Exterior Calculus

David Gu^{1,2}

¹Computer Science Department Stony Brook University Yau Mathematical Sciences Center Tsinghua University

Tsinghua University

David Gu Conformal Geometry

イロン イヨン イヨン イヨン

= 990

Simply Connected Domains

Conformal Geometry

Topological Quadrilateral

Conformal module: $\frac{h}{w}$. The Teichmüller space is 1 dimensional.

・ロ・・ (日・・ (日・・ 日・)

크

Multiply Connected Domains

Multiply Connected Domains

David Gu Cor

Multiply Connected Domains

David Gu Conforn

Multiply Connected Domains

Conformal Module : centers and radii, with Möbius ambiguity. The Teichmüller space is 3n-3 dimensional, *n* is the number of holes.

・ロト ・回ト ・ヨト ・ヨト

Exterior Calculus

◆□ → ◆□ → ◆ 三 → ◆ 三 → のへぐ

Figure: Holomorphic 1-form

(日) (四) (三) (三) (三) (三)

Figure: Holomorphic 1-form

Figure: Holomorphic 1-form

イロン イヨン イヨン イヨン

Figure: Holomorphic 1-form

・ロト ・回ト ・ヨト ・ヨト

Figure: Holomorphic 1-form

(日)

Figure: Holomorphic 1-form

문어 문

Figure: Holomorphic 1-form

イロン イヨン イヨン イヨン

Figure: Holomorphic 1-form

Figure: Holomorphic 1-form

・ロン ・回 と ・ ヨン・

Figure: Holomorphic 1-form

David Gu Conformal Geometry

< 注→ 注

Figure: Holomorphic 1-form

イロン イヨン イヨン イヨン

Figure: Holomorphic 1-form

・ロン ・回 と ・ ヨン・

Figure: Holomorphic 1-form

イロン イヨン イヨン イヨン

Figure: Holomorphic 1-form

イロン イヨン イヨン イヨン

In each cohomnologous class, there exists a unique harmonic form, which is the smoothest one in the whole class. Each 1-form is dual to a vector field, the harmonic 1-form corresponds to the vector field, which is with zero curl and zero divergence.

Smooth manifold

Figure: manifold

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 のへで

Definition (manifold)

A manifold is a topological space *M* covered by a set of open sets $\{U_{\alpha}\}$. A homeomorphism $\phi_{\alpha} : U_{\alpha} \to \mathbb{R}^{n}$ maps U_{α} to the Euclidean space \mathbb{R}^{n} . $(U_{\alpha}, \phi_{\alpha})$ is called a coordinate chart of *M*. The set of all charts $\{(U_{\alpha}, \phi_{\alpha})\}$ form the atlas of *M*. Suppose $U_{\alpha} \cap U_{\beta} \neq \emptyset$, then

$$\phi_{\alpha\beta} = \phi_{\beta} \circ \phi_{\alpha}^{-1} : \phi_{\alpha}(U_{\alpha} \cap U_{\beta}) \to \phi_{\beta}(U_{\alpha} \cap U_{\beta})$$

is a transition map.

If all transition functions $\phi_{\alpha\beta} \in C^{\infty}(\mathbb{R}^n \text{ are smooth, then the manifold is a differential manifold or a smooth manifold.$

ヘロン ヘヨン ヘヨン

Tangent Space

Definition (Tangent Vector)

A tangent vector ξ at the point *p* is an association to association to every coordinate chart (x^1, x^2, \dots, x^n) at *p* an n-tuple $(\xi^1, \xi^2, \dots, \xi^n)$ of real numbers, such that if $(\tilde{\xi}^1, \tilde{\xi}^2, \dots, \tilde{\xi}^n)$ is associated with another coordinate system $(\tilde{x}^1, \tilde{x}^2, \dots, \tilde{x}^n)$, then it satisfies the transition rule

$$\tilde{\xi}^i = \sum_{j=1}^n \frac{\partial \tilde{x}^j}{\partial x^j}(p)\xi^j.$$

A smooth vector field ξ assigns a tangent vector for each point of *M*, it has local representation

$$\xi(\mathbf{x}^1, \mathbf{x}^2, \cdots, \mathbf{x}^n) = \sum_{i=1}^n \xi_i(\mathbf{x}^1, \mathbf{x}^2, \cdots, \mathbf{x}^n) \frac{\partial}{\partial \mathbf{x}_i}.$$

 $\left\{\frac{\partial}{\partial x_i}\right\}$ represents the vector fields of the velocities of iso-parametric curves on *M*. They form a basis of all vector \overline{z} and \overline{z}

Definition (Push-forward)

Suppose $\phi : M \to N$ is a differential map from *M* to *N*, $\gamma : (-\varepsilon, \varepsilon) \to M$ is a curve, $\gamma(0) = \rho$, $\gamma'(0) = \mathbf{v} \in T_{\rho}M$, then $\phi \circ \gamma$ is a curve on *N*, $\phi \circ \gamma(0) = \phi(\rho)$, we define the tangent vector

$$\phi_*(\mathbf{v})=(\phi\circ\gamma)'(\mathbf{0})\in T_{\phi(\rho)}N,$$

as the push-forward tangent vector of **v** induced by ϕ .

