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a b s t r a c t

We propose a new biological framework based on the Lynch et al. theory of Hybrid I/O
Automata (HIOAs) for modeling and simulating excitable tissue. Within this framework,
we view an excitable tissue as a composition of two main kinds of component: a diffusion
medium and a collection of cells, both modeled as an HIOA. This approach yields a notion
of decomposition that allows us to describe a tissue as the parallel composition of several
interacting tissues, a property that could be exploited to parallelize, and hence improve,
the efficiency of the simulation process.
We also demonstrate the feasibility of ourHIOA-based framework to capture andmimic

different kinds of wave-propagation behavior in 2D isotropic cardiac tissue, including
normal wave propagation along the tissue; the creation of spiral waves; the break-up of
spiral waves into more complex patterns such as fibrillation; and the recovery of the tissue
to the rest via electrical defibrillation.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Systems biology is a multidisciplinary field whose goal is to provide a systems-level understanding of biological
phenomena by uncovering their structure, dynamics and control methods [23]. A main focus of systems biology is to devise
mathematical or formal models that capture significant aspects of in vitro or in vivo experimental data, while remaining
amenable to both quantitative and qualitative analysis. Currently, the most popular modeling approach is to use complex
systems of nonlinear differential equations, describing in great detail the underlying biological phenomena. These models,
however, are not particularly suitable for formal analysis, and impose high computational demands on simulation, especially
in large-scale two-dimensional (2D) and three-dimensional (3D) networks. Simulation at the organ or even the cell level is
thus rendered impractical.
Considering this state of affairs, systems biology could greatly benefit from the development of techniques that, given

a system of nonlinear differential equations, (semi-automatically) constructs a more abstract model that preserves the
properties of interest. Onepromising approach is based on the use ofHybridAutomata (HAs) [18,12] as amodeling formalism
for complex biological processes. HAs are an extension of finite automata that allows one to associate a continuous behavior
with each state. They have been used as mathematical models for a variety of embedded systems, including automated
highway systems [9], air traffic management [11] and real-time circuits [1].
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More recently, HAs have been used to model the behavior of biological systems [2,3,15,25]. In particular, in [25] we have
demonstrated the feasibility of using cycle linear hybrid automata (CLHAs) to model the behavior of several representative
excitable cells, basing their derivation on the biological interpretation of their single-cell’s action potential [17,25]. In
contrast, the main focus of this paper is on capturing the behavior of an excitable tissue.
For the problem ofmodeling and simulating excitable tissue, cardiac tissue in particular, one should take into account the

behavior of a network of spatially distributed components (cells), each ofwhich has the ability to propagate electrical signals
without damping.
In an earlier attempt to model excitable tissue [5], we proposed a model based on spatial networks of hybrid I/O automata

that extends CLHAs with the concepts of space and synchronization based on shared variables. Within this framework, we
considered an excitable tissue as a network of interacting cells disposed according to a 2D spatial lattice, with the electrical
behavior of a single cellmodeled as a (cycle-linear) hybrid input/output automaton (HIOA). To capture the phenomenon that
the strength of communication between automata depends on their relative positions within the lattice, we introduced a
new,weighted parallel composition operator to specify the influence of one automaton over another. The introduction of this
new operator required us to prove again some important properties – for example compositionality – of the classic HIOA
theory proposed by Lynch et al. in [12].
In this paper, we propose a different approach (totally compliant with HIOA theory) in which the tissue is modeled as a

composition of two main kinds of component (both modeled as an HIOA): a diffusion medium and a collection of cells. By
remaining squarelywithin theHIOA framework, we are able to readily establish compositionality results for excitable tissue.
For example, we introduce a notion of decomposition that allows us to describe a tissue as a parallel composition of two (or
more) interacting tissues. This interesting property could be exploited to parallelize, and hence improve, the efficiency of
the simulation process.
The rest of the paper is organized as follows. Section 2 provides the biological background on excitable cells. Section 3

discusses related work. Section 4 describes the HAmodel and its extension with I/O variables as advocated in [12]. Section 5
presents ourHIOA-basedmodel of excitable tissue and associated compositionality results. Section 6 contains our simulation
results. Section 7 offers our concluding remarks and directions for future work.

2. Biological background

An excitable cell has the ability to propagate an electrical signal – known at the cellular level as the Action Potential
(AP) – to surrounding cells. An AP corresponds to a difference in electrostatic potential between the inside and the outside
of a cell and is caused by the flow of ions across the cell membrane. The major ion species involved in this process are
sodium, potassium and calcium; they flow throughmultiple voltage-gated ion channels as pore-forming proteins in the cell
membrane. Excitation disturbances can occur in the behavior of these ion channels at the cell level, or in the propagation of
the electrical waves at the cell-network level.
An AP is an externally triggered event: a cell fires an action potential as an all-or-nothing response to a supra-threshold

stimulus (i.e. a stimulus that allows the cell to reach the threshold voltage; for more detail see Definition 5.1), and each AP
follows the same sequence of phases. During an AP, generally no re-excitation can occur. The early portion of an AP is known
as ‘‘absolute refractory period’’ due to its non-responsiveness to further stimulation. It is followed by a ‘‘relative refractory
period’’ during which a secondary excitation event is possible if the stimulation strength or duration is raised.
During a sequence of action potentials, two important time periods can be identified: the action potential duration (APD),

and the diastolic interval (DI). The first is the period in which the cell is in excited state and the second is the time e between
the ‘‘end’’ of the action potential and the next stimulus. The magnitude of the next AP and the APD is proportional to the
duration of the last DI.
Examples of excitable cells are neurons, cardiac myocytes and skeletal muscle cells. An impulse over a certain threshold

initiates a wave of activity moving across the excitable tissue. As each cell undergoes an excursion from its resting potential,
it causes its neighbors to move over the threshold at a rate determined by the diffusion coefficient (a property of the tissue)
and the distance from the stimulated cells. Despite differences in AP duration, morphology and underlying ion currents,
the following major AP phases can be identified across different species of excitable cells: resting, rapid upstroke, early
repolarization phase, plateau and late repolarization, and final repolarization (identical to the resting phase due to the cyclic
nature of an AP). Fig. 1 shows the main phases of the AP in a cardiac cell of guinea pig. The resting state features a constant
transmembrane potential (difference between the inside and outside potential of the cell) that is about −80 mV for most
species of cardiac cells; i.e. the membrane is polarized at rest. During the AP upstroke, the transmembrane potential rapidly
changes, fromnegative to positive; i.e. themembrane depolarizes. This is followed by an early repolarization phase. A slower,
plateau phase is present in most mammalian action potentials, during which calcium influx facilitates muscle contraction.
After this phase, a faster final repolarization brings the potential back to the resting state. Due to the universal nature of
these AP phases among species and regions, as shown in [25], it is possible to use them as a guide in the construction of HA
models.
Excitable-cell networks are important in the normal functioning and in the pathophysiology ofmany biological processes.

In cardiac cells, on each heart beat, an electrical control signal is generated by the sinoatrial node, the heart’s internal
pacemaking region. Electrical waves then travel along a prescribed path, exciting cells in atria and ventricles and assuring
synchronous contractions. Of special interest are cardiac arrhythmias: disruptions of the normal excitation process due
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Fig. 1.Main phases of an action potential in a cardiac cell of guinea pig.

to faulty processes at the cellular level, single ion-channel level, or at the level of cell-to-cell communication. The clinical
manifestation is a rhythmwith altered frequency – tachycardia or bradycardia – or the appearance ofmultiple frequencies –
polymorphic Ventricular Tachycardia (VT) – with subsequent deterioration to a chaotic signal—Ventricular Fibrillation (VF).
VF [22] is a typically fatal condition in which there is uncoordinated contraction of the cardiac muscle of the ventricles in
the heart. As a result, the heart fails to adequately pump blood, and hypoxia may occur.

