calls
the SRA algorithm with parameters (

√
ε, δ/3) to get an estimate µ̂Z of µZ . The

choice of parameters is based on the assumption that ρZ = εµZ , and ensures
that SRA takes 3/ε less samples than would otherwise be the case. The second
step uses µ̂Z to get an estimate of ρ̂Z . The third step uses ρ̂Z to get the desired
value µ̃Z . Should the assumption ρZ = εµZ fail to hold, the second and third
steps will compensate by taking an appropriate number of additional samples.
As shown in [8], OAA runs in an expected number of experiments that is within
a constant factor of the minimum expected number.

4 The Quantitative Model-Checking Algorithm

In this section, we present our randomized, automata-theoretic approach to
model checking based on the DDFS (Section 2) and Monte Carlo OAA (Section 3)
algorithms. The samples we are interested in are the reachable cycles (or “las-
sos”) of a Büchi automaton B.3 Should B be the product automaton BS ×B¬ϕ

defined in Section 2, then a lasso containing a final state of B (an “accepting
lasso”) can be interpreted as a counter-example to S |= ϕ. A lasso of B is sam-
pled via a random walk through B’s transition graph, starting from a randomly
selected initial state of B.

Definition 5 (Lasso sample space). A finite run σ = s0x0 . . . snxnsn+1 of a
Büchi automaton B = (Σ,Q,Q0, δ, F ), is called a lasso if s0 . . . sn are pairwise
distinct and sn+1 = si for some 0 ≤ i ≤ n. Moreover, σ is said to be an accepting
lasso if some sj ∈ F , i ≤ j ≤ n; otherwise it is a non-accepting lasso. The lasso
sample space U of B is the set of all lassos of B, while Ua and Un are the sets
of all accepting and non-accepting lassos of B, respectively.

Definition 6 (Run probability). The probability Pr[σ] of a finite run σ =
s0x0 . . . sn−1xn−1sn of a Büchi automaton B is defined inductively as follows:
3 We assume without loss of generality that every state of a Büchi automaton B has
at least one outgoing transition, even if this transition is a self-loop.



Pr[s0] = k−1 if |Q0| = k and Pr[s0x0 . . . sn−1xn−1sn] = Pr[s0x0 . . . sn−1] ·
π[sn−1xn−1sn] where π[s x t] = m−1 if (s, x, t) ∈ δ and |δ(s)| = m.

Note that the above definition explores uniformly outgoing transitions. An al-
ternative definition would explore uniformly successor states.

Example 1 (Probability of lassos). Consider the Büchi automaton B of Figure 1.
It contains four lassos, 11, 1244, 1231 and 12344, having probabilities 1/2, 1/4,

2 3 41

Fig. 1. Example lasso probability space.

1/8 and 1/8, respectively. Lasso 1231 is accepting.

Proposition 1 (Probability space). Given a Büchi automaton B, the pair
(P(U),Pr) defines a discrete probability space.

The proof first considers the infinite tree T corresponding to the infinite unfolding
of δ. T ′ is the (finite) tree obtained by making a cut in T at the first repetition
of a state along any path in T . It is easy to show by induction on the height
of T ′ that the sum of the probabilities of the runs (lassos) associated with the
leaves of T ′ is 1.

Definition 7 (Random variable). The Bernoulli random variable Z associ-
ated with the probability space (P(U),Pr) of a Büchi automaton B is defined as
follows: pZ = Pr[Z=1] =

∑
λn∈Un

Pr[λn] and qZ = Pr[Z=0] =
∑

λa∈Ua
Pr[λa]

where λa is an accepting lasso and λn is a non-accepting lasso.

Example 2 (Bernoulli random variable). For the Büchi automatonB of Figure 1,
the lassos Bernoulli variable has associated probabilities pZ = 7/8 and qZ = 1/8.

