
And/Or Hierarchies and Round Abstraction

Radu Grosu

Department of Computer and Information Science
University of Pennsylvania

Email: grosu@cis.upenn.edu

URL: www.cis.upenn.edu/~grosu

Abstract. Sequential and parallel composition are the most fundamen-
tal operators for incremental construction of complex concurrent sys-
tems. They reflect the temporal and respectively the spatial properties
of these systems. Hiding temporal detail like internal computation steps
supports temporal scalability and may turn an asynchronous system
to a synchronous one. Hiding spatial detail like internal variables sup-
ports spatial scalability and may turn a synchronous system to an asyn-
chronous one. In this paper we show on hand of several examples that a
language explicitly supporting both sequential and parallel composition
operators is a natural setting for designing heterogeneous synchronous
and asynchronous systems. The language we use is Shrm, a visual lan-
guage that backs up the popular and/or hierarchies of statecharts with
a well defined compositional semantics.

1 Introduction

With the advent of very large scale integration technology (VLSI), digital circuits
became too complex to be designed and tested on a breadboard. The hardware
community introduced therefore languages like Verilog and VHDL [Ver,Vhdl]
that allow to describe the architectural and the behavioral structure of a complex
circuit in a very abstract and modular way. Architectural modularity means that
a system is composed of subsystems using the operations of parallel composition
and hiding of variables. Behavioral hierarchy means that a system is composed of
subsystems using the operations of sequential composition and hiding of internal
computation steps. Verilog allows the arbitrary nesting of the architecture and
behavior hierarchies.

With the advent of object oriented technology, most notably UML [BJR97],
combined visual/textual languages very similar in spirit to the hardware de-
scription languages [Har87,SGW94], gained a lot of popularity in the software
community. Their behavior and block diagrams were rapidly adopted as a high
level interface for Verilog and VHDL too (e.g. in the Renoir tool of Mentor
Graphics and in the StateCad tool of Visual Software Solutions).

Recent advances in formal verification have led to powerful design tools for
hardware (see [CK96] for a survey), and subsequently, have brought a lot of
hope of their application to reactive programming. The most successful verifi-
cation technique has been model checking [CE81,QS82]. In model checking, the



system is described by a state-machine model, and is analyzed by an algorithm
that explores the reachable state-space of the model. The state-of-the-art model
checkers (e.g. Spin [Hol97] and Smv [McM93]) employ a variety of heuristics
for efficient search, but are typically unable to analyze models with more than
hundred state variables, and thus, scalability still remains a challenge.

A promising approach to address scalability is to exploit the modularity
of the design. The input languages of standard model checkers (e.g., S/R in
Cospan [AKS83] or Reactive modules in Mocha [AH99]) support architectural
modularity but, unlike the hardware and the visual description languages, pro-
vide no support for modular description of the behaviors of individual compo-
nents. In [AG00] we introduced the combined visual/textual language hierarchic
reactive modules (Hrm) exhibiting both behavior and architecture modularity.
This hierarchy is exploited for efficient search by the model checker Hermes
[AGM00].

In this paper we introduce a synchronous version of the hierarchic reactive
modules language (Shrm) that conservatively extends the reactive modules lan-
guage. This language is used to model two very interesting abstraction operators
of reactive modules: next and its dual trigger. They allow to collapse and delay
arbitrary many consecutive steps of a module and environment respectively, and
therefore to perform a temporal abstraction. This abstraction can be exploited
efficiently in model checking because the states stored for the intermediate steps
may be discarded. We argue that a language like Shrm and Verilog, support-
ing the arbitrary nesting of architecture and behavior hierarchies, is a natural
setting for combined spatial and temporal abstraction. There is no need for spe-
cial temporal operators because behavioral modularity does precisely the same
thing. Moreover, by supporting sequential composition, choice, loops and pre-
emption constructs, the combined setting allows to express complex structure
in a more direct and intuitive way. To materialize this claim we reformulate the
adder example in [AH99].