3. Related work

Generally, an excitable tissue ismodeled in termsof reaction–diffusion systems. Thus, a typical continuous representation
would involve partial differential equations (PDEs) for the diffusing species (typically the transmembrane potential), and a
system of nonlinear ordinary differential equations describing all other state variables that are normally considered non-
diffusing. These may include ion-channel gating variables and ion concentrations. The first mathematical model of ionic
processes that underlie cell excitationwas empirically developed in 1952 by Hodgkin andHuxley for a squid giant axon [20].
This provided the basis for subsequent models of increasing complexity, using multiple continuous state variables (voltage,
ion-channel gates, ion concentrations) to describe APs in different cell types [6,10,13]. Currentmodels of cardiac cells include
more than twenty state variables and a large number of fitted parameters. Detailedmodels of cardiac excitation are perceived
as over-determined systems and, as such,make both qualitative – i.e. checking general properties – and quantitative analysis
– i.e. by simulation – at the organ or even tissue level impractical.
At the opposite end of the spectrum, completely discrete models based on cellular automata (CAs) have emerged [7,

14]. The first generation of CA models used nearest-neighbor diffusion modeling (Neumann and Moore neighborhoods)
and a small number of few discrete states, resulting in unrealistic AP shape and wave propagation. Second-generation CA
models [14] focused on correct representation of wavefront curvature effects by employing more complex neighborhood
functions, such as Gaussian, circular templates or randomized lattices. Furthermore, the transitions rules for the relaxation
states were updated to reflect a higher threshold for excitation and to effectively represent the relative and absolute refrac-
tory period. The latest generation is exemplified by Barkley’s model [6], in which a standard finite-differencemethod is used
to calculate the diffusive term, but CA-like rules govern the kinetics of the two model variables, with adjustable thresholds.
Recently, modified CAmodels have been used to study cardiac excitability and for comparisonwith experimental data [7,

8]. A body of literature provides clear links between the classical continuous PDE representation and the more ad hoc CA-
based approach as an alternative description of reaction–diffusion systems. The purely discrete nature of CAs presents some
difficulties in capturing subtle non-stepwise features of excitation.

4. Hybrid automata and hybrid input/output automata

We first introduce some basic notions used in [12] as a foundation for the definition of hybrid automata and hybrid
I/O automata. In particular, here we report the notions of variables and types for variables, and trajectories. The following
mathematical preliminaries are needed.
If f is a function, we denote the domain and the range of f by dom(f ) and range(f ), respectively. Moreover, if S is a set,

we denote with f dS the restriction of f to S, i.e. the function g with domain dom(f ) ∩ S such that g(a) = f (a) for each
a ∈ dom(g).
We say that two functions f and g are compatible if f ddom(g) = gddom(f ). If f and g are compatible functions, we define

f ∪ g as the unique function h with dom(h) = dom(f ) ∪ dom(g) satisfying the following condition: for each a ∈ dom(h), if
a ∈ dom(f ) then h(a) = f (a), and if a ∈ dom(g) then h(a) = g(a).
Finally, if f is a function whose range is a set of functions and S is a set, we write f ↓ S for the function g with

dom(g) = dom(f ) such that g(a) = f (a)dS for each a ∈ dom(g). Also, if f is a function whose range is a set of functions all
of which have a particular element d in the domain, we denote with f ↓ d the function g with dom(g) = dom(f ) such that
g(a) = f (a)(d).
We fix a time axis Twhich is the group (R,+) of the real numbers with addition; T≥0 is defined to be the set {t ∈ T | t ≥

0}. If K ⊆ T and t ∈ T, we define K + t , {t ′ + t | t ′ ∈ K}. Moreover, for a function f with domain K , we define f + t to be
the function with domain K + t and such that (f + t)(t ′) = f (t ′ − t), for each t ′ ∈ K + t .
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4.1. Variables, types and trajectories

Definition 4.1 (Variables and Types for Variables). Assume a universal set of variables V . For each v ∈ V , we distinguish a
static type (type for short) that represents the set of values it may take on, and a dynamic type that represents the evolutions
of v over the time. In more detail, type(v) – the type of v – is a nonempty set of values, and dtype(v) – the dynamic type of
v – is a set of functions from left-closed intervals of T to type(v) satisfying the following properties:

• (Closure under time shift)
For each f ∈ dtype(v) and t ∈ T, f + t ∈ dtype(v).

• (Closure under subinterval)
For each f ∈ dtype(v) and J ⊆ dom(f ), f dJ is in dtype(v).

• (Closure under pasting)
Let f0, f1, . . . be a sequence of functions in dtype(v) such that, for each index i, if fi is not the final function of sequence

then dom(fi) is right-closed and max(dom(fi)) = min(dom(fi+1)). The function f defined by f (t) = fi(t), where i is the
smallest index such that t ∈ dom(fi), is in dtype(v).

Definition 4.2 (Trajectories). Let V be a set of variables. A valuation v for V is a function that associates to each v ∈ V a
value in type(v). We write val(V ) to denote the set of all valuations for V . Let J be an initial segment of T≥0 (i.e. a left-closed
interval of T with left end-point equal to zero). A J-trajectory for V is a function τ : J → val(V ) such that, for each v ∈ V ,
τ ↓ v ∈ dtype(v). A trajectory for V is a J-trajectory, for any J . In the following we denote with trajs(V ) the set of all possible
trajectories for V .
If τ is a trajectory then τ .ltime, the time limit of τ , is the supremum of dom(τ ). Moreover, we define τ .fval, the first

valuation of τ , to be τ(0) and, if τ is closed (that is, its domain is a finite closed interval), we define τ .lval, the last valuation
of τ , to be τ(τ .ltime).
If τ is a trajectory and t ∈ T≥0, we define:

• τ E t , τd[0, t];
• τ C t , τd[0, t);
• τ D t , (τd[t,∞))− t .

Finally, the following operations on trajectories are also needed:
Prefix preorder: Let τ and τ ′ be trajectories for V . We say that τ ′ is a prefix of τ , written τ ′ ≤ τ if τ ′ can be obtained by

restricting τ to a subset of its domain. Formally, τ ′ ≤ τ iff τ ′ = τddom(τ ′).
Concatenation: Let τ and τ ′ be trajectories for V with τ closed. The concatenation of τ with τ ′, written τ _ τ ′, is the

union of τ with the trajectory we obtain by shifting the domain of τ ′ until the start time agrees with the limit time of τ .
Formally, τ _ τ ′ , τ ∪ (τ ′d(0,∞)+ τ .ltime).

4.2. Hybrid automata

A hybrid automaton is a state machine whose states are valuations of a set of variables (called internal variables). It uses
a different set of so-called external variables for communication with its environment. It has also a set of internal actions.
The state of a hybrid automaton may change either by means of discrete transitions (that are atomic and instantaneous) or
by trajectories that describe the evolution of the state over intervals of time. Discrete transitions are labelled with actions.
Trajectories may be described by continuous or discontinuous functions. This is a slight simplification of the definition of
hybrid automata given in [12], where we do not distinguish anymore between internal and external actions (but the actions
may only be internal). Our aim is that of avoiding unnecessary technicality; indeed, we do not have external actions because
automata we use in our framework communicate exclusively via shared variables.

Definition 4.3. A Hybrid automaton (HA for short; see [12]) is a tupleA = (W , X,Q ,Θ,H,D, T ), where:

• W is a set of external variables and X is a set of internal variables; we assume thatW and X are disjoint from each other
and write V , W ∪ X .
• Q ⊆ val(X) is a set of states andΘ ⊆ Q is a nonempty set of initial states.
• H is a set of internal actions. Actions in H are also called locally controlled actions.
• D ⊆ Q × H × Q is a set of discrete transitions. We use x a−→Ax′ as a shorthand for (x, a, x′) ∈ D. We say that the action a
is enabled in x if there exists an x′ such that x a−→Ax′.
• T is a set of trajectories for V such that τ(t)dX ∈ Q for every τ ∈ T and t ∈ dom(τ ). Given a trajectory τ ∈ T , we denote
τ .fvaldX by τ .fstate and, if τ is closed, τ .lvaldX by τ .lstate. We require that the set of trajectories T satisfies the following
axioms:

T1 (Prefix Closure)
For every τ ∈ T and every τ ′ ≤ τ , τ ′ ∈ T .

T2 (Suffix Closure)
For every τ ∈ T and every t ∈ dom(τ ), τ D t ∈ T .
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T3 (Concatenation Closure)
Let τ0, τ1, τ2, . . . be a sequence of trajectories in T such that for each index i, τi.lstate = τi+1.fstate. Then

τ _0 τ _1 τ _2 . . . ∈ T .

For our aims it suffices to consider HAs and HIOAs (see Definition 4.4) with real-valued variables (i.e. for each v ∈ V ,
type(v) = R).

4.3. Hybrid Input/Output Automata

Hybrid Input/Output Automata consist of a refinement of the Hybrid Automata model where, in the description of the
automaton external behavior, we distinguish between input and output variables.
Definition 4.4. A pre-hybrid I/O automaton (pre-HIOA for short; see [12]) is a tupleA = (H, I,O), where:

• H = (W , X,Q ,Θ,H,D, T ) is a hybrid automaton.
• I and O partition W into input and output variables, respectively.1 Variables in Z , X ∪ O are called locally controlled.
Again, we write V , W ∪ X .