The expectation (or weighted mean) µZ = 0 · qZ + 1 · pZ of Z is equal to pZ .
It, or more precisely 1 − pZ , provides a measure of the number of counter-
examples (accepting lassos) in B, weighted by their probability. Since an exact
computation of pZ is often intractable due to state explosion, we compute an
(ε,δ)-approximation p̃Z of pZ using the OAA algorithm. We then use p̃Z to de-
rive a Monte Carlo decision procedure we call QMC (Quantitative Model Check-
ing) for the LTL model-checking problem. QMC works as follows: (1) Take in-
dependent random samples (lassos) Zi and Z ′

i, each identically distributed ac-
cording to Z with mean pZ as required by OAA. (2) If an accepting lasso is
encountered, break and return the lasso as a counterexample. (3) If all sam-
ples are non-accepting, conclude that pZ is 1 with error margin ε and confi-
dence ratio δ. Our use of OAA yields a one-sided-error decision procedure for
the LTL model-checking problem as QMC correctly decides false if p̃Z < 1. The
QMC algorithm is given below, where rInit(B)=random(Q0), rNext(s,B) =t′ s.t.



MC2 algorithm
input: Büchi automaton B = (Σ, Q, Q0, δ, F);
input: Error margin ε and confidence ratio δ with 0 < ε ≤ 1 and 0 < δ ≤ 1.
output: Either (false, lasso l) or (true, Pr[1/(1 + ε) ≤ pZ ] ≥ 1− δ)

(1) try {epZ = OAA(ε, δ, RACV(B)); return (true, Pr[1/(1 + ε) ≤ pZ ] ≥ 1− δ);}
(2) catch(l) { return (false,l);}

RACV algorithm
input: Büchi automaton B;

output: Samples a random cycle of B;

Throws HashTbl if cycle is accepting; returns 1 otherwise.

(1) s := rInit(B); i := 1; f := 0;

(2) while (s �∈ HashTbl) {
(3) HashTbl(s) := i;

(4) if (acc(s,B)) f := i;

(5) s := rNext(B,s); i := i+1; }
(6) if (HashTbl(s)≤ f) throw(lasso(HashTbl)) else return 1;

(s, α, t′) = random({τ ∈ δ | ∃α, t.τ = (s, α, t)}), and acc(s,B)=(s ∈ F). The main
routine consists of a single statement in which the OAA algorithm is called with
parameters ε, δ, and the random accepting cycle variable (RACV) routine, which
generates on demand the random samples Zi and Z ′

i used in OAA as follows. A
random lasso is generated using the randomized init (rInit) and randomized
next (rNext) routines. To determine if the generated lasso is accepting, we store
the index i of each encountered state s in HashTbl and record the index of the
most recently encountered accepting state in f. When we find a cycle, i.e., the
state returned by rNext(M,s) is in HashTbl, we check if HashTbl(t)≤ f; the cycle
is an accepting cycle if and only if this is the case. The function lasso() extracts
a lasso from the states stored in HashTbl.

QMC takes as input an explicit representation B of a Büchi automaton. As
with DDFS, given a succinct representation S of B, one can avoid the explicit
construction of B by generating random states rInit(B) and rNext(s,B) on the
fly from S, and performing the test for acceptance acc(s,B) symbolically. In
Section 5 we present such a succinct representation and show how to efficiently
generate random initial and successor states.

Theorem 1 (QMC correctness). Given a Büchi automaton B, error margin ε,
and confidence ratio δ, p̃Z , the (ε,δ)-approximation of pZ computed by QMC is such
that if p̃Z < 1 then L(B) �= ∅, and if p̃Z = 1 then Pr[1/(1 + ε) ≤ pZ ] ≥ 1− δ.4

Proof. The OAA algorithm of [8] requires that all samples Zi, Z ′
i are independent

of one another and have the same mean value. Independence in our case follows
from the fact that each call to RACV can be shown to be an independent Bernoulli
trial. Moreover, all samples (random lassos) have the same mean value pZ . Now,
if an accepting lasso is found, L(B) �= ∅ by definition. Otherwise, p̃Z = 1 and
4 The theorem uses Bayesian logic to express our confidence that, if after N samples
QMC does not find a counter-example, Pr[1/(1 + ε) ≤ pZ ] ≥ 1 − δ. An alternative
formulation uses statistical hypothesis testing.



the result follows from Pr[pZ(1− ε) ≤ p̃Z ≤ pZ(1+ ε)] ≥ 1− δ by observing that
pZ(1 − ε) ≤ p̃Z is a tautology, and dividing what remains by 1 + ε.