Definition (Differential 1-form)

The tangent space T_pM is an n-dimensional vector space, its dual space $T_p * M$ is called the cotangent space of M at p. Suppose $\omega \in T_p^*M$, then $\omega : T_pM \to \mathbb{R}$ is a linear function defined on T_pM , ω is called a differential 1-form at p.

A differential 1-form field has the local representation

$$\omega(\mathbf{x}^1,\mathbf{x}^2,\cdots,\mathbf{x}^n)=\sum_{i=1}^n\omega_i(\mathbf{x}^1,\mathbf{x}^2,\cdots,\mathbf{x}^n)d\mathbf{x}_i,$$

where $\{dx_i\}$ are the differential forms dual to $\{\frac{\partial}{\partial x_i}\}$, such that

$$d\mathbf{x}_i(\frac{\partial}{\partial \mathbf{x}_j}) = \delta_{ij}.$$

・ロン ・四 ・ ・ ヨン ・ ヨン

Definition (Tensor)

A tensor Θ of type (m, n) on a manifold M is a correspondence that associates to each point $p \in M$ a multi-linear map

$$\Theta_{\rho}: T_{\rho}M \times T_{\rho}M \times \cdots \times T_{\rho}M^* \cdots \times T_{\rho}^M \to \mathbb{R},$$

where the tangent space T_pM appears *m* times and cotangent space T_p^*M appears *n* times.

Definition (exterior *m*-form)

An exterior *m*-form is a tensor ω of type (m, 0), which is skew symmetric in its arguments, namely

$$\omega_{\rho}(\xi_{\sigma(1)},\xi_{\sigma(2)},\cdots,\xi_{\sigma(m)})=(-1)^{\sigma}\omega_{\rho}(\xi_{1},\xi_{2},\cdots,\xi_{m})$$

for any tangent vectors $\xi_1, \xi_2, \dots, \xi_m \in T_p M$ and any permutation $\sigma \in S_m$, where S_m is the permutation group.

The local representation of ω in (x^1, x^2, \dots, x^m) is

$$\omega = \sum_{1 \leq i_1 < i_2 < \cdots < i_m \leq n} \omega_{i_1 i_2 \cdots i_m} dx^{i_1} \wedge dx^{i_2} \wedge \cdots \wedge dx^{i_m} = \omega_l dx^l,$$

 ω_l is a function of the reference point *p*, ω is said to be differentiable, if each ω_l is differentiable.

Definition (Wedge product)

The wedge product of an m_1 -form and an m_2 -form ω_2 is an $m_1 + m_2$ -form, which is defined in local coordinates by

$$\omega_{l_1} dx^{l_1} \wedge \omega_{l_2} dx^{l_2} = \omega_{l_1} \omega_{l_2} dx^{l_1} dx^{l_2}.$$

A coordinate free representation of wedge product is

$$(\omega_{1} \wedge \omega_{2})(\xi_{1}, \xi_{2}, \cdots, \xi_{m_{1}+m_{2}}) = \sum_{\sigma \in S_{m_{1}+m_{2}}} \frac{(-1)^{\sigma}}{m_{1}!m_{2}!} \omega_{1}(\xi_{\sigma(1)}, \cdots, \xi_{\sigma(m_{1})}) \omega_{2}(\omega_{1}) + \sum_{\sigma \in S_{m_{1}+m_{2}}} \frac{(-1)^{\sigma}}{m_{1}!m_{2}!} \omega_{1}(\xi_{\sigma(1)}, \cdots, \xi_{\sigma(m_{1})}) \omega_{2}(\omega_{1}) + \sum_{\sigma \in S_{m_{1}+m_{2}}} \frac{(-1)^{\sigma}}{m_{1}!m_{2}!} \omega_{1}(\xi_{\sigma(1)}, \cdots, \xi_{\sigma(m_{1})}) \omega_{2}(\omega_{1})$$

・ロ・・ (日・・ ほ・・ (日・)

臣

Definition (Pull back)

Suppose $\phi : M \to N$ is a differentiable map from *M* to *N*, ω is an *m*-form on *N*, then the pull-back $\phi^* \omega$ is an *m*-form on *M* defined by

$$(\phi^*\omega)_{\mathcal{P}}(\xi_1,\cdots,\xi_m)=\omega_{\phi(\mathcal{P})}(\phi_*\xi_1,\cdots,\phi_*\xi_m), \mathcal{P}\in M$$

for $\xi_1, \xi_2, \cdots, \xi_m \in T_p M$, where $\phi_* \xi_j \in T_{\phi(p)} N$ is the push forward of $\xi_j \in T_p M$.