A hybrid I/O automaton (HIOA for short) is a pre-HIOA satisfying the following additional axiom:
E1 (Input trajectory enabling)2
For every x ∈ Q and every υ ∈ trajs(I), there exists τ ∈ T such that τ .fstate = x, τ ↓ I ≤ υ and either
(1) τ ↓ I = υ , or
(2) τ is closed and some locally controlled action l ∈ H is enabled in τ .lstate.

Axiom E1 is a condition for interaction over time intervals. It says that an HIOA can accept any input trajectory (i.e. any
trajectory of input variables) υ either by letting time advance for the entire duration of υ or by reacting with a locally
controlled action after some part of the input trajectory has occurred. The authors in [12] have shown that axiom E1 has a
main role in proving that an HIOA does not contribute to producing unwanted system behaviors. Indeed, an interesting
complication that arises in hybrid settings is the possibility that a state machine could prevent time from passing, for
example, by blocking it entirely, or by scheduling infinitely many discrete actions to happen in a finite amount of time—
so-called Zeno behavior. In order to isolate HIOAs that do not exhibit this kind of behavior, in [12] there has been introduced
a notion of receptiveness. Informally speaking, an HIOA is receptive if it admits a strategy for resolving non-deterministic
choices that never generate infinitely many locally controlled actions in a finite amount of time. An important consequence
of this definition is that receptive HIOAs cannot simply stop at some point and refuse to allow time to elapse; they allow time
to pass to infinity if the environment does so. Receptiveness is also preserved by composition (under strong compatibility
conditions; see Definition 4.5).

Notation: Suppose the time domain T is R; let τ be a trajectory over a set of variables V and v ∈ V . As in [12], we use
v as shorthand for the function τ ↓ v : dom(τ ) → type(v) which gives the value of v at all times during the trajectory τ .
Similarly, we can view any expression e containing variables from V as a function with domain dom(τ ). These conventions
allow us to say that τ satisfies the algebraic equation v = emeaning that v(t) = e(t), for every t ∈ dom(τ ). Similarly, if for
every t ∈ dom(τ ), v(t) = v(0)+

∫ t
0 e(t

′)dt ′, we can say that τ satisfies the differential equation v̇ = e.
Conventions for automata specifications: In what follows, we describe the conventions we use in the specification of

an HIOA. Essentially, we inherit the same language used in [21] for the specification of Timed I/O Automata (TIOAs) with
some trivial changes due to the fact that TIOAs have only internal variables and, hence, synchronization is only allowed by
means of discrete transitions.
An automaton specification consists of four main parts: (1) an actions signature, which lists the actions of the automaton

togetherwith their parameters types (if any), (2) a state variables list, which declares kinds (we distinguish between internal,
input and output variables), names and types of the state variables, (3) a collection of transition definitions and, finally, (4) a
trajectories definition.
Static types of variables are always declared explicitly in the state variables list. We write v : t for a variable v of static

type t . Moreover, a variable can be initialized to a specific value allowed by its type. If no initial value is given, it is assumed
to be arbitrary. The dynamic types of variables are specified implicitly. By default, variables of type R are assumed to be
analog and variables of types other than R are assumed to be discrete. A variable of type R is both analog and discrete if its
dynamic type consists of piecewise constant functions only. The keyword discrete is used to qualify a discrete variable of
type R.
Discrete transitions are specified in precondition–effect style. The pre clause specifies the enabling conditions for an action,

while the effect clause contains a list of statements that specify the effect of performing that action on the state. All the
statements in an effect clause are assumed to be executed sequentially in a single indivisible step.
The trajectories are specified by a combination of algebraic and differential equations and inequalities, and stopping

conditions. A given trajectory is legal if it satisfies the predicate in the stop when clause, and the equations or inequalities in
the evolve clause.

1 In [12], the sets of input and output variables are denoted respectively by U and Y .
2 This axiom is called E2 in [12].
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A stopping condition is satisfied by a trajectory τ if the only state in which the condition holds is the last one (if such
a state there exists) of that trajectory. Hence, time cannot advance beyond the point where the stopping condition is true.
Finally, the evolve clause specifies the algebraic and differential equations that must be satisfied by all the legal trajectories
of the automaton.

4.4. Composition of Hybrid Input/Output Automata

Now, we introduce the parallel composition operator for pre-HIOAs as has been given in [12] in order to describe the
behavior of two pre-HIOAs running in parallel.
Definition 4.5. We say that two pre-HIOAsA1 andA2 are compatible if: (1) H1 ∩ H2 = ∅, (2) X1 ∩ V2 = X2 ∩ V1 = ∅ (i.e. if
H1 andH2 are compatible) and (3) O1 ∩ O2 = ∅.3
Let A1 and A2 be two compatible pre-HIOAs. The parallel composition A1‖A2 is defined to be the pre-HIOA A =

(H,U, Y , I,O)where:

• O = O1 ∪ O2
• I = (I1 ∪ I2)− O
• X = X1 ∪ X2 andW = I ∪ O = ((I1 ∪ I2)− O) ∪ O = (I1 ∪ I2) ∪ O = (I1 ∪ O1) ∪ (I2 ∪ O2) = W1 ∪W2
• Q = {x ∈ val(X) | xdX1 ∈ Q1 and xdX2 ∈ Q2}
• Θ = {x ∈ Q | xdX1 ∈ Θ1 and xdX2 ∈ Θ2}
• H = H1 ∪ H2
• for each x, x′ ∈ Q and each a ∈ H , x a−→Ax′ iff, for i = 1, 2, either (1) a ∈ Hi and xdXi

a
−→Ajx

′
dXi or (2) a /∈ Hi and

xdXi = x′dXi
• T ⊆ trajs(V ) is given by τ ∈ T iff τ ↓ V1 ∈ T1 and τ ↓ V2 ∈ T2.

In [12] it has been proven that the parallel composition of two pre-HIOAs is a pre-HIOA (cft. Theorem 6.7). Unfortunately,
axiom E1 is not necessarily preserved by composition. Thus, in order to ensure that the parallel composition of two HIOAs is
also anHIOA, the authors in [12] introduced a stronger notion of compatibility, stating that twoHIOAs are strongly compatible
if their parallel composition satisfies axiomE1. They also gave some sufficient conditions for this strong compatibility to hold.

4.5. Hiding

In this section we define an hiding operation that allows us to reclassify some output variables of an HIOA—for more
details see [12].
Definition 4.6. LetA be a pre-HIOA and O ⊆ OA. We define VarHide(O,A) to be the pre-HIOAB given by:

• OB = OA − O.
• IB = IA.
• HB = VarHide(OY ,HA), i.e. the HA that is equal toHA except thatWB = WA − O and TB = TA ↓ (VA − O).

The following lemma – proven in [12], cft. Lemma 6.13 – states that axiom E1 is preserved by hiding.
Lemma 4.7. LetA be a pre-HIOA and O ⊆ OA. IfA satisfies axiom E1 then so do VarHide(O,A).
Proposition 4.8. Let A1 = (H1, I1,O1) and A2 = (H2, I2,O2) be two compatible pre-HIOAs and O ⊆ O1 ∪ O2 such that
O ∩ I1 = O ∩ I2 = ∅. Then: VarHide(O,A1 ‖A2) = VarHide(O ∩ O1,A1) ‖VarHide(O ∩ O2,A2).
Proof. LetA = A1 ‖A2 andB = VarHide(O,A). For i = 1, 2, we denoteA′i = VarHide(O∩ Oi,Ai). The components ofA′i
will be denoted by X ′i ,Q

′

i ,Θ
′

i ,H
′

i , etc.
By Definition 4.6, for i = 1, 2 the automaton A′i is given by:

• O′i = Oi − (O ∩ Oi) = Oi − O. This is because v ∈ Oi and v /∈ O ∩ Oi imply v /∈ O and, hence, Oi − (O ∩ Oi) = Oi − O.
• I ′i = Ii. Moreover v ∈ Ii and O ∩ Ii = ∅ imply v /∈ O and hence I

′

i = Ii = Ii − O.
• The HAH ′i is equal toHi except that:
(i) W ′i = I

′

i ∪ O
′

i = (Ii − O) ∪ (Oi − O) = (Ii ∪ Oi)− O = Wi − O.
(ii) T ′i = Ti ↓ (Vi − (O∩ Oi)). Moreover, Vi = Xi ∪ Ii ∪ Oi with Xi ∩ (O∩ Oi) ⊆ Xi ∩ O ⊆ Xi ∩ (O1 ∪ O2) = ∅ (Xi ∩ Oi = ∅
because Xi and Oi are disjoint; if {i, j} ∈ {1, 2} then Xi ∩ Oj ⊆ Xi ∩ Vj = ∅ due to our compatibility assumption) and
Ii ∩ (O ∩ Oi) ⊆ Ii ∩ O = ∅. Thus Xi − (O ∩ Oi) = Xi, Ii − (O ∩ Oi) = Ii and, similarly, Xi − O = Xi and Ii − O = Ii. As a
consequence, Vi − (O ∩ Oi) = Xi ∪ Ii ∪ (Oi − (O ∩ Oi)) = Xi ∪ Ii ∪ (Oi − O) = (Xi ∪ Ii ∪ Oi)− O = Vi − O.
This allows us to conclude that τ ′i ∈ T ′i ⊆ trajs(Vi − O) iff there exists τi ∈ Ti ⊆ trajs(Vi) such that τ ′i = τi ↓
(Vi − (O ∩ Oi)) = τi ↓ (Vi − O).