The rest of the paper is organized as follows. In Section 2 we introduce
the modeling language Shrm. This language adds communication by events to
the language Hrm presented in [AG00]. It also extends the reactive modules
language both with behavior hierarchy and with a visual notation. In Section 3
we show that this language is a natural setting to perform spatial and temporal
abstraction. As an application, we show how to encode the next operator of
reactive modules. Finally in Section 4 we draw some conclusions.

2 Modeling Language

The central component of the modeling language is a mode. The attributes of
a mode include global variables used to share data with its environment, local
variables, well-defined entry and exit points, and submodes that are connected
with each other by transitions. The transitions are labeled with guarded com-
mands that access the variables according to the the natural scoping rules. Note
that the transitions can connect to a mode only at its entry/exit points, as in



NM

c

j i h

d

pee2

e1

e3

e1

a
b

m : N n : N

x1 x2 x3

f

k

read x, write y, local z

ea
d

e1 b e2c

f

x1 dx x2

read z, write z, local u

g

q r

Fig. 1. Mode diagrams

Room but unlike statecharts. This choice is important in viewing the mode
as a black box whose internal structure is not visible from outside. The mode
has a default exit point, and transitions leaving the default exit are applicable
at all control points within the mode and its submodes. The default exit retains
the history, and the state upon exit is automatically restored by transitions en-
tering the default entry point. Thus, a transition from the default exit is a group
preemption transition and a transition from the default exit to the default en-
try is an group interrupt transition. While defining the operational semantics
of modes, we follow the standard paradigm in which transitions are executed
repeatedly until there are no more enabled transitions.

Modes A mode has a refined control structure given by a hierarchical state ma-
chine. It basically consists of a set of submode instances connected by transitions
such that at each moment of time only one of the submode instances is active.
A submode instance has an associated mode and we require that the modes
form an acyclic graph with respect to this association. For example, the mode
M in Figure 1 contains two submode instances, m and n pointing to the mode
N. By distinguishing between modes and instances we may control the degree
of sharing of submodes. Sharing is highly desirable because submode instances
(on the same hierarchy level) are never simultaneously active in a mode. Note
that a mode resembles an or state in statecharts but it has more powerful
structuring mechanisms.

Variables and scoping A mode may have global as well as local variables. The
set of global variables is used to share data with the mode’s environment. The
global variables are classified into read and write variables. The local variables of
a mode are accessible only by its transitions and submodes. The local and write
variables are called controlled variables. Thus, the scoping rules for variables are
as in standard structured programming languages. For example, the mode M in
Figure 1 has the global read variable x, the global write variable y and the local
variable z. Similarly, the mode N has the global read-write variable z and the
local variable u. Each variable x may be used as a register. In this case, the
expression p(x) denotes the value of x in the previous top level round1 and the
expression x denotes the current value of x.

1 What previous top level round means will be made clear when discussing parallel
modes.



The transitions of a mode may refer only to the declared global and local
variables of that mode and only according to the declared read/write permission.
For example, the transitions a,b,c,d,e,f,g,h,i,j and k of the mode M may
refer only to the variables x, y and z. Moreover, they may read only x and z and
write y and z. The global and local variables of a mode may be shared between
submode instances if the associated submodes declare them as global (the set of
global variables of a submode has to be included in the set of global and local
variables of its parent mode). For example, the value of the variable z in Figure
1 is shared between the submode instances m and n. However, the value of the
local variable u is not shared between m and n.

Control points and transitions To obtain a modular language, we require the
modes to have well defined control points classified into entry points (marked as
white bullets) and exit points (marked as black bullets). For example, the mode
M in Figure 1 has the entry points e1,e2, e3 and the exit points x1,x2,x3.
Similarly, the mode N has the entry points e1,e2 and the exit points x1,x2. The
transitions connect the control points of a mode and of its submode instances to
each other. For example, in Figure 1 the transition a connects the entry point
e2 of the mode M with the entry point e1 of the submode instance m. The name
of the control points of a transition are attributes and our drawing tool allows
to optionally show or hide them to avoid cluttering.

