Exterior Calculus

David Gu ${ }^{1,2}$

${ }^{1}$ Computer Science Department
Stony Brook University
Yau Mathematical Sciences Center
Tsinghua University

Tsinghua University

Conformal Module

Simply Connected Domains

Teichmüller Space

Topological Quadrilateral

Conformal module: $\frac{h}{w}$. The Teichmüller space is 1 dimensional.

Conformal Module

Multiply Connected Domains

Conformal Module

Multiply Connected Domains

Conformal Module

Multiply Connected Domains

Teichmüller Space

Multiply Connected Domains

Conformal Module : centers and radii, with Möbius ambiguity. The Teichmüller space is $3 n-3$ dimensional, n is the number of holes.

Conformal Module

Torus

Exterior Calculus

Figure: Holomorphic 1-form

Figure: Holomorphic 1-form

Holomorphic 1-form

Figure: Holomorphic 1-form

Holomorphic 1-form

Figure: Holomorphic 1-form

Figure: Holomorphic 1-form

Figure: Holomorphic 1-form

Figure: Holomorphic 1-form

Figure: Holomorphic 1-form

Figure: Holomorphic 1-form

Philosophy

In each cohomnologous class, there exists a unique harmonic form, which is the smoothest one in the whole class.
Each 1 -form is dual to a vector field, the harmonic 1 -form corresponds to the vector field, which is with zero curl and zero divergence.

Smooth manifold

Figure: manifold

Smooth Manifold

Definition (manifold)

A manifold is a topological space M covered by a set of open sets $\left\{U_{\alpha}\right\}$. A homeomorphism $\phi_{\alpha}: U_{\alpha} \rightarrow \mathbb{R}^{n}$ maps U_{α} to the Euclidean space \mathbb{R}^{n}. $\left(U_{\alpha}, \phi_{\alpha}\right)$ is called a coordinate chart of M. The set of all charts $\left\{\left(U_{\alpha}, \phi_{\alpha}\right)\right\}$ form the atlas of M. Suppose $U_{\alpha} \cap U_{\beta} \neq \emptyset$, then

$$
\phi_{\alpha \beta}=\phi_{\beta} \circ \phi_{\alpha}^{-1}: \phi_{\alpha}\left(U_{\alpha} \cap U_{\beta}\right) \rightarrow \phi_{\beta}\left(U_{\alpha} \cap U_{\beta}\right)
$$

is a transition map.
If all transition functions $\phi_{\alpha \beta} \in C^{\infty}\left(\mathbb{R}^{n}\right.$ are smooth, then the manifold is a differential manifold or a smooth manifold.

Tangent Space

Definition (Tangent Vector)

A tangent vector ξ at the point p is an association to association to every coordinate chart $\left(x^{1}, x^{2}, \cdots, x^{n}\right)$ at p an n-tuple $\left(\xi^{1}, \xi^{2}, \cdots, \xi^{n}\right)$ of real numbers, such that if
$\left(\tilde{\xi}^{1}, \tilde{\xi}^{2}, \cdots, \tilde{\xi}^{n}\right)$ is associated with another coordinate system $\left(\tilde{x}^{1}, \tilde{x}^{2}, \cdots, \tilde{x}^{n}\right)$, then it satisfies the transition rule

$$
\tilde{\xi}^{i}=\sum_{j=1}^{n} \frac{\partial \tilde{x}^{i}}{\partial x^{j}}(p) \xi^{j} .
$$

A smooth vector field ξ assigns a tangent vector for each point of M, it has local representation

$$
\xi\left(x^{1}, x^{2}, \cdots, x^{n}\right)=\sum_{i=1}^{n} \xi_{i}\left(x^{1}, x^{2}, \cdots, x^{n}\right) \frac{\partial}{\partial x_{i}}
$$

$\left\{\frac{\partial}{\partial x_{i}}\right\}$ represents the vector fields of the velocities of iso-parametric curves on M. Thev form a basis of all vector

Definition (Push-forward)

Suppose $\phi: M \rightarrow N$ is a differential map from M to N, $\gamma:(-\varepsilon, \varepsilon) \rightarrow M$ is a curve, $\gamma(0)=p, \gamma^{\prime}(0)=\mathbf{v} \in T_{p} M$, then $\phi \circ \gamma$ is a curve on $N, \phi \circ \gamma(0)=\phi(p)$, we define the tangent vector

$$
\phi_{*}(\mathbf{v})=(\phi \circ \gamma)^{\prime}(0) \in T_{\phi(p)} N
$$

as the push-forward tangent vector of \mathbf{v} induced by ϕ.

differential forms

Definition (Differential 1-form)

The tangent space $T_{p} M$ is an n-dimensional vector space, its dual space $T_{p} * M$ is called the cotangent space of M at p. Suppose $\omega \in T_{p}^{*} M$, then $\omega: T_{p} M \rightarrow \mathbb{R}$ is a linear function defined on $T_{p} M, \omega$ is called a differential 1-form at p.

