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Teichmüller Space

Topological Quadrilateral

p1 p2

p3p4

Conformal module: h
w . The Teichmüller space is 1 dimensional.
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Teichmüller Space

Multiply Connected Domains

Conformal Module : centers and radii, with Möbius ambiguity.
The Teichmüller space is 3n−3 dimensional, n is the number of
holes.
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Conformal Module

Torus
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Exterior Calculus
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Holomorphic 1-form

Figure: Holomorphic 1-form
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Philosophy

In each cohomnologous class, there exists a unique harmonic
form, which is the smoothest one in the whole class.
Each 1-form is dual to a vector field, the harmonic 1-form
corresponds to the vector field, which is with zero curl and zero
divergence.
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Smooth manifold

S
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Figure: manifold
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Smooth Manifold

Definition (manifold)

A manifold is a topological space M covered by a set of open
sets {Uα}. A homeomorphism φα : Uα → R

n maps Uα to the
Euclidean space R

n. (Uα ,φα ) is called a coordinate chart of M.
The set of all charts {(Uα ,φα )} form the atlas of M. Suppose
Uα ∩Uβ 6= /0, then

φαβ = φβ ◦φ−1
α : φα(Uα ∩Uβ )→ φβ (Uα ∩Uβ)

is a transition map.

If all transition functions φαβ ∈ C∞(Rn are smooth, then the
manifold is a differential manifold or a smooth manifold.
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Tangent Space

Definition (Tangent Vector)

A tangent vector ξ at the point p is an association to
association to every coordinate chart (x1,x2, · · · ,xn) at p an
n-tuple (ξ 1,ξ 2, · · · ,ξ n) of real numbers, such that if
(ξ̃ 1, ξ̃ 2, · · · , ξ̃ n) is associated with another coordinate system
(x̃1, x̃2, · · · , x̃n), then it satisfies the transition rule

ξ̃ i =
n

∑
j=1

∂ x̃ i

∂x j (p)ξ
j
.

A smooth vector field ξ assigns a tangent vector for each point
of M, it has local representation

ξ (x1
,x2

, · · · ,xn) =
n

∑
i=1

ξi(x
1
,x2

, · · · ,xn)
∂

∂xi
.

{ ∂
∂xi

} represents the vector fields of the velocities of
iso-parametric curves on M. They form a basis of all vector
fields. David Gu Conformal Geometry



Push forward

Definition (Push-forward)

Suppose φ : M → N is a differential map from M to N,
γ : (−ε ,ε)→ M is a curve, γ(0) = p, γ ′(0) = v ∈ TpM, then φ ◦ γ
is a curve on N, φ ◦ γ(0) = φ(p), we define the tangent vector

φ∗(v) = (φ ◦ γ)′(0) ∈ Tφ(p)N,

as the push-forward tangent vector of v induced by φ .
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differential forms

Definition (Differential 1-form)

The tangent space TpM is an n-dimensional vector space, its
dual space Tp ∗M is called the cotangent space of M at p.
Suppose ω ∈ T ∗

p M, then ω : TpM → R is a linear function
defined on TpM, ω is called a differential 1-form at p.

A differential 1-form field has the local representation

ω(x1
,x2

, · · · ,xn) =
n

∑
i=1

ωi(x
1
,x2

, · · · ,xn)dxi ,

where {dxi} are the differential forms dual to { ∂
∂xj

}, such that

dxi(
∂

∂xj
) = δij .
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High order exterior forms

Definition (Tensor)

A tensor Θ of type (m,n) on a manifold M is a correspondence
that associates to each point p ∈ M a multi-linear map

Θp : TpM ×TpM ×·· ·×TpM∗ · · ·×T M
p → R,

where the tangent space TpM appears m times and cotangent
space T ∗

p M appears n times.