According to the points they connect, we classify the transitions into entry,
internal and exit transitions. For example, in Figure 1, a,d are entry transi-
tions, h,i,k are exit transitions, b is an entry/exit transition and c,e,f,g,j
are internal transitions. These transitions have different types. Entry transitions
initialize the controlled variables by reading only the global variables. Exit tran-
sitions read the global and local variables and write only the global variables.
The internal transitions read the global and the local variables and write the
controlled variables.

Default control points To model preemption each mode (instance) has a
special, default exit point dx. In mode diagrams, we distinguish the default exit
point of a mode from the regular exit points of the mode, by considering the
default exit point to be represented by the mode’s border. A transition starting
at dx is called a preempting or group transition of the corresponding mode. It
may be taken whenever the control is inside the mode and no internal transition
is enabled. For example, in Figure 1, the transition f is a group transition for
the submode n. If the current control point is q inside the submode instance n
and neither the transition b nor the transition f is enabled, then the control is
transferred to the default exit point dx. If one of e or f is enabled and taken
then it acts as a preemption for n. Hence, inner transitions have a higher priority
than the group transitions, i.e., we use weak preemption. This priority scheme
facilitates a modular semantics. As shown in Figure 1, the transfer of control to
the default exit point may be understood as a default exit transition from an
exit point x of a submode to the default exit point dx that is enabled if and



only if, all the explicit outgoing transitions from x are disabled. We exploit this
intuition in the symbolic checker.

History and closure To allow history retention, we use a special default entry
point de. As with the default exit points, in mode diagrams the default entry
point of a mode is considered to be represented by the mode’s border. A transi-
tion entering the default entry point of a mode either restores the values of all
local variables along with the position of the control or initializes the controlled
variables according to the read variables. The choice depends on whether the last
exit from the mode was along the default exit point or not. This information is
implicitly stored in the constructor of the state passed along the default entry
point. For example, both transitions e and g in Figure 1, enter the default entry
point de of n. The transition e is called a self group transition. A self group
transition like e or more generally a self loop like f,p,g may be understood
as an interrupt handling routine. While a self loop may be arbitrarily complex,
a self transition may do simple things like counting the number of occurrences
of an event (e.g., clock events). Again, the transfer of control from the default
entry point de of a mode to one of its internal points x may be understood
as a default entry transition that is taken when the value of the local history
variable coincides with x. If x was a default exit point n.dx of a submode n
then, as shown in Figure 1, the default entry transition is directed to n.de. The
reason is that in this case, the control was blocked somewhere inside of n and de-
fault entry transitions originating in n.de will restore this control. A mode with
added default entry and exit transitions is called closed. Note that the closure is
a semantic concept. The user is not required to draw the implicit default entry
and exit transitions. Moreover, he can override the defaults by defining explicit
transitions from and to the default entry and exit points.

Operational semantics: macro-steps In Figure 1, the execution of a mode,
say n, starts when the environment transfers the control to one of its entry points
e1 or e2. The execution of n terminates either by transferring the control back
to the environment along the exit points x1 or x2 or by “getting stuck” in q or
r as all transitions starting from these leaf modes are disabled. In this case the
control is implicitly transferred to M along the default exit point n.dx. Then, if
the transitions e and f are enabled, one of them is nondeterministically chosen
and the execution continues with n and respectively with p. If both transitions
are disabled the execution of M terminates by passing the control implicitly to its
environment at the default exit M.dx. Thus, the transitions within a mode have
a higher priority compared to the group transitions of the enclosing modes.

Intuitively, a round of the machine associated to a mode starts when the
environment passes the updated state along a mode’s entry point and ends when
the state is passed to the environment along a mode’s exit point. All the internal
steps (the micro steps) are hidden. We call a round also a macro step. Note that
the macro step of a mode is obtained by alternating its closed transitions and
the macro steps of the submodes.