For ε sufficiently small and pZ = 1− qZ, the above theorem can be rewritten
to yield the following upper bound ε on the expectation of an accepting lasso in
B: Pr[qZ < ε] ≥ 1− δ. In other words, if QMC fails to find a counter-example, the
probability of one is bounded from above by ε with high probability.

QMC is very efficient in both time and space. The recurrence diameter of a
Büchi automaton B is the longest initialized loop-free path in B.

Theorem 2 (QMC complexity). Let B be a Büchi automaton, D its recurrence
diameter and N = O(4 ln(2/δ)/ε) be the number of samples taken by OAA when
all Zi and Z ′

i return 1, for a given ε, δ. Then, QMC takes time O(N ·D) and uses
space O(D).

Proof. The length of a lasso is bounded by D; the number of samples taken by
OAA is bounded by N .

QMC can also be run in estimator mode, where rather than halting upon finding a
counter-example, continues sampling until p̃Z has been computed. By virtue of
its reliance on the OAA algorithm, QMC in estimator mode may not terminate if the
number of initialized non-accepting cycles in B is less than Υ1. Should this not
be the case, however, QMC provides an estimate of how “false” is the judgement
S |= ϕ, a useful statistical measure.

5 Implementation

We have implemented the DDFS and QMC algorithms as an extension to jMocha [1],
a model checker for synchronous and asynchronous concurrent systems specified
using reactive modules [2]. An LTL formula ¬ϕ is specified in our extension
of jMocha as a pair consisting of a reactive module monitor and a boolean
formula defining its set of accepting states. By selecting the new enumerative
or randomized LTL verification option one can check whether S |= ϕ: jMocha

takes their composition and applies either DDFS or QMC on-the-fly to check for
accepting lassos.

An example reactive module, for a “fair stick” in the dining philosophers
problem, is shown below. It consists of a collection of typed variables partitioned
into external (input), interface (output) and private. For this example, rqL, rqR,
rlR, rlR, grL, grR, pc, and pr denote left and right request, left and right release,
program counter, and priority, respectively. The priority variable pr is used to
enforce fairness. The values l, r and f stand for left, right and free, respectively.

Variables change their values in a sequence of rounds. The first is an initial-
ization round; the subsequent are update rounds. Initialization and updates of
controlled (interface and private) variables are specified by actions defined as
a set of guarded parallel assignments. Moreover, controlled variables are parti-
tioned into atoms : each variable is initialized and updated by exactly one atom.



The initialization round and all update rounds are divided into subrounds,
one for the environment and one for each atom A. In an A-subround of the
initialization round, all variables controlled by A are initialized simultaneously,
as defined by an initial action. In an update A-subround, all variables controlled
by A are updated simultaneously, as defined by an update action.

type stickType is {f,l,r}
module Stick is

external rqL,rqR,rlL,rlR:event;

interface grL,grR:event; private pc,pr:stickType;

atom STICK

controls pc,pr,grL,grR

reads pc,pr,grL,grR,rqL,rqR,rlL,rlR awaits rqL,rqR,rlL,rlR

init
[] true -> pc’ := f; pr’ := l;

update
[] pc = f & rqL? & ¬ rqR? -> grL!; pc′:= l; pr′ := r;

[] pc = f & rqL? & rqR? & pr = l -> grL!; pc′:= l; pr′ := r;

[] pc = f & rqL? & rqR? & pr = r -> grR!; pc′:= r; pr′ := l;

[] pc = f & rqR? & ¬ rqL? -> grR!; pc′:= r; pr′ := l;

[] pc = l & rlL? -> pc′ := f;

[] pc = r & rlR? -> pc′ := f;

In a round, each variable x has two values: the value at the beginning of the
round, written as x and called the read value, and the value at the end of the
round written as x′ and called the updated value. Events are modeled by toggling
boolean variables. For example rqL? def

= rqL′ �= rqL and grL!
def
= grL′ :=¬grL. If a

variable x controlled by an atom A depends on the updated value y′ of a variable
controlled by atom B, then B has to be executed before A. We say that A awaits
B and that y is an awaited variable of A. The await dependency defines a partial
order � among atoms.