Definition (exterior m-form)

An exterior m-form is a tensor ω of type (m,0), which is skew
symmetric in its arguments, namely

ωp(ξσ(1),ξσ(2), · · · ,ξσ(m)) = (−1)σ ωp(ξ1,ξ2, · · · ,ξm)

for any tangent vectors ξ1,ξ2, · · · ,ξm ∈ TpM and any
permutation σ ∈ Sm, where Sm is the permutation group.
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differential forms

The local representation of ω in (x1,x2, · · · ,xm) is

ω = ∑
1≤i1<i2<···<im≤n

ωi1i2···imdx i1 ∧dx i2 ∧ ·· ·∧dx im = ωIdx I
,

ωI is a function of the reference point p, ω is said to be
differentiable, if each ωI is differentiable.
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Wedge product

Definition (Wedge product)

The wedge product of an m1-form and an m2-form ω2 is an
m1 +m2-form, which is defined in local coordinates by

ωI1dx I1 ∧ωI2dx I2 = ωI1ωI2dx I1dx I2 .

A coordinate free representation of wedge product is

(ω1∧ω2)(ξ1,ξ2, · · · ,ξm1+m2)= ∑
σ∈Sm1+m2

(−1)σ

m1!m2!
ω1(ξσ(1), · · · ,ξσ(m1))ω2(ξ
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Pull back

Definition (Pull back)

Suppose φ : M → N is a differentiable map from M to N, ω is an
m-form on N, then the pull-back φ∗ω is an m-form on M defined
by

(φ∗ω)p(ξ1, · · · ,ξm) = ωφ(p)(φ∗ξ1, · · · ,φ∗ξm),p ∈ M

for ξ1,ξ2, · · · ,ξm ∈ TpM, where φ∗ξj ∈ Tφ(p)N is the push forward
of ξj ∈ TpM.
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Integration

Suppose that U ⊂ R
n is an open set,

ω = f (x)dx1 ∧dx2∧ ·· ·∧dxn
,

then ∫
U

ω =
∫

U
f (x)dx1dx2 · · ·dxn

.

Suppose U ⊂ M is an open set of a manifold M, a chart
φ : U → Ω⊂ R

n, then
∫

U
ω =

∫
Ω
(φ−1)∗ω .
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Integration

Integration is independent of the choice of the charts. Let
ψ : U → ψ(U) be another chart, with local coordinates
(u1,u2, · · · ,un)

∫
φ(U)

f (x)dx1dx2 · · ·dxn =

∫
ψ(U)

f (x(u))det(
∂x i

∂u j )du1du2 · · ·dun
.
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Integration

consider a covering of M by coordinate charts {(Uα ,φα )} and
choose a partition of unity {fi}, i ∈ I, such that fi(p)≥ 0,

∑
i

fi(p)≡ 1,∀p ∈ M.

Then ωi = fiω is an n-form on M with compact support in some
Uα , we can set the integration as

∫
M

ω = ∑
i

∫
M

ωi .
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Exterior Derivative

Suppose f : M → R is a differentiable function, then the exterior
derivative of f is a 1-form,

df = ∑
i

∂ f
∂xi

dx i
.

The exterior derivative of an m-form on M is an (m+1)-form on
M defined in local coordinates by

dω = d(ωIdx I) = (dωI)∧dx I
,

where dωI is the differential of the function ωI .
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Stokes Theorem

Theorem (Stokes)

let M be an n-manifold with boundary ∂M and ω be a
differentialble (n−1)-form with compact support on M, then

∫
∂M

ω =

∫
M

dω .
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de Rham cohomology group

Let M be a differentiable manifold, Ωn(M) represent all the
n-forms on M, d be the exterior derivatives. Then the de Rham
complex

· · ·
dq−2

−−−−→ Ωq−1 dq−1

−−−−→ Ωq−1 dq−1
−−−−→ Ωq dq

−−−−→ ·· ·

The exterior differentiation operator

dm : Ωm(M)→ Ωm+1(M)

is a linear operator with the property

dm ◦dm−1 ≡ 0.
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de Rham cohomology group

Definition (de Rham cohomology group)

Suppose M is a differential manifold. The m-th de Rham
cohomology group is defined as

Hm
dR(M) =

kerdm

imgdm−1 .