Denotational semantics: traces The execution of a mode may be best un-
derstood as a game, i.e., as an alternation of moves, between the mode and its
environment. In a mode move, the mode gets the state from the environment
along its entry points. It then keeps executing until it gives the state back to
the environment along one of its exit points. In an environment move, the envi-
ronment gets the state along one of the mode’s exit points. Then it may update
any variable except the mode’s local ones. Finally, it gives the state back to the
mode along one of its entry points. An execution of a mode M is a sequence of
macro steps of the mode. Given such an execution, the corresponding trace is
obtained by projecting the states in the execution to the set of global variables.
The denotational semantics of a mode M consists of its control points, global
variables, and the set of its traces.

Atoms and parallel modes An atom is a mode having only two points, the
default entry point and the default exit point. A parallel mode is a very conve-
nient abbreviation for a particular mode consisting of the parallel composition
of atoms. To avoid race conditions, the parallel composition of atoms is defined
only if (1) the atoms write disjoint sets of variables and (2) there is no cyclic
dependency among the variables of different atoms (this similar to [AH99] and
it can be statically checked). A weaker form of cyclic dependency is however
allowed: for any write variable x in an atom A, another atom B may safely refer
to p(x), the previous value of x. If the atom B refers to x, than it refers to the
last value of x, i.e., the value of x produced at the end of the subround of A.
The atom B has therefore to await the atom A.

Since a mode may update a controlled variable x several times, we have to
make sure that p(x) is well defined, no matter how many times the variable is
updated. In the following, we consider p(x) to be the value of x at the end of
the previous top level round. A top level round is the round of the top level atom
containing x. Syntactically, a top level atom is an atom prefixed by the keyword
top. Semantically, a top level atom makes sure that at the end of each round,
p(x) is updated to the current value of x.

Top level atoms fix the granularity of interaction and therefore they may be
used only in the parallel composition of other top level atoms (parallel composi-
tion does not alter this granularity). Modes and parallel modes also fix the spatial
and temporal granularity of computation. Modes and top level atoms in Shrm
closely correspond to tasks and modules in Verilog. Tasks are programming units
whereas modules are simulation units.

Semantics of parallel modes The semantics of a parallel mode is very similar
to the semantics of modules in [AH99]. As shown in [AG00] this semantics can be
completely defined in terms of modes as follows. Take an arbitrary linearization
of the await dependency among the atoms of a parallel mode (since the await
dependency is a partial order, this is always possible). Construct a mode by
connecting the atoms with identity transitions, as required by the linearization.



If the parallel mode is a top level atom, update p(x) to the last value of x2. The
language generated by this mode, defines the semantics of the parallel mode.

By definition, a parallel mode is a particular atom. As a consequence it may
be freely used inside a mode as a submode. Hence, Shrm allows the arbitrary
nesting of the architecture and behavior hierarchies. When conveniently, we will
draw a parallel mode as a block diagram with atoms as boxes and shared vari-
ables as arrows. The entry/exit point information is not very informative for
parallel modes (and atoms).

Events The shared variables communication paradigm and the notion of top
level round allows us to model events as toggling boolean variables. Sending an
event e is the action e := ¬p(e) and receiving an event e is the boolean expression
e �= p(e). These are abbreviated by e! and e? respectively. Note that, no matter
how many times a mode sends an event inside a top level round, only one event
is sent to the other modes.

Renaming of modes Similarly to modules in [AH99], modes may be renamed.
Given a mode m and a renaming x1, . . . , xn := y1, . . . , yn where xi are global
variables and yi are fresh variables, the mode m[x1, . . . , xn := y1, . . . , yn] is a
mode identical with m excepting that the variables xi are replaced with the
variables yi, for 1 ≤ i ≤ n.

3 Temporal and Spatial Abstraction

In order to reduce the complexity of a system, [AH99] introduce the abstraction
operator next. Given a module m and a subset Y of its interface (write) vari-
ables, next Y for m collapses consecutive rounds of m until one of the variables
in Y changes its value.

A controlled state of m is a valuation for the controlled variables of m and an
external state of m is a valuation for the external (read) variables of m. For two
external states s and t of m, an iteration of m from s to t is a finite sequence
s0 . . . sn of controlled states of m such that n ≥ 1 and for all 0 ≤ i < n the state
si+1 ∪ t is an successor of the state si ∪ s. In other words, along an iteration the
controlled variables are updated while the external variables stay unchanged.