By Definitions 4.5 and 4.6 we also have that:

• OB = OA − O = (O1 ∪ O2)− O = (O1 − O) ∪ (O2 − O) = O′1 ∪ O
′

2.

3 This is essentially the same condition of compatibility between pre-HIOAs given in [12]. The only changes are related to the fact that in our setting
there no external actions and, hence, no input and output actions.
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Fig. 2.Main components of a tissue: diffusion medium and cells.

Table 1
Parameter definitions for the NNR model.
VR(θ) VT(θ) VO(θ) f0x(θ) f0y(θ) f0z (θ)

22+ 19.1091θ 39+ 9.7742θ 106.4− 133.57θ2 1+ θ 1+ θ 1+ θ

f3x(θ) f3y(θ) f3z (θ) γx γy γz

1 1+ 0.5798θ 1 0.6609 0.1012 0.0721

α0
x α0

y α0
z α1

x α1
y α1

z

−0.0603 −0.0385 −0.0158 −0.0508 −0.0379 −0.0135

α2
x α2

y α2
z α3

x α3
y α3

z

0.3999 0.0459 0.0479 −0.0076 0.0266 0.0154

• IB = IA = (I1 ∪ I2) − (O1 ∪ O2) = (I1 ∪ I2) − OA = (I1 ∪ I2) − (O ∪ (OA − O)). Moreover, O ∩ (I1 ∪ I2) = ∅ implies
IB = (I1 ∪ I2)− (O ∪ (OA − O)) = (I1 ∪ I2)− (OA − O) = (I ′1 ∪ I

′

2)− (O
′

1 ∪ O
′

2) (see above).
• WB = WA − O = (W1 ∪W2)− O = (W1 − O) ∪ (W2 − O) = W ′1 ∪W

′

2.
• XB = XA = X1 ∪ X2 = X ′1 ∪ X

′

2;
• QB = QA = {x ∈ val(X) | xdXi ∈ Qi for i = 1, 2} = {x ∈ val(X ′) | xdX ′i ∈ Q

′

i for i = 1, 2};
• SimilarlyΘB = {x ∈ val(X ′) | xdX ′i ∈ Θ

′

i for i = 1, 2};
• HB = HA = H1 ∪ H2 = H ′1 ∪ H

′

2;
• τ ′ ∈ TB ⊆ trajs(V − O) iff there exists τ ∈ TA such that τ ′ = τ ↓ (V − O). We have also that τ ∈ TA ⊆ trajs(V )
iff, for i = 1, 2, τ ↓ Vi ∈ Ti iff (τ ↓ Vi) ↓ (Vi − O) = τ ↓ (Vi − O) ∈ T ′i . Thus we can conclude that τ

′
∈ TB iff

τ ′ ↓ (Vi − O) = (τ ↓ (V − O)) ↓ (Vi − O) = τ ↓ (Vi − O) ∈ T ′i for i = 1, 2.

Thus, by Definition 4.5,B = A′1 ‖A′2. �

5. Modeling cardiac tissue with HIOAs

This section is devoted to introducing the two kinds of system component (see Fig. 2) we use to model a cardiac tissue.
Indeed, in our framework a tissue is seen as the parallel composition of a diffusion medium and a collection of cells, both
modeled as HIOAs. In the following, we first introduce the automaton modeling a generic cell of the tissue and then the
automaton defining a diffusion medium.

5.1. The cells

Below we provide the definition of the automaton celli. Such a definition is given in terms of a number of parameters
and functions that may vary depending on the specific kind of cardiac cell to be modeled. In more detail, the parameters
are αkx , α

k
y, α

k
z with k ∈ {0, . . . , 3}, γx, γy, γz , rest and delay, while the functions are VT , VO, VR and f

k
x , f

k
y , f

k
z with k ∈ {0, 3}.

Except for rest and delay, these have been obtained by using curve-fitting techniques starting from the ODE-based model
(for further details, we refer the reader to [25,17]). As an example, in Table 1 we provide the value of such parameters in the
case of cardiac cells of neonatal rats (NNRs).
Parameters rest and delay are constant values that represent, respectively, the transmenbrane potential in the resting

phase and the upper time bound to the duration of the cell stimulation.

Definition 5.1. We define the i-th cell of a cardiac tissue to be the pre-HIOA celli we describe in Figs. 3–5.

The list of state variables of the automaton celli is given in Fig. 3 where, as usual, we use R>0 to denote the set of
positive real numbers and R≥0 to denote the set R>0 ∪ {0}. The input variable viin represents an external stimulus due
to the cells that surrounds the i-th one. Symmetrically, the output variable viout keeps the voltage of the i-th cell, a value
that is propagated to all its neighbors through the diffusion medium (as we will see in the next section). The variable θi is a
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Fig. 3. The celli Hybrid I/O Automaton—actions and state variables.

normalized approximation of the diastolic interval, that is the time elapsed between the end of an AP and the occurrence of
a subsequent stimulus. This is used to calculate the duration of the next AP, a duration that is proportional to the diastolic
interval. The internal variablemodei indicates the phase in which the cell is involved. Initially (i.e. in the resting phase), the
value ofmodei is zero; then it is set to 1, 2 and 3 when the cell moves, respectively, to the stimulated, upstroke and plateau
phase.
The internal variable voltagei represents the voltage of the i-th cell. As stated by Eq. (4) in Fig. 5, we obtain its value from

those of variables vix, v
i
y and v

i
z . In order to properly define the evolution over the time of the last three variables, we use

other variables – namely, β ix, β
i
y, β

i
z , s
i
x, s
i
y and s

i
z ; see Equations (1)–(3) in Fig. 5 – that take on values that are specific to each

cell phase. In particular, variables six, s
i
y and s

i
z specify whether external stimuli can contribute to the value of voltage

i or not.
If such variables are set to zero no further stimulation is possible.
We define Θi to be the set of valuations in val(Xi) that associate to each internal variable its initial value (as specified

in Fig. 3). Finally, a given x ∈ val(Xi) belongs to set of states Qi if either x ∈ Θi or the values that x associates to variables
in X̃i , {modei, clocki, θ i, β ix, β

i
y, β

i
z, s

i
x, s
i
y, s

i
z} ⊆ Xi are compatible with the execution of some discrete transition, i.e. the

values associated with such variables in x can be obtained as the result of the execution of a certain the list of statements
we use in the specification of the automaton celli discrete transitions.
Fig. 4 defines the set of discrete transitions that a cell can perform. The discrete transition labelledwith stimulatedimodels

the reaction of the cell to an external stimulus viin 6= 0 and it results in a changing of the cell from its resting phase to
the stimulated one. A stimulated cell can either perform the action upstrokei, moving to the upstroke mode, or the action
end_stimulusi, coming back to its resting phase (this kind of transition corresponds to the so-called failed initiations of the
AP. The first transition is possible only if the applied stimulus is sufficiently strong to allow the cell to reach the threshold
voltage (this happens when voltagei ≥ VT (θi)) before the termination of the stimulus. Otherwise, that is if after delay time
units voltagei < VT (θi), the cell can only perform the action end_stimulusi and come back to the resting without firing an
AP. Notice that negative values of the variable viin can stimulate the cell ‘‘negatively’’, meaning that, in all probability, such
a stimulus will give rise to a failed initiation of the AP in the cell.
The current duration of the stimulus is determined by means of the internal variable clocki that is set to zero when the

cell moves to the stimulated mode and has rate 1. It behaves as a clock variable in the sense of timed automata theory.
Once in the upstroke mode, the cell enters its ‘‘absolute refractory period’’ and, as a consequence, six, s

i
y and s

i
z are set

to zero to avoid any further stimulation. A cell remains in its upstroke mode until it reaches an overshoot voltage. Indeed
when voltagei ≥ VO(θi)) it starts the repolarization phase by performing a plateaui action. Finally, when voltagei ≤ VR(θi),
the recovery course of the cell follows the transitions to resting mode with an action restingi.
Finally, Fig. 5 describes the set of trajectories of the automaton. Each legal trajectory must satisfy both the differential

and algebraic equations (Equations (1)–(6)) and the stopping condition pstm ∨ pend_stm ∨ pups ∨ pplt ∨ prst , where we use
pstm, pend_stm, pups, pplt and prst as shorthands for the enabling conditions of the automaton celli discrete transitions, i.e.
respectively:

• modei = 0 ∧ viin 6= 0,
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Fig. 4. The celli Hybrid I/O Automaton—discrete transitions.

