Conformal Structure

David Gu^{1,2}

¹Computer Science Department Stony Brook University
²Yau Mathematical Sciences Center Tsinghua University

Tsinghua University

Manifold

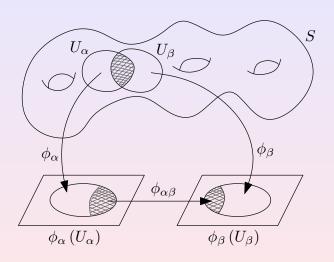
Definition (Manifold)

M is a topological space, $\{U_{\alpha}\}$ $\alpha \in I$ is an open covering of M, $M \subset \cup_{\alpha} U_{\alpha}$. For each U_{α} , $\phi_{\alpha}: U_{\alpha} \to \mathbb{R}^{n}$ is a homeomorphism. The pair $(U_{\alpha}, \phi_{\alpha})$ is a chart. Suppose $U_{\alpha} \cap U_{\beta} \neq \emptyset$, the transition function $\phi_{\alpha\beta}: \phi_{\alpha}(U_{\alpha} \cap U_{\beta}) \to \phi_{\beta}(U_{\alpha} \cap U_{\beta})$ is smooth

$$\phi_{\alpha\beta} = \phi_{\beta} \circ \phi_{\alpha}^{-1}$$

then M is called a smooth manifold, $\{(U_{\alpha}, \phi_{\alpha})\}$ is called an atlas.

Manifold



Holomorphic Function

Definition (Holomorphic Function)

Suppose $f: \mathbb{C} \to \mathbb{C}$ is a complex function, $f: x+iy \to u(x,y)+iv(x,y)$, if f satisfies Riemann-Cauchy equation

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x},$$

then *f* is a holomorphic function.

Denote

$$dz = dx + idy, d\bar{z} = dx - idy, \frac{\partial}{\partial z} = \frac{1}{2}(\frac{\partial}{\partial x} - i\frac{\partial}{\partial y}), \frac{\partial}{\partial \bar{z}} = \frac{1}{2}(\frac{\partial}{\partial x} + i\frac{\partial}{\partial y})$$

then if $\frac{\partial f}{\partial \overline{z}} = 0$, then f is holomorphic.

biholomorphic Function

Definition (biholomorphic Function)

Suppose $f: \mathbb{C} \to \mathbb{C}$ is invertible, both f and f^{-1} are holomorphic, then then f is a biholomorphic function.

Conformal Atlas

Definition (Conformal Atlas)

Suppose S is a topological surface, (2 dimensional manifold), $\mathfrak A$ is an atlas, such that all the chart transition functions $\phi_{\alpha\beta}:\mathbb C\to\mathbb C$ are bi-holomorphic, then A is called a conformal atlas.

Definition (Compatible Conformal Atlas)

Suppose S is a topological surface, (2 dimensional manifold), \mathfrak{A}_1 and \mathfrak{A}_2 are two conformal atlases. If their union $A_1 \cup A_2$ is still a conformal atlas, we say \mathfrak{A}_1 and \mathfrak{A}_2 are compatible.

Conformal Structure

The compatible relation among conformal atlases is an equivalence relation.

Definition (Conformal Structure)

Suppose S is a topological surface, consider all the conformal atlases on M, classified by the compatible relation

 $\{$ all conformal atlas $\}/\sim$

each equivalence class is called a conformal structure.

In other words, each maximal conformal atlas is a conformal structure.

Smooth map

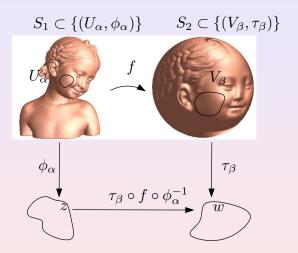
Definition (Smooth map)

Suppose $f: S_1 \to S_2$ is a map between two smooth manifolds. For each point p, choose a chart of S_1 , (U_α, ϕ_α) , $p \in U_\alpha$). The image $f(U_\alpha) \subset V_\beta$, (V_β, τ_β) is a chart of S_2 . The local representation of f

$$au_eta\circ f\circ\phi_lpha^{-1}:\phi_lpha(U_lpha) o au_eta(V_eta)$$

is smooth, then f is a smooth map.

Map between Manifolds



Tangent map

A curve on a manifold is a map $\gamma: [0,1] \to M$, $\gamma(t) \in M$. Choose a local chart $(U_{\alpha}, \phi_{\alpha})$ with local parameter (x, y), then the curve can be represented as (x(t), y(t)). The velocity vector of the curve is represented as

$$\frac{d\gamma(t)}{dt} = \frac{\partial}{\partial x}\frac{dx}{dt} + \frac{\partial}{\partial y}\frac{dy}{dt}.$$

Let $f: M \to N$ be a smooth map, then $f \circ \gamma : [0,1] \to N$ is a curve on N. Choose a local chart on N, (V_β, τ_β) with local parameters (u, v). Then the local representation of the map

$$au_{eta} \circ f \circ \phi_{lpha}^{-1} : (x,y) \to (u(x,y),v(x,y)),$$

the local representation of $f \circ \gamma$ is (u(x(t), y(t)), v(x(t), y(t))).

Tangent Map

The velocity vector of $f \circ \gamma$ is

$$\frac{df \circ \gamma}{dt} = \frac{\partial}{\partial u} \frac{du}{dt} + \frac{\partial}{\partial v} \frac{dv}{dt}$$

where

$$\begin{pmatrix} du \\ dv \end{pmatrix} = \begin{pmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \end{pmatrix} \begin{pmatrix} dx \\ dy \end{pmatrix}$$

Definition (Tangent map)

The linear map $df: T_pM \to T_{f(p)}N$, which maps a tangent vector in T_pM to a tangent vector in $T_{f(p)}N$,

$$\frac{d\gamma(t)}{dt} \rightarrow \frac{df \circ \gamma(t)}{dt}$$

is call the tangent map of f, or the push-forward map.