Operators on modules include renaming, hiding of output variables, and par-
allel composition. The latter is defined only when the modules update disjoint
sets of variables and have a joint acyclic await dependency. In this case, the
composition takes the union of the private and interface variables, the union of
the external variables (minus the interface variables), the union of the atoms,
and the union of the await dependencies.

rNext algorithm
input: Reactive module M; Current state s;

output: Random next state s.all′.

(1) s.extl′ := random(Q.M.extl);
(2) for all (A∈�L

M ) {
(3) for (m := |A.upd|; m≥ 0; m--) {
(4) i := random(m);

(5) if (A.upd(i).grd(s)) break else remove(A.upd,i); }
(6) if (m = 0) s.ctrl′ := s.ctrl; else s.ctrl′ := random(A.upd(i).ass(s)); }
(7) return s′;



A feature of our QMC implementation is that the next state s′ = rNext(s,M) of M
along a random walk in search of an accepting lasso is generated randomly both
for the external variables M.extl and for the controlled variables M.ctrl. For the
external variables we randomly generate a state s.extl′ in the set of all input
valuations Q.M.extl. For the controlled variables we proceed for each atom A in
the linear order �L

M compatible with �M as follows: first we randomly choose a
guarded assignment A.upd(i) with true guard A.upd(i).grd(s), where i is less
than the number |A.upd| of guarded assignments in A; then we randomly gener-
ate a state s.ctrl′ among the set of all states possibly returned by its parallel
(nondeterministic) assignment A.upd(i).ass(s). If no guarded assignment is en-
abled we keep the current state s.ctrl. The routine rInit is implemented in a
similar way.

6 Experimental Results

We compared the performance of QMC and DDFS by applying our implementation
of these algorithms in jMocha to the dining philosophers problem. All reported
results were obtained on a PC equipped with an Athlon 2100+ MHz processor
and 1GB RAM running Linux 2.4.18 (Fedora Core 1).

For dining philosophers, we considered two LTL properties: deadlock freedom
(DF), which is a safety property, and starvation freedom (SF), which is a liveness
property. For a system of n philosophers, their specification is as follows:

DF : G¬ (pc1 = wait& . . . & pcn = wait)
SF : G F (pc1 = eat)

We encoded our solution to the problem using Reactive Modules, developing both
a symmetric and asymmetric version. In the symmetric case, all philosophers can
simultaneously pick up their right forks, leading to deadlock. Lockout-freedom is
also violated since no notion of fairness has been incorporated into the solution.
That both properties are violated is intentional, as it allow us to compare the
relative performance of DDFS and QMC on finding counter-examples. We ran QMC

in both decision and estimation modes.

DDFS QMC

ph time entr time mxl cxl N

4 0.02 31 0.08 10 10 3

8 1.62 511 0.20 25 8 7

12 3:13 8191 0.25 37 11 11

16 >20:0:0 – 0.57 55 8 18

20 – oom 3.16 484 9 20

30 – oom 35.4 1478 11 100

40 – oom 11:06 13486 10 209

DDFS QMC

ph time entr time mxl cxl N

4 0.17 29 0.02 8 8 2

8 0.71 77 0.01 7 7 1

12 1:08 125 0.02 9 9 1

16 7:47:0 173 0.11 18 18 1

20 – oom 0.06 14 14 1

30 – oom 1.12 223 223 1

40 – oom 1.23 218 218 1

Table 1. Deadlock and Starvation freedom for symmetric (unfair) version.