Suppose that $U \subset \mathbb{R}^n$ is an open set,

$$\omega = f(x) dx^1 \wedge dx^2 \wedge \cdots \wedge dx^n,$$

then

$$\int_U \omega = \int_U f(x) dx^1 dx^2 \cdots dx^n.$$

Suppose $U \subset M$ is an open set of a manifold M, a chart $\phi : U \rightarrow \Omega \subset \mathbb{R}^n$, then

$$\int_U \omega = \int_{\Omega} (\phi^{-1})^* \omega.$$

E.

Integration is independent of the choice of the charts. Let $\psi: U \rightarrow \psi(U)$ be another chart, with local coordinates (u_1, u_2, \cdots, u_n)

$$\int_{\phi(U)} f(x) dx^1 dx^2 \cdots dx^n = \int_{\psi(U)} f(x(u)) det(\frac{\partial x'}{\partial u^j}) du^1 du^2 \cdots du^n.$$

consider a covering of *M* by coordinate charts $\{(U_{\alpha}, \phi_{\alpha})\}$ and choose a partition of unity $\{f_i\}, i \in I$, such that $f_i(p) \ge 0$,

$$\sum_i f_i(\boldsymbol{p}) \equiv \mathbf{1}, \forall \boldsymbol{p} \in \boldsymbol{M}.$$

Then $\omega_i = f_i \omega$ is an *n*-form on *M* with compact support in some U_{α} , we can set the integration as

$$\int_M \omega = \sum_i \int_M \omega_i$$

・ロ・・ (日・・ ほ・・ (日・)

臣

Suppose $f : M \to \mathbb{R}$ is a differentiable function, then the exterior derivative of *f* is a 1-form,

$$df = \sum_i \frac{\partial f}{\partial x_i} dx^i.$$

The exterior derivative of an *m*-form on *M* is an (m+1)-form on *M* defined in local coordinates by

$$d\omega = d(\omega_l dx^l) = (d\omega_l) \wedge dx^l$$

where $d\omega_l$ is the differential of the function ω_l .

・ロ・・ (日・・ ほ・・ (日・)

Theorem (Stokes)

let *M* be an *n*-manifold with boundary ∂M and ω be a differentialble (n-1)-form with compact support on *M*, then

$$\int_{\partial M} \omega = \int_M d\omega.$$

David Gu Conformal Geometry

・ロ> < 回> < 回> < 回> < 回> < 回>

Let *M* be a differentiable manifold, $\Omega^n(M)$ represent all the *n*-forms on *M*, *d* be the exterior derivatives. Then the de Rham complex

$$\cdots \xrightarrow{d^{q-2}} \Omega^{q-1} \xrightarrow{d^{q-1}} \Omega^{q-1} \xrightarrow{d^q-1} \Omega^q \xrightarrow{d^q} \cdots$$

The exterior differentiation operator

$$d^m: \Omega^m(M) o \Omega^{m+1}(M)$$

is a linear operator with the property

$$d^m \circ d^{m-1} \equiv 0.$$

・ロ・・ (日・・ ほ・・ (日・)

Definition (de Rham cohomology group)

Suppose M is a differential manifold. The m-th de Rham cohomology group is defined as

$$H^m_{dR}(M) = rac{kerd^m}{imgd^{m-1}}.$$

Theorem

The de Rham cohomology group $H^m_{dR}(M)$ is isomorphic to the cohomology group $H^m(M, \mathbb{R})$

 $H^m_{dR}(M) \cong H^m(M,\mathbb{R}).$

Hodge Star

Suppose M is a Riemannian manifold, we can locally find oriented orthonormal basis of vector fields, and choose parameterization, such that

$$\{\frac{\partial}{\partial x_1}, \frac{\partial}{\partial x_2}, \cdots, \frac{\partial}{\partial x_n}\}$$

form an oriented orthonormal basis. let

$$\{dx_1, dx_2, \cdots, dx_n\}$$

be the dual 1-form basis.