Fig. 5. The celli Hybrid I/O Automaton—trajectories.

• modei = 1 ∧ clocki = delay ∧ voltagei < VT (θ i),
• modei = 1 ∧ voltagei ≥ VT (θ i),
• modei = 2 ∧ voltagei ≥ VO(θ i), and
• modei = 3 ∧ voltagei ≤ VR(θ i).



3158 E. Bartocci et al. / Theoretical Computer Science 410 (2009) 3149–3165

Since, as soon as the stopping condition becomes true, time cannot further advance we have that enabled transitions
cannot be arbitrarily ignored.

Notation: if I ⊆ N is a finite nonempty set of indexes, we write ‖i∈I celli to denote the pre-HIOAwe obtain by composing
all cells whose indexes belong to I . Moreover, we often denote the components of celli by Xi,Qi,Θi, Ei, etc.

Proposition 5.2. Let I ⊆ N be a finite set of indexes and i, k ∈ I . Then:

(1) if i 6= k then celli and cellk are compatible;
(2) {celli | i ∈ I} is a finite set of pairwise compatible pre-HIOAs.

Proof. Item 2 comes directly from Item 1. Item 1 trivially follows since, if i 6= k, then the sets of actions and the sets of
variables of celli and cellk are mutually disjoint. �

The theorem below provides us with a sufficient condition for strong compatibility between a collection of HIOAs. This
result will be useful to prove that the parallel composition of a set of cells is an HIOA.

Theorem 5.3. Let {Ai | i ∈ I} be a set of pairwise compatible HIOAs such that Ii ∩ Ok = ∅ for each i, k ∈ I . Then all HIOAs in
{Ai | i ∈ I} are pairwise strongly compatible and ‖i∈I Ai is an HIOA.

Proof. This is a trivial extension (that can be proved bymeans of inductive reasonings) of a result given in [12] (cft. Theorem
6.18) stating that if A1 and A2 are two compatible HIOAs such that I1 ∩ O2 = ∅ then A1 and A2 are strongly compatible
and, hence,A1 ‖A2 is an HIOA. �

The next proposition shows two main results. First we prove that each cell is an HIOA (this we do by proving that each
automaton celli preserves axiom E1). Then we prove that also the parallel composition of a set of cells is also an HIOA.

Proposition 5.4. Let I ⊆ N be a finite set of indexes and i ∈ I . Then:

(1) celli is an HIOA;
(2) ‖i∈I celli in an HIOA.

Proof. (1) Let x ∈ Qi, υ ∈ trajs(Ii) and let us choose a trajectory τ ∈ trajs(Vi) that satisfies Equations (1)–(6) and such that
τ .fstate = x, τ ↓ Ii = υ . We can distinguish two possible cases: either τ ∈ Ti or τ /∈ Ti. If τ ∈ Ti then, since τ ↓ Ii = υ ,
axiom E1 is trivially true. Assume τ /∈ Ti and, hence, by Definition 5.1, that τ violates the stopping condition. Hence,
there are one or more states (that are not the last one) where such a condition holds. Let us consider the first of them,
i.e. let t0 be the first t ∈ dom(τ ) such that t0 < τ.ltime and τ(t0) ∈ Qi satisfies the stopping condition. Let, moreover, τ ′
be the prefix of τ defined as τ ′ = τd[0, t0].
Such a trajectory satisfies both Equations (1)-(6) – simply because theywere satisfied by τ and τ ′ ≤ τ – and the stopping
condition, i.e. τ ′ ∈ Ti. Moreover, τ ′.fstate = τ .fstate = x and τ ′ ↓ Ii ≤ τ ↓ Ii = υ . Finally, τ ′ is closed and, since the
stopping condition holds, there is some locally controlled action li ∈ Hi enabled in τ ′.lstate. Also, in this case, we can
conclude that the axiom E1 is satisfied.

(2) The statement follows by Theorem 5.3 since {celli | i ∈ I} is a set of pairwise compatible HIOAs (see Proposition 5.2-(2)
and Item (1)) such that Ii ∩ Ok = {viin} ∩ {v

k
out} = ∅ for each i, k ∈ I . �

5.2. The diffusion medium

As we have already discussed, an AP propagates as a wave along an excitable tissue. Indeed, when a cell fires an AP, this
may cause a similar AP in all the cells that surround it. The way in which an AP propagates corresponds to a parabolic PDE
(a Laplace operator) which depends on the distance between the involved cells and the associated diffusion coefficients. In
order to approximate this operator, we introduce a special kind of component, the so-called diffusion medium, that has the
responsibility to propagate electrical signals due to supra-threshold voltages along the tissue.
A diffusion medium is described by the HIOA DM(I in, Iout , w) defined below. This uses {viout | i ∈ I

out
} as set of input

variables, and {viin | i ∈ I
in
} as set of output variables; I in and Iout are two sets of indexes that represent, respectively, the

cells of which the tissue is made of and the cells we need tomanage stimuli propagation between neighboring cells. In more
detail, DM(I in, Iout , w) uses the voltages of the cells whose indexes are in Iout to ascertain the stimulus for each cell whose
index belongs to I in. As we will see in Section 5.3, in a stand-alone tissue (i.e. a tissue that has not been decomposed into
two or more interaction tissues), the sets I in and Iout coincide; but, due to the decomposition operation, we also allow I in to
be a proper subset of Iout .
The third parameter we use in the definition of a diffusion medium, i.e. w, is a distance-based weight function as defined

below.
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Fig. 6. The DM(I in, Iout , w) Hybrid I/O Automaton.

Definition 5.5 (Distance and Distance-Based Weight Function). Let I ⊆ N be a finite set of cell indexes and let p = {pi | i ∈ I}
be a set of positions where each pi is of the form 〈si, φi〉 and represents the position (in a polar coordinate system) of the i-th
cell.4 For each i, k ∈ I , the distance between the corresponding cells is then given by

d(i, k) =
√
(si cosφi − sk cosφk)2 + (si sinφi − sk sinφk)2.

We say that a function w : I × I → R≥0 is a distance-based weight function (a weight function, for short) if it satisfies the
following properties:

(1) for each i ∈ I ,w(i, i) = 0;
(2) for each i, k ∈ I ,w(i, k) = w(k, i);
(3) 0 ≤ d(i, k) < d(i′, k) ≤ d impliesw(i, k) > w(i′, k).

Intuitively, weight functions allow us to take distances between cells into account when modeling AP propagation. An
AP fired by a cell of index k is propagated to all its neighboring (i.e. all cells whose indexes are in neig(k) , {i ∈ I |w(i, k) 6=
0} = {i ∈ I | 0 < d(i, k) ≤ d}). The propagation of such an AP results in an external stimulus that, for each i ∈ neig(k), also
depends on the weightw(i, k)—see Equation (7) in Fig. 6. This, together with property (3), means that the way in which an
AP propagates along a tissue is inversely related to distance between the cells involved. Moreover, the behavior of all cells
whose indexes are not in neig(k) is not affected by an AP and hence by electrical stimuli coming from k. This is because
such cells are not near enough to the cell k. In Section 5.3, it becomes more clear how the weight functions we use in the
definition of a tissue actually depend on distances (see Definition 5.10). Here, we simply describe themain features than any
reasonable weight function based on distance must have. This will allow us to choose the right weight function depending
on the specific tissue we are modeling.