For the symmetric case, we chose a value of 10−1 for both ε and δ, resulting
in N = 1257 samples taken. This number of samples proved sufficiently large in
that for each instance of dining philosophers on which we ran our implementation
of QMC, a counter-example was detected. The results are given in Table 1. The
meaning of the column headings is the following: ph is the number of philoso-
phers; time is the time to find a counter-example in hrs:mins:secs; entr is the
number of entries in the hash table; mxl is the maximum length of a sample; cxl
is the the length of the counter-example; N is the number of samples taken.

As the data in the tables demonstrate, DDFS runs out of memory for 20 philoso-
phers, while QMC not only scales up to a larger number of philosophers, but also
outperforms DDFS on the smaller numbers. This is especially the case for starva-
tion freedom where one sample is enough to find a counter-example.

One might wonder why DDFS spends more than 7 hours to check for starvation
freedom on 16 philosophers while the number of entries in the hash table, which
can be understood as the stack depth in the depth-first search, is only 173? Or
why does it run out of memory for 20 or more philosophers? The reason is that
init(B), which is called by DDFS, and next(B,s), which is called at each recursive
invocation of DDFS1 and DDFS2, may generate a large number of successor states.
As a consequence, each path stored in the hash table may have associated with
it a number of states stored in temporary variables that is considerably larger
than the path length.

To avoid storing a large number of states in temporary variables, one might
attempt to generate successor states one at a time (which exactly what rNext(B,s)
of QMC does). However, the constraint imposed by DDFS to generate all successor
states in sequential order inevitably leads to the additional time and memory
consumption.

phi. N satisf. avg.len. counter. avg.len. epZ

4 6169 3957 7.827 2212 7.271 0.637

5 5526 3834 9.122 1692 7.779 0.688

6 4922 3590 10.225 1332 8.113 0.731

7 3975 3048 11.446 927 8.311 0.759

8 3593 2911 12.187 682 8.472 0.808

9 2959 2481 13.363 478 8.964 0.836

10 2884 2454 14.531 430 8.874 0.855

Table 2. Variation of epZ for DF with respect to the number of philosophers.

In estimation mode, we set ε = 10−1, δ = 10−2 and checked for dead-
lock freedom on all samples, as required by OAA, without returning at the first
counter-example. This allowed us to compute values for p̃Z for varying numbers
of philosophers; our results are given in Table 1. Observe that p̃Z , which can be
interpreted as an estimate of the probability that an arbitrary run of a symmet-
ric system of n dining philosophers is deadlock-free, increases apparently linearly
with n. This observation is fairly obvious in retrospect, but to our knowledge
has not been reported previously in the literature.



DDFS QMC

phi time entries time mxl avl

4 0:01 178 0:20 49 21

6 0:03 1772 0:45 116 42

8 0:58 18244 2:42 365 99

10 16:44 192476 7:20 720 234

12 – oom 21:20 1665 564

14 – oom 1:09:52 2994 1442

16 – oom 3:03:40 7358 3144

18 – oom 6:41:30 13426 5896

20 – oom 19:02:00 34158 14923

DDFS QMC

phi time entries time mxl avl

4 0:01 538 0:20 50 21

6 0:17 9106 0:46 123 42

8 7:56 161764 2:17 276 97

10 – oom 7:37 760 240

12 – oom 21:34 1682 570

14 – oom 1:09:45 3001 1363

16 – oom 2:50:50 6124 2983

18 – oom 8:24:10 17962 7390

20 – oom 22:59:10 44559 17949

Table 3. Deadlock and starvation freedom for the fair asymmetric version.

In the asymmetric case, a notion of fairness has been incorporated into the
specification and, as a result, deadlock and starvation freedom are preserved.
Specifically, the specification uses a form of round-robin scheduling to explicitly
encode weak fairness. As in the symmetric case, we chose the value 10−1 for both
ε and δ. Our results are given in Table 3, where columns mxl and avl represent
the maximum and the average length of a sample, respectively.