Theorem

The de Rham cohomology group Hm
dR(M) is isomorphic to the

cohomology group Hm(M,R)

Hm
dR(M)∼= Hm(M,R).
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Hodge Star

Suppose M is a Riemannian manifold, we can locally find
oriented orthonormal basis of vector fields, and choose
parameterization, such that

{
∂

∂x1
,

∂
∂x2

, · · · ,
∂

∂xn
}

form an oriented orthonormal basis. let

{dx1,dx2, · · · ,dxn}

be the dual 1-form basis.

Definition (Hodge Star Operator)

The Hodge star opeartor ∗ : Ωk (M)→ Ωn−k (M) is a linear
operator

∗ (dx1 ∧dx2∧ ·· ·∧dxk) = dxk+1 ∧dxk+2 ∧ ·· ·∧dxn.
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Hodge star operator

Let σ = (i1, i2, · · · , in) be a permutation, then the hoedge star
operator

∗ (dxi1 ∧dxi2 ∧ ·· ·∧dxik ) = (−1)σ dxik+1
∧dxik+2

∧ ·· ·∧dxin .
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L2 norm

Definition

Let η ,ζ ∈ Ωk (M) are two k-forms on M, then the norm is
defined as

(η ,ζ ) =
∫

M
η ∧ ∗ζ .

Ωk (M) is a Hilbert space.
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Codifferential operator

Definition

The codifferential operator δ : Ωk(M)→ Ωk−1(M) is defined as

δ = (−1)k+1+k(n−k)∗d∗
,

where d is the exterior derivative.

Lemma

The codifferential is the adjoint of the exterior derivative, in that

(δζ ,η) = (ζ ,dη).
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Laplace Operator

Definition (Laplace Operator)

The Laplace operator ∆ : Ωk (M)→ Ωk (M),

∆= dδ +δd .

Lemma

The Laplace operator is symmetric

(∆ζ ,η) = (ζ ,∆η)

and non-negative
(∆η ,η)≥ 0.

Proof.

(∆ζ ,η) = (dζ ,dη)+ (δζ ,δη).
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Harmonic Forms

Definition (Harmonic forms)

Suppose ω ∈ Ωk (M), then ω is called a k-harmonic form, if

∆ω = 0.

Lemma

ω is a harmonic form, if and only if

dω = 0,δω = 0.

Proof.

0 = (∆ω ,ω) = (dω ,dω)+ (δω ,δω).
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Hodge Decomposition

Definition (Harmonic form group)

All harmoic k-forms form a group, denoted as Hk
∆(M).

Theorem (Hodge Decomposition)

Ωk = imgdk−1
⊕

imgδ k+1
⊕

Hk
∆(M).

Proof.

(imgd)⊥ = {ω ∈ Ωk(M)|(ω ,dη) = 0,∀η ∈ Ωk−1(M)}, because
(ω ,dη) = (δω ,η), so (imgdk−1)⊥ = kerδ k . similarly,
(imgδ k+1)⊥ = kerdk . Because imgdk−1 ⊂ kerdk ,
imgδ k+1 ⊂ kerδ k , therefore imgdk−1⊥imgδ k+1,

Ωk = imgdk−1⊕ imgδ k+1 ⊕ (imgdk−1⊕ imgδ k+1)⊥

Hk
∆ = kerdk ∩kerδ k = (imgdk−1 ⊕ imgδ k+1)⊥.
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Hodge Decomposition

suppose ω ∈ kerdk , then ω⊥imgδ k+1, then ω = α +β ,
α ∈ imgdk−1, β ∈ Hk

∆(M), define project h : kerdk → Hk
∆(M),

Theorem

Suppose ω is a closed form, its harmonic component is h(ω),
then the map:

h : Hk
dR(M)→ Hk

∆(M).

is isomorphic.

Each cohomologous class has a unique harmonic form.

David Gu Conformal Geometry