A differential 1-form field has the local representation

$$
\omega\left(x^{1}, x^{2}, \cdots, x^{n}\right)=\sum_{i=1}^{n} \omega_{i}\left(x^{1}, x^{2}, \cdots, x^{n}\right) d x_{i}
$$

where $\left\{d x_{i}\right\}$ are the differential forms dual to $\left\{\frac{\partial}{\partial x_{j}}\right\}$, such that

$$
d x_{i}\left(\frac{\partial}{\partial x_{j}}\right)=\delta_{i j}
$$

High order exterior forms

Definition (Tensor)

A tensor Θ of type (m, n) on a manifold M is a correspondence that associates to each point $p \in M$ a multi-linear map

$$
\Theta_{p}: T_{p} M \times T_{p} M \times \cdots \times T_{p} M^{*} \cdots \times T_{p}^{M} \rightarrow \mathbb{R}
$$

where the tangent space $T_{p} M$ appears m times and cotangent space $T_{p}^{*} M$ appears n times.

Definition (exterior m-form)

An exterior m-form is a tensor ω of type $(m, 0)$, which is skew symmetric in its arguments, namely

$$
\omega_{p}\left(\xi_{\sigma(1)}, \xi_{\sigma(2)}, \cdots, \xi_{\sigma(m)}\right)=(-1)^{\sigma} \omega_{p}\left(\xi_{1}, \xi_{2}, \cdots, \xi_{m}\right)
$$

for any tangent vectors $\xi_{1}, \xi_{2}, \cdots, \xi_{m} \in T_{p} M$ and any permutation $\sigma \in S_{m}$, where S_{m} is the permutation group.

differential forms

The local representation of ω in $\left(x^{1}, x^{2}, \cdots, x^{m}\right)$ is

$$
\omega=\sum_{1 \leq i_{1}<i_{2}<\cdots<i_{m} \leq n} \omega_{i_{1} i_{2} \cdots i_{m}} d x^{i_{1}} \wedge d x^{i_{2}} \wedge \cdots \wedge d x^{i_{m}}=\omega_{l} d x^{\prime}
$$

ω_{l} is a function of the reference point p, ω is said to be differentiable, if each ω_{l} is differentiable.

Wedge product

Definition (Wedge product)

The wedge product of an m_{1}-form and an m_{2}-form ω_{2} is an $m_{1}+m_{2}$-form, which is defined in local coordinates by

$$
\omega_{l_{1}} d x^{l_{1}} \wedge \omega_{l_{2}} d x^{l_{2}}=\omega_{l_{1}} \omega_{l_{2}} d x^{l_{1}} d x^{l_{2}}
$$

A coordinate free representation of wedge product is

$$
\left(\omega_{1} \wedge \omega_{2}\right)\left(\xi_{1}, \xi_{2}, \cdots, \xi_{m_{1}+m_{2}}\right)=\sum_{\sigma \in S_{m_{1}+m_{2}}} \frac{(-1)^{\sigma}}{m_{1}!m_{2}!} \omega_{1}\left(\xi_{\sigma(1)}, \cdots, \xi_{\sigma\left(m_{1}\right)}\right) \omega_{2}(
$$

Definition (Pull back)

Suppose $\phi: M \rightarrow N$ is a differentiable map from M to N, ω is an m-form on N, then the pull-back $\phi^{*} \omega$ is an m-form on M defined by

$$
\left(\phi^{*} \omega\right)_{p}\left(\xi_{1}, \cdots, \xi_{m}\right)=\omega_{\phi(p)}\left(\phi_{*} \xi_{1}, \cdots, \phi_{*} \xi_{m}\right), p \in M
$$

for $\xi_{1}, \xi_{2}, \cdots, \xi_{m} \in T_{p} M$, where $\phi_{*} \xi_{j} \in T_{\phi(p)} N$ is the push forward of $\xi_{j} \in T_{p} M$.