Dining philosophers is a well known benchmark and its state space can be
easily manipulated. Systems such as these have been shown to be amenable to
verification techniques such as abstraction and symmetry reduction. Neverthe-
less, abstraction approaches often require human intervention, while symmetry
reduction requires an underlying symmetry to be present in the system struc-
ture. In any event, techniques such as abstraction and symmetry reduction are
orthogonal concepts to Monte Carlo model checking; the QMC algorithm could
take advantage of them, as well.

7 Related Work

There have been a number of prior proposals for randomized approaches to the
model-checking problem. Like our QMC algorithm, the Lurch debugger [21, 14]
performs random sampling in search of initialized random cycles; it also searchs
for initialized random terminal paths. Lurch does not, however, compute an
(ε, δ)-approximation like QMC does. Rather it randomly searches the system’s state
space until a “saturation point” or a user-defined limit on time or memory is
reached. Moreover, it appears that the system is only checking safety properties;
QMC, on the other hand, is a Monte Carlo model checker for general LTL formulas.

In [4] randomization is used to decide which visited states should be stored,
and which should be omitted, during LTL model checking, with the goal of
reducing memory requirements.

Probabilistic model checkers cater to stochastic models and logics, including,
but not limited to, those for discrete- and continuous-time Markov chains [18,
3], Probabilistic I/O Automata [26], and Probabilistic Automata [23]. Like QMC,
these model checkers return results of a statistical nature.



Stochastic modeling formalisms and logics are also considered in [29, 15, 24],
who advocate an approach to the model checking based on random sampling
of execution paths and statistical hypothesis testing. In particular, [15] uses
bounded model checking to bound the length of sampled execution paths in the
course of computing an (ε, δ)-approximation for the “positive LTL” fragment of
LTL. The number of samples taken is 4 log(2/δ)/ε2). In contrast, our QMC algo-
rithm is applicable to the classical model-checking problem for nondeterminis-
tic/concurrent systems and general LTL formulas, performs random sampling of
lassos, and uses a number of samples that is optimal to within a constant factor.

Several techniques have been proposed for the automatic verification of safety
and reachability properties of concurrent systems based on the use of random
walks to uniformly sample the system state space [19, 13, 27]. In contrast, QMC
performs random sampling of lassos for general LTL model checking. In [20],
Monte Carlo and abstract interpretation techniques are used to yield upper
bounds on the probability of certain outcomes of programs whose inputs are
probabilistic or nondeterministic.

8 Conclusions

We have presented QMC, a randomized, Monte Carlo decision procedure for clas-
sical temporal-logic model checking. Utilizing the optimal algorithm of [8] for
Monte Carlo estimation, QMC performs random sampling of lassos in the Büchi
automaton B = BS × B¬ϕ to yield a one-sided error Monte Carlo decision
procedure for the LTL model-checking problem S |= ϕ. It does so using a num-
ber of samples N that is optimal to within a constant factor. It also delivers
quantitative information about the model-checking problem in the form of an
(ε, δ)-approximation of the expectation that L(B) = ∅. Benchmarks show that
QMC is fast, memory-efficient, and scales extremely well.

To take a random sample, which in our case is a random lasso, QMC performs
a “uniform” random walk through B: one in which the next transition taken
is decided by tossing a fair, k-sided coin when a state of B is reached having k
outgoing transitions. This can lead to assigning lassos probabilities that may not
reflect actual system behavior. This potential problem is mitigated if the state-
transition behavior of a system S is prescribed by a probabilistic automaton
such as a discrete Markov chain M , as in probabilistic model checking. In this
case, there is a natural way to assign a probability to a random walk σ: it is
simply the product of the state-transition probabilities pij for each transition
from state i to j along σ. This implies that QMC extends with little modification
to the case of probabilistic model checking.

Another way to obtain a Monte Carlo decision procedure for LTL model
checking is to appeal directly to the theory of geometric random variables to
determine the number of samples needed to find an accepting lasso with proba-
bility at least 1 − δ. This is the approach taken in [12], the advantage of which
is that it usually takes significantly fewer samples than that required by OAA. On
the other hand, it forgoes the computation of an (ε, δ)-approximation of pZ .
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