Definition (Hodge Star Operator)

The Hodge star opeartor $*: \Omega^k(M) \to \Omega^{n-k}(M)$ is a linear operator

$$*(dx_1 \wedge dx_2 \wedge \cdots \wedge dx_k) = dx_{k+1} \wedge dx_{k+2} \wedge \cdots \wedge dx_n$$

Let $\sigma = (i_1, i_2, \dots, i_n)$ be a permutation, then the hoedge star operator

$$*(dx_{i_1} \wedge dx_{i_2} \wedge \cdots \wedge dx_{i_k}) = (-1)^{\sigma} dx_{i_{k+1}} \wedge dx_{i_{k+2}} \wedge \cdots \wedge dx_{i_n}.$$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 → � < ♡ < ♡

Definition

Let $\eta, \zeta \in \Omega^k(M)$ are two *k*-forms on *M*, then the norm is defined as

$$(\eta,\zeta)=\int_M\eta\wedge^*\zeta.$$

 $\Omega^k(M)$ is a Hilbert space.

◆□ → ◆□ → ◆ □ → ◆ □ → ◆ □ → ◆ ○ ◆

Definition

The codifferential operator $\delta : \Omega^k(M) \to \Omega^{k-1}(M)$ is defined as

$$\delta = (-1)^{k+1+k(n-k)*} d^*,$$

where *d* is the exterior derivative.

Lemma

The codifferential is the adjoint of the exterior derivative, in that

 $(\delta\zeta,\eta) = (\zeta,d\eta).$

(日) (四) (三) (三) (三) (三)

Laplace Operator

Definition (Laplace Operator)

The Laplace operator $\Delta : \Omega^k(M) \to \Omega^k(M)$,

 $\Delta = d\delta + \delta d.$

Lemma

The Laplace operator is symmetric

 $(\Delta \zeta, \eta) = (\zeta, \Delta \eta)$

and non-negative

 $(\Delta\eta,\eta)\geq 0.$

Proof.

$$(\Delta\zeta,\eta) = (d\zeta,d\eta) + (\delta\zeta,\delta\eta).$$

Definition (Harmonic forms)

Suppose $\omega \in \Omega^k(M)$, then ω is called a *k*-harmonic form, if

 $\Delta \omega = 0.$

Lemma

 ω is a harmonic form, if and only if

 $d\omega = 0, \delta\omega = 0.$

Proof.

$$\mathbf{0} = (\Delta \omega, \omega) = (\mathbf{d}\omega, \mathbf{d}\omega) + (\delta \omega, \delta \omega).$$

E

イロン イヨン イヨン イヨン

Hodge Decomposition

Definition (Harmonic form group)

All harmoic *k*-forms form a group, denoted as $H^k_{\Delta}(M)$.

Theorem (Hodge Decomposition)

$$\Omega_k = imgd^{k-1} \bigoplus img\delta^{k+1} \bigoplus H^k_{\Delta}(M).$$

Proof.

$$\begin{split} (imgd)^{\perp} &= \{ \omega \in \Omega^{k}(M) | (\omega, d\eta) = 0, \forall \eta \in \Omega^{k-1}(M) \}, \text{ because} \\ (\omega, d\eta) &= (\delta \omega, \eta), \text{ so } (imgd^{k-1})^{\perp} = ker\delta^{k}. \text{ similarly,} \\ (img\delta^{k+1})^{\perp} &= kerd^{k}. \text{ Because } imgd^{k-1} \subset kerd^{k}, \\ img\delta^{k+1} \subset ker\delta^{k}, \text{ therefore } imgd^{k-1} \bot img\delta^{k+1}, \\ \Omega^{k} &= imgd^{k-1} \oplus img\delta^{k+1} \oplus (imgd^{k-1} \oplus img\delta^{k+1})^{\perp} \\ H_{\Delta}^{k} &= kerd^{k} \cap ker\delta^{k} = (imgd^{k-1} \oplus img\delta^{k+1})^{\perp}. \end{split}$$

suppose $\omega \in kerd^k$, then $\omega \perp img\delta^{k+1}$, then $\omega = \alpha + \beta$, $\alpha \in imgd^{k-1}$, $\beta \in H^k_{\Delta}(M)$, define project $h : kerd^k \to H^k_{\Delta}(M)$,

Theorem

Suppose ω is a closed form, its harmonic component is $h(\omega)$, then the map:

$$h: H^k_{dR}(M) \to H^k_{\Delta}(M).$$

is isomorphic.

Each cohomologous class has a unique harmonic form.

・ロン ・四 ・ ・ ヨン ・ ヨン