In the following, if I ′ ⊆ I , we denote with wdI ′ × I ′ the restriction of w to I ′ (i.e. for each I ′ ⊆ I , we define
wdI ′ × I ′ : I ′ × I ′ → R≥0 such that (wdI ′ × I ′)(i, k) = w(i, k) for each i, k ∈ I ′).
Now, we are ready to define the HIOA DM(I in, Iout , w).

Definition 5.6 (Diffusion Medium). Let I in, Iout ⊆ Nwith I in ⊆ Iout and letw : Iout × Iout → R≥0 be a distance-based weight
function such that, for each k ∈ Iout , there exists an i ∈ I in with w(i, k) 6= 0. The diffusion medium DM(I in, Iout , w) is the
HIOA described in Fig. 6.
It is easy to show that DM(I in, Iout , w) satisfies axiom E1. This is because, according to Equation (7) in Fig. 6, a diffusion

medium can always accept any input trajectory be letting time advance for its entire duration.

In the previous definition, Iout represents the set of the cells that are near enough to the ones in I in (this is because we
require that, for each k ∈ Iout , there exists one i ∈ I inwithw(i, k) 6= 0). Moreover, each output variable viin (that the diffusion
medium shares with the automaton celli) represents the stimulus that is propagated to the i-th cell of the tissue. Each of viin
varies over the time according to Equation (7). This states that, when calculating the value of viin, we consider differences
in electrostatic potential between the inside (i.e. viout ) and the outside (i.e. v

k
out , for each k ∈ I

out ) of the i-th cell; moreover,
we associate to each of these differences a weight given byw(i, k). Notice that only cells whose index belong to neig(i) can
contribute to the value of viin, and each of them contributes in a different way depending on the value ofw(i, k).

Proposition 5.7. Two diffusion media DM(I in1 , I
out
1 , w1) and DM(I in2 , I

out
2 , w2) are compatible iff I in1 ∩ I

in
2 = ∅.

4 We use this set of polar coordinates to represent the location of each cell in a 2D space. We recall that cells may be located in a 2D space according to
different lattices; for instance, we may have a square or a triangular space lattice, as we have introduced in [5].
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Proof. By Definition 5.6, two diffusion media are compatible iff their sets of output variables are disjoint. This is simply
because each diffusion medium has no internal actions (i.e. H = ∅) and no internal variables (i.e. X = ∅). Moreover, since
O1 = {vini | i ∈ I

in
1 } and O2 = {v

in
i | i ∈ I

in
2 }, O1 ∩ O2 = ∅ iff I

in
1 ∩ I

in
2 = ∅. �

The next proposition states that we can always compose two compatible diffusion media DM(I in1 , I
out
1 , w1) and

DM(I in2 , I
out
2 , w2) and obtain an equivalent diffusion medium DM(I in1 ∪ I

in
2 , I

out
1 ∪ I

out
2 , w) provided that we properly choose

the weight functionw.

Proposition 5.8. Let DM1 = DM(I in1 , I
out
1 , w1) and DM2 = DM(I in2 , I

out
2 , w2) be two compatible diffusion media, I in = I in1 ∪ I

in
2 ,

Iout = Iout1 ∪ I
out
2 , andw : I

out
× Iout → R≥0 a distance-based weight such that:

(1) w1 = wdIout1 × I
out
1 andw2 = wdIout2 × I

out
2 ;

(2) for each i ∈ I in and k ∈ Iout such that either (1) i ∈ I in1 and k ∈ I
out
2 − I

out
1 or (2) i ∈ I in2 and k ∈ I

out
1 − I

out
2 ,w(i, k) = 0.

Then: DM(I in, Iout , w) = DM1 ‖ DM2.

Proof. Firstweprove that for each k ∈ Iout there exists an i ∈ I in such thatw(i, k) 6= 0 (as required byDefinition 5.6). Assume
k ∈ Iout and, hence, k ∈ Iout1 or k ∈ I

out
2 . Let us only consider the former case (the latter one can be proven similarly). If k ∈ I

out
1

then, by Definition 5.6, there is an i ∈ I in1 ⊆ I
in such thatw1(i, k) 6= 0. Finally, i, k ∈ Iout1 impliesw(i, k) = w1(i, k) 6= 0, and

we are done.
In the following, we denote the components of the automataDM1,DM2 andDM(I in, Iout , w) byH1, I1,O1, etc.,H2, I2,O2,

etc. andH, I,O, etc., respectively. By Definitions 4.5 and 5.6 we have:

• O = {viin | i ∈ I
in
} = {viin | i ∈ I

in
1 } ∪ {v

i
in | i ∈ I

in
2 } = O1 ∪ O2

• I = {viout | i ∈ I
out
} = ({viout | i ∈ I

out
1 } ∪ {v

i
out | i ∈ I

out
2 })− O = (I1 ∪ I2)− O

• X = X1 ∪ X2 = ∅
• H = H1 ∪ H2 = ∅
• D = ∅ = {x ∈ val(X) | xdX1 ∈ D1 and xdX2 ∈ D2} (this is because both setsD1 andD2 are empty)
• A trajectory τ ∈ T iff, for each i ∈ I in, τ satisfies the equation

viin =
∑
k∈Iout

w(i, k) · (vkout − v
i
out).

Since i ∈ I in1 and k ∈ I
out
− Iout1 = I

out
2 − I

out
1 impliesw(i, k) = 0 andwdIout1 × I

out
1 = w1,∑

k∈Iout
w(i, k) · (vkout − v

i
out) =

∑
k∈Iout1

w1(i, k) · (vkout − v
i
out)

for each i ∈ I in1 . Similarly we can prove that, if i ∈ I
in
2 , then∑

k∈Iout
w(i, k) · (vkout − v

i
out) =

∑
k∈Iout2

w2(i, k) · (vkout − v
i
out).

We can conclude that τ ∈ T iff, for each i ∈ I in1 , it satisfies the equation

viin =
∑
k∈Iout1

w(i, k) · (vkout − v
i
out)

and, for each i ∈ I in2 , it satisfies the equation

viin =
∑
k∈Iout2

w(i, k) · (vkout − v
i
out).

That is, τ ∈ T iff τ ↓ V1 ∈ T1 and τ ↓ V2 ∈ T2. �

The next proposition shows how a diffusion medium can be equivalently given as the parallel composition of two
diffusion media. The intuition behind this result is that we can always partition the set I in (the output) into two (nonempty)
disjoint subsets I in1 and I

in
2 , and associate each of them to different diffusion medium. The set I

out (the input) is instead
partitioned into two, not necessarily disjoint, subsets Iout1 and I

out
2 . Inmore detail, we have that the set I

out
1 (and symmetrically

for Iout2 ) contains all indexes of all the cells that are near enough to those in I
in
1 . It may happen that a given index kmay belong

to both Iout1 and Iout2 . In such a case we allow the variable v
k
out to be an input variable for both the diffusion media (see Fig. 7).

Proposition 5.9. Let DM(I in, Iout , w) be a diffusion medium, I in1 ⊂ I
in, with I in1 6= ∅, and I

in
2 = I

in
− I in1 . Let, moreover:

• Iout1 = I
in
1 ∪ {k ∈ I

out
| ∃i ∈ I in1 : w(i, k) 6= 0} ⊆ I

out ,
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Fig. 7. Decomposition of a diffusion medium.

• Iout2 = I
in
2 ∪ {k ∈ I

out
| ∃i ∈ I in2 : w(i, k) 6= 0} ⊆ I

out ,
• w1 = wdIout1 × I

out
1 andw2 = wdIout2 × I

out
2 .

Then DM(I in, Iout , w) = DM(I in1 , I
out
1 , w1) ‖DM(I in2 , I

out
2 , w2).

Proof. Wewant to prove this proposition directly by Proposition 5.8. To this aimwe have to show that DM(I in1 , I
out
1 , w1) and

DM(I in2 , I
out
2 , w2) are two compatible diffusion media, that I in = I in1 ∪ I

in
2 and I

out
= Iout1 ∪ I

out
2 and, finally, that the function

w satisfies conditions (1) and (2) given in Proposition 5.8.
I in2 = I

in
− I in1 implies both I

in
1 ∩ I

in
2 = ∅ (this and Proposition 5.7 imply that the two diffusion media DM(I

in
1 , I

out
1 , w1) and

DM(I in2 , I
out
2 , w2) are compatible) and I in = I in1 ∪ I

in
2 .

Nowwe prove that Iout = Iout1 ∪ I
out
2 . The implication ‘‘⊇’’ is trivial since both I

out
1 and Iout2 are subsets of Iout . To prove the

reverse implication we observe that, if k ∈ Iout , then, by Definition 5.6, there exists an i ∈ I in such thatw(i, k) 6= 0. If i ∈ I in1
then k ∈ Iout1 ; otherwise, i.e. if i ∈ I

in
2 , k ∈ I

out
2 . In both cases we are done.

