Hodge Decomposition

David Gu ${ }^{1,2}$
${ }^{1}$ Computer Science Department Stony Brook University Yau Mathematical Sciences Center
Tsinghua University

Tsinghua University

Hodge Decomposition

Philosophy

In each cohomnologous class, there exists a unique harmonic form, which is the smoothest one in the whole class.
Each 1 -form is dual to a vector field, the harmonic 1 -form corresponds to the vector field, which is with zero curl and zero divergence.

Figure: Holomorphic 1-form

Poincaré Dual

Figure: Poincaré Dual

Each face in M corresponds to a vertex in \tilde{M}, each vertex in M is dual to a face in \tilde{M}, each edge in M corresponds to an edge in \tilde{M}.

Poincaré Dual

Theorem (Poincaré Dual)
If M is a n-dimensional closed manifold, then

$$
H_{k}(M, \mathbb{Z}) \cong H_{n-k}(M, \mathbb{Z}), H^{k}(M, \mathbb{Z}) \cong H^{n-k}(M, \mathbb{Z}) .
$$

Figure: Hodge Star Operator

Suppose a vertex $v_{i} \in M$ is dual to a face $\tilde{v}_{i}, \sigma \in C^{0}(M, \mathbb{R})$, then ${ }^{*} \sigma \in C^{2}(\tilde{M}, \mathbb{R})$, such that

$$
\sigma\left(v_{i}\right)={ }^{*} \sigma\left(\tilde{v}_{i}\right)
$$

Suppose a face $f_{i} \in M$ is dual to a vertex $\tilde{f}_{i}, \sigma \in C^{2}(M, \mathbb{R})$, then ${ }^{*} \sigma \in C^{0}(\tilde{M}, \mathbb{R})$, such that

$$
\sigma\left(f_{i}\right)={ }^{*} \sigma\left(\tilde{f}_{i}\right)
$$

An edge $\left[v_{i}, v_{j}\right] \in M$ is adjacent to face $f_{i}, f_{j} \in M$. Its dual is $\left[\tilde{f}_{i}, \tilde{f}_{j}\right] \in \tilde{M}$. A 1-form $\omega \in C^{1}(M, \mathbb{R})$, its Hodge star ${ }^{*} \omega \in C^{1}(\tilde{M}, \mathbb{R})$,

$$
{ }^{*} \omega\left(\left[\tilde{f}_{i}, \tilde{f}_{j}\right]\right)=\omega\left(\left[v_{i}, v_{j}\right]\right)
$$

Operators

Exterior differential

$$
d: C^{k} \rightarrow C^{k+1}
$$

Hodge star operator

$$
{ }^{*}: C^{k} \rightarrow C^{n-k}
$$

Coexterior differentiation

$$
\delta={ }^{*} d^{*}: C^{k} \rightarrow C^{k-1}
$$

Laplace operator

$$
\Delta:=d \delta+\delta d: C^{k} \rightarrow C^{k}
$$

Inner Product

Definition (Inner Product)

Suppose $\omega_{1}, \omega_{2} \in C^{1}(M, \mathbb{R})$, then define the inner product as

$$
\left\langle\omega_{1}, \omega_{2}\right\rangle=2 \sum_{\left[v_{i}, v_{j}\right] \in M} \omega_{1}\left(\left[v_{i}, v_{j}\right]\right) \omega_{2}\left(\left[v_{i}, v_{j}\right]\right)
$$

Lemma

Suppose $\omega_{2} \in C^{k}(M, \mathbb{R})$, $\left\langle d \omega_{1}, \omega_{2}\right\rangle=(-1)^{k}\left\langle\omega_{1}, \delta \omega_{2}\right\rangle$.

Hodge Decomposition

We call imgd ${ }_{0}$ as the exact forms, img δ_{2} as co-exact forms.

Lemma

Exact forms are orthogonal to co-exact forms.

$$
i m g d_{0} \perp i m g \delta_{2}
$$

Proof.

Let $f \in C^{0}, g \in C^{2}$,

$$
\langle d f, \delta g\rangle=\sum_{\left[v_{i}, v_{j}\right] \in M}\left(f\left(v_{j}\right)-f\left(v_{i}\right)\left(g\left(f_{i}\right)-g\left(f_{j}\right)\right)\right.
$$

fix v_{i}, the faces surrounding v_{i} are $\left\{f_{0}, f_{1}, \cdots, f_{n-1}\right\}$, then

$$
\sum_{k=0}^{n} f\left(v_{i}\right)\left(g\left(f_{k}\right)-g\left(f_{k-1}\right)\right)=0
$$

Hodge Decomposition

Definition (Harmonic form)

Suppose ω is a k-form, if $\Delta \omega=0$, then ω is called a harmonic k-form.

Lemma

A k-form ω is harmonic, if and only if $d \omega=0$ and $\delta \omega=0$.

Proof.

$\Delta \omega=0$, then $d \delta \omega=-\delta d \omega$, because exact form is orthogonal to co-exact form, therefore $d \delta \omega=0$, and $\delta d \omega=0$. $\langle d \omega, d \omega\rangle=\langle\omega, \delta d \omega\rangle=0$, therefore $d \omega=0$. Similarly $\delta \omega=0$.

Hodge Decomposition

Suppose τ is a harmonic form, then

$$
\begin{aligned}
& \langle d \omega, \tau\rangle=\langle\omega, \delta \tau\rangle=0 \\
& \langle\delta \omega, \tau\rangle=\langle\omega, d \tau\rangle=0
\end{aligned}
$$

Therefore harmonic forms are orthogonal to exact forms and co-exact forms.

Hodge Decomposition

Theorem (Hodge Decomposition)

$$
C^{k}=I m g d_{k-1} \oplus I m g \delta_{k+1} \oplus \Delta_{k}
$$

where Δ_{k} is the space of k-harmonic forms.

Proof.

From previous arguments, it is clear that

$$
\left(\operatorname{Imgd}_{k-1}\right)^{\perp} \subset \operatorname{Ker}_{k},\left(\operatorname{Img} \delta_{k+1}\right)^{\perp} \subset \operatorname{Kerd}_{k}
$$

therefore

$$
\left(\operatorname{lmgd} d_{k-1} \oplus \operatorname{Img} \delta_{k+1}\right)^{\perp} \subset \operatorname{Ker}_{k} \cap \operatorname{Kerd}_{k}=\Delta_{k}
$$

