### David Gu<sup>1,2</sup>

<sup>1</sup>Computer Science Department Stony Brook University Yau Mathematical Sciences Center Tsinghua University

**Tsinghua University** 

David Gu Conformal Geometry

ヘロン ヘロン ヘビン ヘビン

E



◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 - 釣へで

In each cohomnologous class, there exists a unique harmonic form, which is the smoothest one in the whole class. Each 1-form is dual to a vector field, the harmonic 1-form corresponds to the vector field, which is with zero curl and zero divergence.

# Poincaré Dual



### Figure: Holomorphic 1-form

◆□ > ◆□ > ◆臣 > ◆臣 > 臣 の < @

# Poincaré Dual



Figure: Poincaré Dual

Each face in *M* corresponds to a vertex in  $\tilde{M}$ , each vertex in *M* is dual to a face in  $\tilde{M}$ , each edge in *M* corresponds to an edge in  $\tilde{M}$ .

### Theorem (Poincaré Dual)

### If M is a n-dimensional closed manifold, then

$$H_k(M,\mathbb{Z})\cong H_{n-k}(M,\mathbb{Z}), H^k(M,\mathbb{Z})\cong H^{n-k}(M,\mathbb{Z}).$$



◆□ > ◆□ > ◆三 > ◆三 > ・三 の < ⊙

# Hodge Star



Figure: Hodge Star Operator

Suppose a vertex  $v_i \in M$  is dual to a face  $\tilde{v}_i$ ,  $\sigma \in C^0(M, \mathbb{R})$ , then  ${}^*\sigma \in C^2(\tilde{M}, \mathbb{R})$ , such that

$$\sigma(v_i) = {}^*\sigma(\tilde{v}_i).$$

Suppose a face  $f_i \in M$  is dual to a vertex  $\tilde{f}_i$ ,  $\sigma \in C^2(M, \mathbb{R})$ , then  ${}^*\sigma \in C^0(\tilde{M}, \mathbb{R})$ , such that

$$\sigma(f_i) = {}^*\sigma(\tilde{f}_i).$$

An edge  $[v_i, v_j] \in M$  is adjacent to face  $f_i, f_j \in M$ . Its dual is  $[\tilde{f}_i, \tilde{f}_j] \in \tilde{M}$ . A 1-form  $\omega \in C^1(M, \mathbb{R})$ , its Hodge star  $^*\omega \in C^1(\tilde{M}, \mathbb{R})$ ,  $^*\omega([\tilde{f}_i, \tilde{f}_i]) = \omega([v_i, v_i])$ .

・ロッ ・雪 ・ ・ ヨ ・

## Operators

Exterior differential

$$d: C^k o C^{k+1}$$

Hodge star operator

\* : 
$$C^k \to C^{n-k}$$

Coexterior differentiation

$$\delta = {}^*d^*: C^k \to C^{k-1}$$

Laplace operator

$$\Delta := d\delta + \delta d : C^k \to C^k$$

◆□ > ◆母 > ◆臣 > ◆臣 > ○ 臣 の Q @

### **Definition (Inner Product)**

Suppose  $\omega_1, \omega_2 \in C^1(M, \mathbb{R})$ , then define the inner product as

$$\langle \omega_1, \omega_2 \rangle = 2 \sum_{[v_i, v_j] \in M} \omega_1([v_i, v_j]) \omega_2([v_i, v_j]).$$

#### Lemma

Suppose 
$$\omega_2 \in C^k(M,\mathbb{R})$$
,  $\langle d\omega_1, \omega_2 \rangle = (-1)^k \langle \omega_1, \delta \omega_2 \rangle$ .

◆□ → ◆□ → ◆ □ → ◆ □ → ◆ □ → ◆ ○ ◆

We call  $imgd_0$  as the exact forms,  $img\delta_2$  as co-exact forms.

Lemma

Exact forms are orthogonal to co-exact forms.

 $\textit{imgd}_0 \perp \textit{img}\delta_2$ 

#### Proof.

Let  $f \in C^0$ ,  $g \in C^2$ ,

$$\langle df, \delta g \rangle = \sum_{[v_i, v_j] \in \mathcal{M}} (f(v_j) - f(v_i)(g(f_i) - g(f_j)))$$

fix  $v_i$ , the faces surrounding  $v_i$  are  $\{f_0, f_1, \dots, f_{n-1}\}$ , then

$$\sum_{k=0}^{n} f(v_i)(g(f_k) - g(f_{k-1})) = 0$$

### Definition (Harmonic form)

Suppose  $\omega$  is a *k*-form, if  $\Delta \omega = 0$ , then  $\omega$  is called a harmonic *k*-form.

#### Lemma

A k-form  $\omega$  is harmonic, if and only if  $d\omega = 0$  and  $\delta\omega = 0$ .

#### Proof.

 $\Delta \omega = 0$ , then  $d\delta \omega = -\delta d\omega$ , because exact form is orthogonal to co-exact form, therefore  $d\delta \omega = 0$ , and  $\delta d\omega = 0$ .  $\langle d\omega, d\omega \rangle = \langle \omega, \delta d\omega \rangle = 0$ , therefore  $d\omega = 0$ . Similarly  $\delta \omega = 0$ .

・ロン ・回 と ・ ヨン

### Suppose $\tau$ is a harmonic form, then

$$\langle m{d}\omega, au 
angle = \langle \omega, \delta au 
angle = 0.$$

$$\langle \delta \omega, \tau \rangle = \langle \omega, d\tau \rangle = 0.$$

Therefore harmonic forms are orthogonal to exact forms and co-exact forms.

・ロン ・四 ・ ・ ヨン ・ ヨン

E

### Theorem (Hodge Decomposition)

$$\mathcal{C}^k = \mathit{Imgd}_{k-1} \oplus \mathit{Img}\delta_{k+1} \oplus \Delta_k$$

where  $\Delta_k$  is the space of *k*-harmonic forms.

#### Proof.

From previous arguments, it is clear that

$$(\mathit{Imgd}_{k-1})^\perp \subset \mathit{Ker}\delta_k, (\mathit{Img}\delta_{k+1})^\perp \subset \mathit{Kerd}_k$$

therefore

$$(Imgd_{k-1} \oplus Img\delta_{k+1})^{\perp} \subset Ker\delta_k \cap Kerd_k = \Delta_k.$$