Condition (1) in Proposition 5.8 is satisfied by hypothesis. Finally, by definition of Iout1 , if k ∈ I
out
2 − I

out
1 then w(i, k) = 0

for each i ∈ I in1 . So, i ∈ I
in
1 and k ∈ I

out
2 − I

out
1 or (similarly) i ∈ I in2 and k ∈ I

out
1 − I

out
2 implyw(i, k) = 0 (i.e. also condition (2)

in Proposition 5.8 holds). �

5.3. The tissue

We conclude our model of a cardiac tissue by describing how a tissue can be obtained by composing a given number of
cells and a diffusion medium.

Definition 5.10. Let:

• I in, Iout ⊆ N be two nonempty sets of indexes with I in ⊆ Iout ;
• p = {pi | i ∈ Iout} be a set of positions in a polar coordinate system;
• d ∈ N that represents themaximumdistance between interacting cells, i.e. two cells can influence each other bymeans of
electrical stimuli iff their distance is less than or equal to d. Given such a d, we define the distance-based weight function
wd : Iout × Iout → R≥0 as follows5:

wd(i, k) =

{
D
d2
exp

(
d− d(i,k)2

d

)
if 0 < d(i, k) ≤ d

0 otherwise.

We assume that for each k ∈ Iout there exists at least an i ∈ I in with 0 < d(i, k) ≤ d and, hence, an i ∈ I in such that
wd(i, k) 6= 0.

We define the tissue T (I in, Iout , p, d) to be the automaton we obtain by first composing the set of cells whose indexes are
in I in and the diffusion medium DM(I in, Iout , wd), and then hiding all output variables in Oin = {viin | i ∈ I

in
} to the external

environment, i.e.

T (I in, Iout , p, d) , VarHide
(
Oin, (‖i∈I in celli) ‖DM(I

in, Iout , wd)
)
.

We say that two tissues T (I in1 , I
out
1 , p1, d) and T (I in1 , I

out
2 , p2, d) are compatible if the following conditions hold:

• I in1 ∩ I
in
2 = ∅;

• for each i, k such that either (1) i ∈ I in1 and k ∈ I
out
2 − I

out
1 or (2) i ∈ I in2 and k ∈ I

out
1 − I

out
2 , d(i, k) > d.

Remark 5.11. Let I in, Iout , p and d be as in Definition 5.10. Then, by Definition 4.5, the components of A =

(‖i∈I in celli) ‖DM(I
in, Iout , wd) are obtained as follows, where we denote the components of each celli, of DM(I in, Iout , wd)

andA, by Xi,Qi,Θi,Hi, etc., Xd,Qd,Θd,Hd, etc. and X,Q ,Θ,H , etc., respectively.

• O = (∪i∈I inOi) ∪ Od = {v
i
out | i ∈ I

in
} ∪ {viin | i ∈ I

in
} = {viin, v

i
out | i ∈ I

in
};

5 The Gaussian function we use for the weights is the solution of the parabolic PDE.
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• I = ((∪i∈I in Ii) ∪ Id)− O = ({v
i
in | i ∈ I

in
} ∪ {viout | i ∈ I

out
})− O = {viout | i ∈ I

out
− I in};

• H = ∪i∈I inHi, where each Hi is the set of internal actions of the automaton celli, i.e. Hi = {restingi, stimulatedi,
end_stimulusi, upstrokei, plateaui};
• x ∈ Q iff xdXi ∈ Qi, for each i ∈ I in, and xdXd ∈ Qd;
• a given li ∈ Hi is enabled in x ∈ Q iff it is enabled in xdXi ∈ Qi;
• τ ∈ T iff, for each i ∈ I in, τi = τ ↓ Vi ∈ Ti, and τd = τ ↓ Vd ∈ Td.

In Definition 5.10 we have hidden all variables that we need to manage the propagation of stimuli along the tissue (i.e.
all variables in Oin = {viin | i ∈ I

in
}) to its external environment. This allows us to render visible only the output of the cells,

i.e. only the variables viout .

Proposition 5.12. Any tissue T = T (I in, Iout , p, d) is an HIOA.

Proof. By Lemma 4.7, to prove our statement it will suffice to show that the pre-HIOA A = (‖i∈I in celli) ‖DM(I
in, Iout , wd)

preserves axiom E1. This we do following the same lines in the proof of Proposition 5.4-(1).
Below we denote the components of each celli, of DM(I in, Iout , wd) and A by Xi,Qi,Θi,Hi, etc., Xd,Qd,Θd,Hd, etc. and

X,Q ,Θ,H, etc., respectively.
Letx ∈ Q andυ ∈ traj(U) and let us choose a τ ∈ trajs(V ) such that: (1) τ .fstate = x and τ ↓ I = υ; (2) τd = τ ↓ Vd ∈ Td;

and (3) for each i ∈ I in, τi = τ ↓ Vi satisfies Equations (1)–(6) in Fig. 5. Notice that, for each i ∈ I in, Vi ∩ I = ∅ and hence
such a condition cannot affect the given input trajectory υ .
If τ ∈ T then, as in the proof of Proposition 5.4-(1), we are easily done. Assume τ /∈ T . In this case τd ∈ Td and τ /∈ T

imply (see Remark 5.11) that τi /∈ Ti for some i ∈ I in. This, together with (3), implies that if τ /∈ T then there exists one
or more i ∈ I in such that τi violates the celli stopping condition. Let us denote J = {i ∈ I in | τi violates the celli stopping
condition} and, for each i ∈ J , let t i0 be the first t ∈ dom(τi) = dom(τ ) such that t

i
0 < τi.ltime and τi(t i0) satisfies the stopping

condition. Let, moreover, t0 be the minimum of such t i0.
Then, for each i ∈ J we have that τid[0, t i0] ∈ Ti and, by the prefix closure property, τ ′i = τid[0, t0] ≤ τid[0, t i0] ∈ Ti.

Moreover, for each i ∈ J with t i0 = t0, there is some locally controlled action li ∈ Hi ⊆ H that is enabled in τ
′

i .lstate. Finally,
again by the prefix closure property, τ ′i = τid[0, t0] ≤ τi ∈ Ti, for each i ∈ I in − J and τ ′d = τdd[0, t0] ≤ τd ∈ Td.
Exactly as in the proof of Proposition 5.4-(1), we can conclude that τ ′ = τd[0, t0] ∈ T such that τ ′.fstate = τ .fstate = x,

τ ′ ↓≤ τ ↓= υ; moreover, τ ′ is closed and some locally controlled action li ∈ H is enabled in τ ′.lstate (this is because li is
enabled in τ ′i .lstate = (τ

′.lstate)dXi). Hence, axiom E1 is satisfied. �

Now we start proving some interesting properties of a tissue. Namely, our first result is that the parallel composition of
two compatible tissues is also a tissue.

Proposition 5.13. Let T1 = T (I in1 , I
out
1 , p1, d) and T2 = T (I in2 , I

out
2 , p2, d) be two compatible tissues. Let, moreover, I in = I in1 ∪ I

in
2 ,

Iout = Iout1 ∪ I
out
2 , and p = p1 ∪ p2. Then: T = T (I in, Iout , p, d) = T1 ‖ T2.

Proof. In the remainder of this proof we use the following notations:

• C1 = ‖i∈I in1 celli, C2 = ‖i∈I in2 celli and C = ‖i∈I in celli;

• Oin1 = {v
i
in | i ∈ I

in
1 }, O

in
2 = {v

i
in | i ∈ I

in
2 } and O

in
= {viin | i ∈ I

in
};

• w1 = wddIout1 × I
out
1 andw2 = wddIout2 × I

out
2 ;

• DM1 = DM(I in1 , I
out
1 , w1), DM2 = DM(I in2 , I

out
2 , w2) and, finally, DM = DM(I in, Iout , wd).

Then, by Definition 5.10, we have that T1 = VarHide
(
Oin1 , C1 ‖DM1), T2 = VarHide

(
Oin2 , C2 ‖DM2) and T =

VarHide
(
Oin, C ‖DM).

