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Philosophy

In each cohomnologous class, there exists a unique harmonic
form, which is the smoothest one in the whole class.
Each 1-form is dual to a vector field, the harmonic 1-form
corresponds to the vector field, which is with zero curl and zero
divergence.
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Poincaré Dual

Figure: Holomorphic 1-form
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Poincaré Dual
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Figure: Poincaré Dual

Each face in M corresponds to a vertex in M̃, each vertex in M
is dual to a face in M̃ , each edge in M corresponds to an edge
in M̃.
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Poincaré Dual

Theorem (Poincaré Dual)

If M is a n-dimensional closed manifold, then

Hk (M,Z)∼= Hn−k(M,Z),Hk (M,Z)∼= Hn−k (M,Z).
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Hodge Star
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Figure: Hodge Star Operator

Suppose a vertex vi ∈ M is dual to a face ṽi , σ ∈ C0(M,R), then
∗σ ∈ C2(M̃ ,R), such that

σ(vi) =
∗σ(ṽi ).
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Hodge Star

Suppose a face fi ∈ M is dual to a vertex f̃i , σ ∈ C2(M,R), then
∗σ ∈ C0(M̃ ,R), such that

σ(fi) =
∗σ(f̃i).

An edge [vi ,vj ] ∈ M is adjacent to face fi , fj ∈ M. Its dual is
[̃fi , f̃j ] ∈ M̃. A 1-form ω ∈ C1(M,R), its Hodge star
∗ω ∈ C1(M̃,R),

∗ω([̃fi , f̃j ]) = ω([vi ,vj ]).

David Gu Conformal Geometry



Operators

Exterior differential
d : Ck → Ck+1

Hodge star operator
∗ : Ck → Cn−k

Coexterior differentiation

δ = ∗d∗ : Ck → Ck−1

Laplace operator

∆ := dδ +δd : Ck → Ck
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Inner Product

Definition (Inner Product)

Suppose ω1,ω2 ∈ C1(M,R), then define the inner product as

〈ω1,ω2〉= 2 ∑
[vi ,vj ]∈M

ω1([vi ,vj ])ω2([vi ,vj ]).

Lemma

Suppose ω2 ∈ Ck (M,R), 〈dω1,ω2〉= (−1)k 〈ω1,δω2〉.
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Hodge Decomposition

We call imgd0 as the exact forms, imgδ2 as co-exact forms.

Lemma

Exact forms are orthogonal to co-exact forms.

imgd0 ⊥ imgδ2

Proof.

Let f ∈ C0, g ∈ C2,

〈df ,δg〉= ∑
[vi ,vj ]∈M

(f (vj)− f (vi)(g(fi)−g(fj))

fix vi , the faces surrounding vi are {f0, f1, · · · , fn−1}, then

n

∑
k=0

f (vi)(g(fk )−g(fk−1)) = 0

David Gu Conformal Geometry



Hodge Decomposition

Definition (Harmonic form)

Suppose ω is a k-form, if ∆ω = 0, then ω is called a harmonic
k-form.

Lemma

A k-form ω is harmonic, if and only if dω = 0 and δω = 0.

Proof.

∆ω = 0, then dδω =−δdω , because exact form is orthogonal
to co-exact form, therefore dδω = 0, and δdω = 0.
〈dω ,dω〉= 〈ω ,δdω〉= 0, therefore dω = 0. Similarly
δω = 0.
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Hodge Decomposition

Suppose τ is a harmonic form, then

〈dω ,τ〉= 〈ω ,δτ〉= 0.

〈δω ,τ〉= 〈ω ,dτ〉= 0.

Therefore harmonic forms are orthogonal to exact forms and
co-exact forms.
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Hodge Decomposition

Theorem (Hodge Decomposition)

Ck = Imgdk−1 ⊕ Imgδk+1⊕∆k

where ∆k is the space of k-harmonic forms.

Proof.

From previous arguments, it is clear that

(Imgdk−1)
⊥ ⊂ Kerδk ,(Imgδk+1)

⊥ ⊂ Kerdk

therefore

(Imgdk−1⊕ Imgδk+1)
⊥ ⊂ Kerδk ∩Kerdk =∆k .
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