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Harmonic Map
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Surface Parameterization

Map the surfaces onto canonical parameter domains
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Spherical harmonic map
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Harmonic Map

Let (M,g) and (N,h) be Riemannian manifolds, u : M → N is a
C1 mapping.

ds2
M = ∑gαβ dxαdxβ

,ds2
N =∑hij(u(x))duiduj

.

The pull back metric of h induced by u is u∗(ds2
N) is a

symmetric bilinear form

u∗(dS2
N) = ∑

α ,β
(∑

i ,j

hij(u(x))
∂u i

∂xα
∂u j

∂xβ )dxαdxβ
.

The energy density of mapping u is defined as

|du|2 = ∑
i ,j ,α ,β

gαβ(x)hij(u(x))
∂u i

∂xα
∂u j

∂xβ .
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Energy of the mapping

Equivalently, choose an orthogonal frame field under u∗(ds2
N),

each basis vector field is of unit length under g, the dual
1-forms are {ω1,ω2, · · · ,ωn}, such that

u∗(ds2
N) =

n

∑
α=1

λα(ωα )
2
.

The the energy density of the mapping u is given by

|du|2 =
n

∑
α=1

λα .
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Harmonic Energy and Harmonic Mapping

Definition (Harmonic Energy)

The harmonic energy functional E(u) is defined as

E(u) =
∫

M
|du|2dvM ,

where dvM = (detg)
1
2 dx is the volume element of M.

Definition (Harmonic Mapping)

In the space of mappings, the critical points of E(u) are called
harmonic mappings.
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Harmonic Energy Conformal Invariant

Suppose u is a mapping from a surface (S,g) to (N,h).
Suppose g̃ = e2λ g is another metric of S, conformal to g, then

|d̃u|2 = e−2λ |du|2,
√

detg̃ = e2λ
√

detg,

Then g̃ = g. Harmonic energy is invariant under conformal
metric transformation.

Theorem

Harmonic energy only depends on the conformal structure of
the surface, independent of the choice of Riemannian metric.
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Harmnonic function

Suppose Ω⊂ R
2 is a planar domain, f : Ω→ R is a function.

The gradient of f is given by

∇f := (
∂ f
∂x

,
∂ f
∂y

)T
.

The harmonic energy of the function is given by

E(f ) :=
∫

Ω
〈∇f ,∇f 〉dxdy .

Harmonic function satisfies

∆f = (
∂ 2

∂x2 +
∂ 2

∂y2 )f = 0,

where ∆ is the Laplace-Beltrami operator.

∆= ∇ ·∇,

the divergence of gradient.
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Harmnonic function

Suppose (S,g) is a surface. We choose the isothermal
coordinates

g = e2λ(x ,y)(dx2 +dy2).

Suppose f : S → R is a function defined on S. The gradient of f
is defined as

∇gf := e−λ ∇f .

The harmonic energy density is

|df |2 = e−2λ(x ,y)[(
∂ f
∂x

)2 +(
∂ f
∂y

)2].

The area element
e2λ dxdy .

The Laplace Beltrami operator is given by

∆g := e−2λ∆
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Harmnonic function

Theorem

suppose f : S → R is a harmonic function, f is zero on the
boundary of S, f |∂S = 0, then ∆gf = 0.

Proof.

d
dε

∫

S
< ∇(f + εg),∇(f + εg)> dvS =

∫

S
< ∇f ,∇g > dvS = 0.

choose an arbitrary function g : S → R, such that the restriction
of g on ∂S is 0. ∇ · (g∇f ) =< ∇g,∇f >+g∆f .

∫

S
< ∇f ,∇g > dvS =

∫

S
∇ · (g∇f )−g∆f =

∫

∂S
g∇f −

∫

S
g∆f
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Harmonic Mapping

Suppose N is embedded in R
3, u : S → N is a harmonic

mapping, then
∆guTuN ≡ 0.

where ∆gu = (∆gu1,∆gu2,∆gu3). Namely, ∆gu is orthogonal
to the tangent plane at the target space.
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Heat Flow method

Definition (Heat flow)

Let u : S → N ⊂ R
3, the heat flow is given by

du(x , t)
dt

=−(∆gu)Tu(x)N

The heat flow method will deform a mapping to the harmonic
mapping under special normalization conditions.
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Heat Flow method

Theorem

Harmonic mapping from a genus zero closed surface to the unit
sphere must be a conformal mapping.

Proof.

Let u : S → S
2. Choose isothermal coordinates of both

surfaces, define

φ(z) = 〈
∂u
∂z

,
∂u
∂z

〉

then

φ(z) =
1
4
(|

∂u
∂x

|2 −|
∂u
∂y

|2 −〈
∂u
∂x

,
∂u
∂y

〉).

if φ(z) = 0, then the mapping is conformal.
On the other hand, ∂φ(z)

∂ z̄ = 0, then φ(z) is holomorphic.
φ(z)dz2 is globally defined, the so-called Hopf differential.
Sphere has no non-zero holomorphic quadratic differentials.
therefore φ(z) = 0. David Gu Conformal Geometry



Möbius transformation

Theorem

The conformal automorphism from a sphere to itself must be a
Möbius transformation

z →
az +b
cz +d

,ad −bc = 1,a,b,c,d ∈ C.
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Rado’s theorem

Theorem (Rado)

Let Ω⊂ R
2 is a convex domain with smooth boundary. For any

homeomorphism φ : S1 → ∂Ω, there exists a unique harmonic
mapping u : D → Ω, such that u|∂ D = φ , furthermore, u is a
diffeomorphism.
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Discrete Approximation

We use piecewise linear triangle mesh to approximate the
original surface. suppose u : M → R the harmonic energy is
given by

E(u) =
1
2 ∑

[vi ,vj ]∈M

wij(f (vi )− f (vj))
2
.

The discrete Laplace-Beltrami operator is given by

∆f (vi) = ∑
j

wij(f (vj )− f (vi)).

where wij is the cotangent formula.
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