Suppose that $U \subset \mathbb{R}^{n}$ is an open set,

$$
\omega=f(x) d x^{1} \wedge d x^{2} \wedge \cdots \wedge d x^{n}
$$

then

$$
\int_{U} \omega=\int_{U} f(x) d x^{1} d x^{2} \cdots d x^{n}
$$

Suppose $U \subset M$ is an open set of a manifold M, a chart $\phi: U \rightarrow \Omega \subset \mathbb{R}^{n}$, then

$$
\int_{U} \omega=\int_{\Omega}\left(\phi^{-1}\right)^{*} \omega
$$

Integration

Integration is independent of the choice of the charts. Let $\psi: U \rightarrow \psi(U)$ be another chart, with local coordinates
$\left(u_{1}, u_{2}, \cdots, u_{n}\right)$
$\int_{\phi(U)} f(x) d x^{1} d x^{2} \cdots d x^{n}=\int_{\psi(U)} f(x(u)) \operatorname{det}\left(\frac{\partial x^{i}}{\partial u^{j}}\right) d u^{1} d u^{2} \cdots d u^{n}$.

Integration

consider a covering of M by coordinate charts $\left\{\left(U_{\alpha}, \phi_{\alpha}\right)\right\}$ and choose a partition of unity $\left\{f_{i}\right\}, i \in I$, such that $f_{i}(p) \geq 0$,

$$
\sum_{i} f_{i}(p) \equiv 1, \forall p \in M .
$$

Then $\omega_{i}=f_{i} \omega$ is an n-form on M with compact support in some U_{α}, we can set the integration as

$$
\int_{M} \omega=\sum_{i} \int_{M} \omega_{i} .
$$

Exterior Derivative

Suppose $f: M \rightarrow \mathbb{R}$ is a differentiable function, then the exterior derivative of f is a 1 -form,

$$
d f=\sum_{i} \frac{\partial f}{\partial x_{i}} d x^{i}
$$

The exterior derivative of an m-form on M is an $(m+1)$-form on M defined in local coordinates by

$$
d \omega=d\left(\omega_{l} d x^{\prime}\right)=\left(d \omega_{l}\right) \wedge d x^{\prime}
$$

where $d \omega_{l}$ is the differential of the function $\omega_{/}$.

Stokes Theorem

Theorem (Stokes)

let M be an n-manifold with boundary ∂M and ω be a differentialble $(n-1)$-form with compact support on M, then

$$
\int_{\partial M} \omega=\int_{M} d \omega .
$$

de Rham cohomology group

Let M be a differentiable manifold, $\Omega^{n}(M)$ represent all the n-forms on M, d be the exterior derivatives. Then the de Rham complex

$$
\cdots \xrightarrow{d^{q-2}} \Omega^{q-1} \xrightarrow{d^{q-1}} \Omega^{q-1} \xrightarrow{d^{q}-1} \Omega^{q} \xrightarrow{d^{q}} \cdots
$$

The exterior differentiation operator

$$
d^{m}: \Omega^{m}(M) \rightarrow \Omega^{m+1}(M)
$$

is a linear operator with the property

$$
d^{m} \circ d^{m-1} \equiv 0
$$

de Rham cohomology group

Definition (de Rham cohomology group)

Suppose M is a differential manifold. The m-th de Rham cohomology group is defined as

$$
H_{d R}^{m}(M)=\frac{\operatorname{kerd}^{m}}{i_{m g d^{m-1}}}
$$

Theorem

The de Rham cohomology group $H_{d R}^{m}(M)$ is isomorphic to the cohomology group $H^{m}(M, \mathbb{R})$

$$
H_{d R}^{m}(M) \cong H^{m}(M, \mathbb{R})
$$

Hodge Star

Suppose M is a Riemannian manifold, we can locally find oriented orthonormal basis of vector fields, and choose parameterization, such that

$$
\left\{\frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial x_{2}}, \cdots, \frac{\partial}{\partial x_{n}}\right\}
$$

form an oriented orthonormal basis. let

$$
\left\{d x_{1}, d x_{2}, \cdots, d x_{n}\right\}
$$

be the dual 1 -form basis.