The iteration s0 . . . sn modifies the set Y of controlled variables if sn[Y ] �=
s0[Y ] and for all 0 ≤ i < n, si[Y ] = s0[Y ], where s[Y ] is the projection of the
state s on the variables in Y . If the iteration modifies Y then the state sn ∪ t
is called the Y -successor of the state s0 ∪ s. A round marker for the module m
is a nonempty set Y of interface variables such that for all states s and t of m,
there are nonzero and finitely many Y -successors u of s such that u and t agree
on the values of the external (read) variables of m.

2 This is a simpler definition than in [AG00]. This is because we use here the notion
of top level atoms.



If Y is a round marker for the module m, then the abstraction next Y for m
is a module with the same declaration as m and a single atom AY

m. The update
relation of AY

m contains pairs (s, t) where t is a Y -successor of s.
Within the language Shrm, the next abstraction is a simple but important

case of sequential control on top of parallel modes. Given a (parallel) mode m
and a round marker Y , the mode corresponding to next Y for m is shown in
Figure 2. The game semantics of modes provides exactly the meaning of next
above. The state (token) s is passed by the environment to the mode next Y

next Y for m

m Y = p(Y)

Y != p(Y)

true

Fig. 2. Next abstraction

for m along its default entry point de. The state t is passed back by the mode to
the environment along its default exit point dx only if t is a Y -successor of s (in
this case Y �= p(Y )). As long as the state token is inside next the environment
does not have any chance to modify it. As a consequence, the states s0 . . . sn−1

computed by repeatedly traversing the loop are an iteration for this mode. None
of these states are Y -successors of s because of the loop guard Y = p(Y ). Since
the set Y is a round marker for m there is always the possibility for the loop to
terminate. The textual variant of Figure 2 is shown below3.

atom next (m, Y) is
read m.read;
write m.write;
submode m;

transition from de to m.de is
true -> skip;

transition from m.dx to m.de is
Y = p(Y) -> skip;

transition from m.dx to dx is
Y != p(Y) -> skip;

A generalization of the next operation above is the reuse of a (parallel) mode. In
this case additional control is needed to prepare the input and store the output
of the reused mode. For example, consider a one bit adder implemented as a
parallel mode as shown in Figure 3.

3 The mode m and the set Y are considered parameters in this specification. The
selectors m.read and m.write return the read and write variables of m.



a b

ci co

s

add1

x

y

z

Fig. 3. One bit adder

Its textual equivalent is given below. It reproduces the circuit in Figure 3.

atom add1 is
read a,b,ci : bool;
write s, co : bool;
local x, y, z : bool;

‖ xor[in1, in2, out := a, b, x]
‖ and[in1, in2, out := a, b, y]
‖ xor[in1, in2, out := ci, x, s]
‖ and[in1, in2, out := ci, x, z]
‖ or[in1, in2, out := y, z, co]

Suppose now that we want to define a two bit adder by using in parallel two one
bit adders, i.e., by decomposing the two bit addition spatially. The spatial scaling
involves a local variable (wire), that passes the the carry bit from the lower bit
adder to the higher bit adder. Hence, spatial abstraction involves hiding of local
variables as shown in Figure 4 left. The textual equivalent is given below. Note
that the spatial abstraction does not change the notion of a round (or clock
cycle). This remains the same for all modes (circuits) constructed in this way.
Combinational cycles are prohibited by the parallel composition operation.

atom pAdd2 is
read x, y : array (0..1) of bool; cIn : bool;
write z : array (0..1) of bool; cOut : bool;
local c : bool;

‖ add1[a, b, s, ci, co := x[0], y[0], z[0], cIn, c]
‖ add1[a, b, s, ci, co := x[1], y[1], z[1], c, cOut]