We first prove that C ‖DM = (C1 ‖DM1) ‖ (C2 ‖DM2). Since composition is both associative and commutative, we have
that (C1 ‖DM1) ‖ (C2 ‖DM2) = (C1 ‖ C2) ‖ (DM1 ‖ DM2) = C ‖ (DM1 ‖ DM2). Now we prove that DM = DM1 ‖DM2. This
comes directly from Proposition 5.8 because surew1 = wddIout1 × I

out
1 andw2 = wddIout2 × I

out
2 ; moreover, for each i, k such

that either (1) i ∈ I in1 and k ∈ I
out
2 − I

out
1 or (2) i ∈ I in2 and k ∈ I

out
1 − I

out
2 , d(i, k) > d and, hence,wd(i, k) = 0.

Now, for i = 1, 2, Oin ∩ Ii = Oin ∩ {viout | i ∈ I
out
i − I

in
i } = ∅ and O

in
∩Oi = Oin ∩ {viout , v

i
in | i ∈ I

in
i } = O

in
i (here Ii and Oi are

the sets of input and output variables of the automaton Ci ‖DMi; see Remark 5.11). Thus by Proposition 4.8 we have that

T1 ‖ T2 = VarHide
(
Oin1 , C1 ‖DM1) ‖VarHide

(
Oin2 , C2 ‖DM2)

= VarHide(Oin, (C1 ‖DM1) ‖ (C2 ‖DM2)) = VarHide((Oin, C ‖DM) = T . �

The next proposition shows themain result of this section. It proves how a tissue can be decomposed into two compatible
tissues. As we will see in Section 6, this result will permit us to significantly improve the speedup of the simulation process.
Our process of decomposition of a tissue is described in Fig. 8. It illustrates a possible decomposition of a tissuemade of eight
cells into two tissues, each of which is made of four cells. The diffusionmedium DM1 shares its input variables with the cells
of indexes in Iout = {1, 2, 3, 4, 5, 6}. Each such variable is represented by an arrow exiting from a cell and entering into the
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Fig. 8. Decomposition of tissue.

Fig. 9. Action Potential (AP) of a neonatal rat cell.

diffusionmedium. It also shares its output variables with the cells whose indexes are in I in = {1, 2, 3, 4} that represents the
cells of which the tissue T1 is made of. We represent such variables with an arrow exiting from the diffusion medium and
entering into a cell. Notice that all of them are internal to the tissue T1. Indeed the external behavior of this tissue is given
in terms of variables in {viout | i ∈ I

in
}.

Proposition 5.14. Let T = T (I in, Iout , p, d) be a tissue, and I in1 and I
in
2 be two nonempty sets that partition I

in into two disjoint
subsets. Let, moreover:

• Iout1 = I
in
1 ∪ {k ∈ I

out
| ∃i ∈ I in1 : 0 < d(i, k) ≤ d},

• Iout2 = I
in
2 ∪ {k ∈ I

out
| ∃i ∈ I in2 : 0 < d(i, k) ≤ d},

• p1 = {pi | i ∈ Iout1 } and p2 = {pi | i ∈ I
out
2 },

• T1 = T (I in1 , I
out
1 , p1, d) and T2 = T (I in2 , I

out
2 , p2, d).

Then: T = T1 ‖ T2.

Proof. Weprove this proposition by Proposition 5.13. To this aim,we have to show that the tissues T1 and T2 are compatible,
that I in = I in1 ∪ I

in
2 (this is trivially true by hypothesis), that I

out
= Iout1 ∪ I

out
2 and, finally, that p = p1 ∪ p2.

We first prove that Iout = Iout1 ∪ I
out
2 (and hence that p = p1∪p2). The implication ‘‘⊇’’ is trivial since both Iout1 and Iout2 are

subsets of Iout . On the other hand, if k ∈ Iout then, by Definition 5.10, there exists at least an i ∈ I in such that 0 < d(i, k) ≤ d.
If i ∈ I in1 then k ∈ I

out
1 ; otherwise, i.e. if i ∈ I

in
2 , k ∈ I

out
2 . In both cases we are done.
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Fig. 10. Snapshots during simulation of cardiac tissue stimulation using Hybrid I/O Automata.

It remains to prove that the tissues T1 and T2 are compatible. By hypothesis, I in1 ∩ I
in
2 = ∅. Moreover, if i ∈ I

in
1 and

k ∈ Iout2 − I
out
1 then (by definition of Iout1 ) either d(i, k) = 0 or d(i, k) > d. The former case is not possible since, if d(i, k) = 0,

then k = i ∈ I in1 ⊆ I
out
1 . As a consequence, we have that if i ∈ I

in
1 and k ∈ I

out
2 − I

out
1 then d(i, k) > d. Similarly, we can prove

that i ∈ I in2 and k ∈ I
out
1 − I

out
2 imply d(i, k) > d. Finally, by Definition 5.10, T1 and T2 are compatible. �

In other ongoing work, we are investigating the use of abstraction techniques that allow us to the learn and predict
spatiotemporal properties in networks of excitable cells. Specifically, in [16], we show that, in a network of excitable cells
represented using CLHAs, it is possible to predict the onset of spiral waves by examining the discrete structure given by the
distribution of CLHA modes.

6. Simulation of a tissue

In this subsection, we instantiate the cardiac-tissue model of Definition 5.10 to the neonatal rat (NNR) AP. Fig. 9 shows
the AP waveform for a single NNR cell. All parameters used are reported in Table 1 and are taken from [25].
Fig. 10 shows the simulation results for a cardiac tissue of 400 × 400 NNR cells, stimulated three times during the

simulation in different regions. The results of this simulation demonstrate the feasibility of HIOAs to capture and mimic
different spatiotemporal behavior of wave propagation in 2D isotropic cardiac tissue, including: normal wave propagation
along the tissue (1–150 ms); the onset of spirals (200–250 ms); the break-up of spirals into more complex spatiotemporal
patterns, indicating the transition to fibrillation (250–400ms); and the recovery of the tissue to the rest with the elimination
of all waves through electrical defibrillation (400–500 ms).
Proposition 5.14 allows us to decompose a tissue into several interacting sub-tissues whose parallel composition is

guaranteed to have the same behavior as the original tissue. This property can be used to parallelize the simulation of a tissue
by using multi-core processors with shared memory. As the Fig. 8 shows, we can split the tissue in two parts (or more) and
assign the computation of each part to a different core. We implemented a simulator, based on time-step integration, using
C++ and the OpenMP library [24] in order to distribute the computation on different cores. To test such a simulator we have
used aMac Book (MB) equippedwith an Intel Dual-CoreDuo 2,2GHz and 2Gbytes of RAM, and aMac Pro (MP) equippedwith
a 2× 3 GHz Dual-core Intel Xeon 5100 and 5 Gbytes of RAM. Table 2 shows the results of the obtained speedup comparing
the computational time of a single core with the performance of multiple cores, in an experiment of 1 s of wave propagation
and a time step of 0.005 ms.

7. Conclusions

In this paper, we have presented a new HIOA-based modeling framework for capturing the spatiotemporal behavior
of electrical waves in a 2D excitable tissue. This framework extends cellular-automata-based approaches by employing
HIOAs (instead of finite automata) to capture single-cell behavior and by factoring out the diffusion-based communication
into another HIOA. These extensions allow a better approximation, for a large variety of excitable tissues, of the nonlinear
single-cell reaction and of the possibly non-isotropic Laplacian diffusion, while still being amenable to formal analysis.
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Table 2
Speedup of 1 s simulation with a time step of 0.005 ms.
Tissue size 1-core MB (min) 2-core MB (min) Speedup 1-core MP (min) 4-core MP (min) Speedup

100× 100 41,7 23.6 1.76× 28.3 11.3 2.50×
200× 200 176.7 96.7 1.82× 136.7 50 2.73×
300× 300 403.3 224 1.80× 310 113.6 2.73×
400× 400 730 425 1.71× 561.7 213.3 2.63×

A primary benefit of using the HIOA formalism is compositionality. In particular, our decomposition result
(Proposition 5.14) allows one to hierarchically decompose a tissue composed of excitable-cell automata and the diffusion-
medium automaton into sub-tissues. This result was exploited to considerably enhance the performance of simulation via
parallelization. Compositionality is also exploited in ongoing work to devise efficient algorithms for proving spatiotemporal
properties of excitable tissue (see [16] for a discussion of various spatial logics).
HIOA models of single cells are also amenable to formal analysis. Symbolic reachability analysis is a well-established

technique in the model checking of linear hybrid systems and are now supported by several tools such as d/dt [4] and
HyTech [19]. We are interested in extending these techniques from linear to cycle-linear hybrid automata (CLHAs) so that
they canbe applied to excitable-cell phenomena. Recent progress in this direction, for the symbolic analysis of the bifurcation
and period-doubling properties of the neuron action potential, is reported in [26].
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