Definition (Hodge Star Operator)

The Hodge star opeartor ${ }^{*}: \Omega^{k}(M) \rightarrow \Omega^{n-k}(M)$ is a linear operator

$$
*\left(d x_{1} \wedge d x_{2} \wedge \cdots \wedge d x_{k}\right)=d x_{k+1} \wedge d x_{k+2} \wedge \cdots \wedge d x_{n} .
$$

Hodge star operator

Let $\sigma=\left(i_{1}, i_{2}, \cdots, i_{n}\right)$ be a permutation, then the hoedge star operator

$$
*\left(d x_{i_{1}} \wedge d x_{i_{2}} \wedge \cdots \wedge d x_{i_{k}}\right)=(-1)^{\sigma} d x_{i_{k+1}} \wedge d x_{i_{k+2}} \wedge \cdots \wedge d x_{i_{n}} .
$$

Definition

Let $\eta, \zeta \in \Omega^{k}(M)$ are two k-forms on M, then the norm is defined as

$$
(\eta, \zeta)=\int_{M} \eta \wedge * \zeta
$$

$\Omega^{k}(M)$ is a Hilbert space.

Codifferential operator

Definition

The codifferential operator $\delta: \Omega^{k}(M) \rightarrow \Omega^{k-1}(M)$ is defined as

$$
\delta=(-1)^{k+1+k(n-k) *} d^{*},
$$

where d is the exterior derivative.

Lemma

The codifferential is the adjoint of the exterior derivative, in that

$$
(\delta \zeta, \eta)=(\zeta, d \eta)
$$

Laplace Operator

Definition (Laplace Operator)

The Laplace operator $\Delta: \Omega^{k}(M) \rightarrow \Omega^{k}(M)$,

$$
\Delta=d \delta+\delta d
$$

Lemma

The Laplace operator is symmetric

$$
(\Delta \zeta, \eta)=(\zeta, \Delta \eta)
$$

and non-negative

$$
(\Delta \eta, \eta) \geq 0
$$

Proof.

$$
(\Delta \zeta, \eta)=(d \zeta, d \eta)+(\delta \zeta, \delta \eta)
$$

Harmonic Forms

Definition (Harmonic forms)

Suppose $\omega \in \Omega^{k}(M)$, then ω is called a k-harmonic form, if

$$
\Delta \omega=0
$$

Lemma

ω is a harmonic form, if and only if

$$
d \omega=0, \delta \omega=0
$$

Proof.

$$
0=(\Delta \omega, \omega)=(d \omega, d \omega)+(\delta \omega, \delta \omega)
$$

Hodge Decomposition

Definition (Harmonic form group)

All harmoic k-forms form a group, denoted as $H_{\Delta}^{k}(M)$.

Theorem (Hodge Decomposition)

$$
\Omega_{k}=i m g d^{k-1} \bigoplus i m g \delta^{k+1} \bigoplus H_{\Delta}^{k}(M) .
$$

Proof.

$(i m g d)^{\perp}=\left\{\omega \in \Omega^{k}(M) \mid(\omega, d \eta)=0, \forall \eta \in \Omega^{k-1}(M)\right\}$, because $(\omega, d \eta)=(\delta \omega, \eta)$, so $\left(i m g d^{k-1}\right)^{\perp}=k e r \delta^{k}$. similarly,
(img $\left.^{k+1}\right)^{\perp}=$ kerd k. Because imgd ${ }^{k-1} \subset$ kerd k, $i m g \delta^{k+1} \subset k e r \delta^{k}$, therefore imgd ${ }^{k-1} \perp i m g \delta^{k+1}$,

$$
\Omega^{k}=i m g d^{k-1} \oplus i m g \delta^{k+1} \oplus\left(i m g d^{k-1} \oplus i m g \delta^{k+1}\right)^{\perp}
$$

$H_{\Delta}^{k}=k e r d^{k} \cap k e r \delta^{k}=\left(i m g d^{k-1} \oplus i m g \delta^{k+1}\right)^{\perp}$.

Hodge Decomposition

suppose $\omega \in$ kerd k, then $\omega \perp i m g \delta^{k+1}$, then $\omega=\alpha+\beta$, $\alpha \in i m g d^{k-1}, \beta \in H_{\Delta}^{k}(M)$, define project $h: \operatorname{kerd}^{k} \rightarrow H_{\Delta}^{k}(M)$,

Theorem

Suppose ω is a closed form, its harmonic component is $h(\omega)$, then the map:

$$
h: H_{d R}^{k}(M) \rightarrow H_{\Delta}^{k}(M)
$$

is isomorphic.
Each cohomologous class has a unique harmonic form.