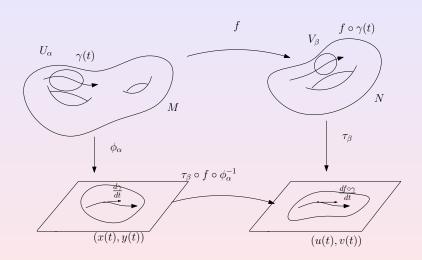
Tangent Map

We say $\frac{df \circ \gamma}{dt}$ is the push-forward of $\frac{d\gamma}{dt}$, and denote it as

$$f_*(\frac{d\gamma}{dt}) = \frac{df \circ \gamma}{dt}.$$

The local representation of the tangent map is the Jacobi matrix.

Tangent Map



Riemannian Metric

Definition (Riemannian Metric)

A Riemannian metric on a smooth manifold M is an assignment of an inner product $g_p: T_pM \times T_pM \to \mathbb{R}, \ \forall p \in M$, such that

- \mathfrak{g}_p is non-degenerate.
- **③** $\forall p \in M$, there exists local coordinates $\{x^i\}$, such that $g_{ij} = g_p(\frac{\partial}{\partial x_i}, \frac{\partial}{\partial x_i})$ are C^∞ functions.

Pull back Riemannian Metric

Definition (Pull back Riemannian metric)

Suppose $f:(M,g)\to (N,h)$ is a smooth mapping between two Riemannian manifolds, $\forall p\in M,\, f_*:T_pM\to T_{f(p)}N$ is the tangent map. The pull back metric f^*h induced by the mapping f is given by

$$f^*h(X_1,X_2) := h(f_*X_1,f_*X_2), \forall X_1,X_2 \in T_pM.$$

Local representation of the pull back metric is given by

$$\begin{pmatrix} \frac{\partial u}{\partial x} & \frac{\partial v}{\partial x} \\ \frac{\partial u}{\partial y} & \frac{\partial v}{\partial y} \end{pmatrix} \begin{pmatrix} h_{11} & h_{12} \\ h_{21} & h_{22} \end{pmatrix} \begin{pmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \end{pmatrix}$$

Conformal Structure

Definition (Conformal equivalent metrics)

Suppose g_1, g_2 are two Riemannian metrics on a manifold M, if

$$g_1 = e^{2u}g_2, u: M \to \mathbb{R}$$

then g_1 and g_2 are conformal equivalent.

Definition (Conformal Structure)

Consider all Riemannian metrics on a topological surface *S*, which are classified by the conformal equivalence relation,

$$\{$$
Riemannian metrics on $S\}/\sim$,

each equivalence class is called a conformal structure.

Relation between Riemannian metric and Conformal Structure

Definition (Isothermal coordinates)

Suppose (S,g) is a metric surface, $(U_{\alpha},\phi_{\alpha})$ is a coordinate chart, (x,y) are local parameters, if

$$g=e^{2u}(dx^2+dy^2),$$

then we say (x, y) are isothermal coordinates.

Theorem

Suppose S is a compact metric surface, for each point p, there exits a local coordinate chart (U, ϕ) , such that $p \in U$, and the local coordinates are isothermal.

Riemannian metric and Conformal Structure

Corollary

For any compact metric surface, there exists a natural conformal structure.

Definition (Riemann surface)

A topological surface with a conformal structure is called a Riemann surface.

Theorem

All compact metric surfaces are Riemann surfaces.

Exercise

Problem

Show that holomorphic functions are conformal.

Suppose $f: \mathbb{C} \to \mathbb{C}$ is a holomorphic function, w = f(z), then $dw = \frac{\partial f}{\partial z} dz$, then

$$dwd\bar{w} = \frac{\partial f}{\partial z}dz \frac{\overline{\partial f}}{\partial z}d\bar{z}$$

$$=\frac{\partial f}{\partial z}\frac{\overline{\partial f}}{\partial z}dzd\bar{z}.$$
 (1)

Exercise

Problem

Show that stereo-graphic projection is conformal.



$$\begin{cases} u = \frac{x}{1-z} \\ v = \frac{y}{1-z} \end{cases} \begin{cases} du = \frac{dx(1-z) + xdz}{(1-z)^2} \\ dv = \frac{dy(1-z) + ydz}{(1-z)^2} \end{cases}$$

also $x^2 + y^2 + z^2 = 1$, therefore xdx + ydy + zdz = 0, we get

$$du^2 + dv^2 = \frac{dx^2 + dy^2 + dz^2}{(1-z)^2}$$

Exercise

Problem

Show that conformal mapping preserves angles.

Assume $f:(M,g)\to (N,h)$ is conformal, then the pull back metric $f^*h=e^{2u}g$. Let $X_1,X_2\in T_pM$, the angle between them is θ , then

$$\cos \theta = \frac{g(X_1, X_2)}{\sqrt{g(X_1, X_1)} \sqrt{g(X_2, X_2)}}$$
 (2)

$$= \frac{e^{2u}g(X_1, X_2)}{\sqrt{e^{2u}g(X_1, X_1)}\sqrt{e^{2u}g(X_2, X_2)}}$$
(3)

$$= \frac{f^*h(X_1, X_2)}{\sqrt{f^*h(X_1, X_1)}\sqrt{f^*h(X_2, X_2)}}$$
(4)