Suppose now that we want to define the two bit adder by reusing the one bit
adder, i.e., by decomposing the two bit addition temporally. This implementation
splits each computation step into two micro-steps. In the first micro-step the
one bit adder is used to add the lower bits. In the second micro-step the one
bit adder is used to add the higher order bits. Similarly, an n-bit adder can be
implemented in n micro-steps. To capture the micro step intuition, we have to
hide (or compress) the micro steps into one computation step. But this exactly
what mode encapsulation is about.



de

dx

add1 add1
c

x[0] y[0] y[1]x[1]

z[1]z[0]

cIn cOut add1

z[1]z[0]

x[0] y[0] y[1]x[1]

cOutcIn

low

high

ini

pAdd2 sAdd2

Fig. 4. Two bit adders

In contrast to the simple next operation defined before, in this case we also
have to prepare the input for the one bit adder and to store the partial results.
We also need a local counter to count the number of micro steps. This implemen-
tation is shown visually in Figure 4 right. Its textual definition is given below.
The reader is urged to compare it with the less intuitive and much more involved
implementation given in [AH99].

atom sAdd2 is
read x, y : array (0..1) of bool; cIn : bool;
write z : array (0..1) of bool; cOut : bool;
local a, b, s, ci, co, r : bool;

transition ini from de to add1.de is
true -> r := 0; a := x[0]; b := y[0]; ci := cIn;

transition low from add1.dx to add1.de is
r = 0 -> r := 1; z[0] := s; a := x[1]; b := y[1]; ci := co;

transition high from add1.dx to dx is
r = 1 -> z[1] := s; cOut := co;

The game semantics of modes makes the trigger construct from [AH99] superflu-
ous. As long as the top level atom does not pass the state token, the environment
cannot modify it. As a consequence, it cannot work faster than the atom itself
and this is exactly the purpose of trigger.

4 Conclusions

In this paper we have introduced a synchronous visual/textual modeling lan-
guage for reactive systems that allows the arbitrary nesting of architectural and
behavioral hierarchy. We have shown that such a language is the natural setting
for spatial and temporal scaling and consequently for the modeling of heteroge-
nous synchronous and asynchronous (stuttering) systems. This language is more
expressive than reactive modules because it allows to define behavior hierar-
chy. It is more expressive than hierarchic reactive modules because it supports
communication by events. In a nutshell, it has much of the expressive power
of Verilog and VHDL and yet it has a formal semantics that supports the effi-
cient application of formal verification techniques, especially of model checking.



The additional expressive power with respect to reactive and hierarchic reactive
modules does not come however, for free. When applying symbolic search (e.g.
invariant checking) we have to introduce an additional fresh variable px for each
each variable x addressed as p(x). To avoid this waste, we could classify the
variables like in VHDL, into proper variables and signals and disallow the re-
peated updating of signals. By insisting that only signals x can be are addressed
as p(x) no additional space is required. In conclusion, even though experimental
data is small so far, conceptual evidence suggests that a language supporting
the arbitrary nesting of behavior and architecture hierarchy could be beneficial
both for modeling and for analysis.

Acknowledgments We would like to thank Rajeev Alur for reading a draft of
this paper and providing valuable feedback. We would also like to thank Tom
Henzinger for fruitful discussions and enthusiasm for a language supporting both
hierarchies. This work was supported by the DARPA/NASA grant NAG2-1214.

References

[AG00] R. Alur and R. Grosu. Modular refinement of hierarchic reactive machines.
In Proceedings of the 27th Annual ACM Symposium on Principles of Pro-
gramming Languages, pages 390–402, 2000.

[AGM00] R. Alur, R. Grosu, M. McDougall. Efficient Reachability Analysis of Hi-
erarchical Reactive Machines. In Proceedings of the 12th Conference on
Computer Aided Verification, Chicago, USA, 2000.

[AH99] R. Alur and T.A. Henzinger. Reactive modules. Formal Methods in System
Design, 15(1):7–48, 1999.

[AHM+98] R. Alur, T. Henzinger, F. Mang, S. Qadeer, S. Rajamani, and S. Tasiran.
MOCHA: Modularity in model checking. In Proceedings of the 10th Inter-
national Conference on Computer Aided Verification, LNCS 1427, pages
516–520. Springer-Verlag, 1998.

[AKS83] S. Aggarwal, R.P. Kurshan, and D. Sharma. A language for the specifica-
tion and analysis of protocols. In IFIP Protocol Specification, Testing, and
Verification III, pages 35–50, 1983.

[AKY99] R. Alur, S. Kannan, and M. Yannakakis. Communicating hierarchical state
machines. In Automata, Languages and Programming, 26th International
Colloquium, pages 169–178. 1999.

[AY98] R. Alur and M. Yannakakis. Model checking of hierarchical state machines.
In Proceedings of the Sixth ACM Symposium on Foundations of Software
Engineering, pages 175–188. 1998.

[BHSV+96] R. Brayton, G. Hachtel, A. Sangiovanni-Vincentell, F. Somenzi, A. Aziz,
S. Cheng, S. Edwards, S. Khatri, Y. Kukimoto, A. Pardo, S. Qadeer,
R. Ranjan, S. Sarwary, T. Shiple, G. Swamy, and T. Villa. VIS: A system
for verification and synthesis. In Proceedings of the Eighth Conference on
Computer Aided Verification, LNCS 1102, pages 428–432. 1996.

[BJR97] G. Booch, I. Jacobson, and J. Rumbaugh. Unified Modeling Language User
Guide. Addison Wesley, 1997.



[BLA+99] G. Behrmann, K. Larsen, H. Andersen, H. Hulgaard, and J. Lind-Nielsen.
Verification of hierarchical state/event systems using reusability and com-
positionality. In TACAS ’99: Fifth International Conference on Tools and
Algorithms for the Construction and Analysis of Software, 1999.

[CAB+98] W. Chan, R. Anderson, P. Beame, S. Burns, F. Modugno, D. Notkin, and
J. Reese. Model checking large software specifications. IEEE Transactions
on Software Engineering, 24(7):498–519, 1998.

[CE81] E.M. Clarke and E.A. Emerson. Design and synthesis of synchronization
skeletons using branching time temporal logic. In Proc. Workshop on Logic
of Programs, LNCS 131, pages 52–71. Springer-Verlag, 1981.

[CK96] E.M. Clarke and R.P. Kurshan. Computer-aided verification. IEEE Spec-
trum, 33(6):61–67, 1996.

[Har87] D. Harel. Statecharts: A visual formalism for complex systems. Science of
Computer Programming, 8:231–274, 1987.

[Hol91] G.J. Holzmann. Design and Validation of Computer Protocols. Prentice-
Hall, 1991.

[Hol97] G.J. Holzmann. The model checker SPIN. IEEE Trans. on Software En-
gineering, 23(5):279–295, 1997.

[JM87] F. Jahanian and A.K. Mok. A graph-theoretic approach for timing analysis
and its implementation. IEEE Transactions on Computers, C-36(8):961–
975, 1987.

[LHHR94] N.G. Leveson, M. Heimdahl, H. Hildreth, and J.D. Reese. Requirements
specification for process control systems. IEEE Transactions on Software
Engineerings, 20(9), 1994.

[McM93] K. McMillan. Symbolic model checking: an approach to the state explosion
problem. Kluwer Academic Publishers, 1993.

[PD96] L. Peterson and B. Davie. Computer Networks: A Systems Approach. Mor-
gan Kaufmann, 1996.

[Pet81] G. Peterson. Myths about the mutual exclusion problem. Information
Processing Letters, 12(3), 1981.

[QS82] J.P. Queille and J. Sifakis. Specification and verification of concurrent
programs in CESAR. In Proceedings of the Fifth International Symposium
on Programming, LNCS 137, pages 195–220. Springer-Verlag, 1982.

[SGW94] B. Selic, G. Gullekson, and P.T. Ward. Real-time object oriented modeling
and design. J. Wiley, 1994.

[Ver] IEEE Standard 1364-1995. Verilog Hardware Description Language Refer-
ence Manual, 1995.

[Vhdl] IEEE Standard 1076-1993. VHDL Language Reference Manual, 1993.


