Discrete Surfaces

David Gu¹

¹Computer Science Department Stony Brook University ²Yau Mathematical Sciences Center Tsinghua University

Tsinghua University

David Gu Conformal Geometry

E.

Discrete Surface

◆□ → ◆□ → ◆ 三 → ◆ 三 → のへぐ

Discrete Surfaces

Acquired using 3D scanner.

Our group has developed high speed 3D scanner, which can capture dynamic surfaces 180 frames per second.

A B > A B >

Generic Surface Model - Triangular Mesh

- Surfaces are represented as polyhedron triangular meshes.
- Isometric gluing of triangles in \mathbb{E}^2 .
- Isometric gluing of triangles in $\mathbb{H}^2, \mathbb{S}^2$.

- Topology Simplicial Complex, combinatorics
- Conformal Structure Corner angles (and other variant definitions)
- Riemannian metrics Edge lengths
- Embedding Vertex coordinates

Simplicial Homology

Definition (Chain Space)

linear combination of simplices $C_k = \{\sum_i \lambda_i \sigma_i^k | \lambda_i \in \mathbb{Z}\}$

Definition (Boundary Operator on a simplex)

$$\partial_n[v_0, v_1, \cdots, v_n] = \sum_k (-1)^k [v_0, \cdots, v_{k-1}, v_{k+1}, \cdots, v_n]$$

Definition (Boundary Operator on a k-chain, $\partial_k : C_k \to C_{k-1}$)

$$\partial_k \sum_i \lambda_i \sigma_i^k = \sum_i \lambda_i \partial_k \sigma_i^k.$$

Definition (Homology Group)

$$H_k = \frac{Ker\partial_k}{Img\partial_{k+1}}$$

David Gu Conformal Geometry

Homology Basis

$H_k(M,\mathbb{Z})$ basis

The eigen vectors corresponding to 0 eigen value of the following linear operator $\Delta_k : C_k \to C_k$:

$$\Delta_k = \partial_k^T \partial_k + \partial_{k+1} \partial_{k+1}^T$$

Homology Group Basis

・ロン ・回 と ・ ヨン・

크

Simplicial Cohomology

Definition (Cochain)

A k-form ω is a linear functional on C_k , $\omega: C_k \to \mathbb{R}$.

Definition (Cochain Space)

A k-cochain space C^k is the dual space of C_k , $C^k = \{\omega | \omega k - form\}$

Definition (Discrete Exterior Differentiation)

 $d_k: C^k \to C^{k+1}$ linear operator

$$(d_k\omega)(\sigma) = \omega(\partial_k\sigma), \omega \in C^k, \sigma \in C_{k+1}.$$

Definition (Cohomology Group)

$$H^k = \frac{Kerd_k}{Imgd_{k-1}}$$

David Gu Conformal Geometry

$H^k(M,\mathbb{Z})$ basis

The eigen vectors corresponding to 0 eigen value of the following linear operator $\Delta_k : C_k \to C_k$:

$$\Delta_k = \boldsymbol{d}_k^T \boldsymbol{d}_k + \boldsymbol{d}_{k-1} \boldsymbol{d}_{k-1}^T$$

◆□ → ◆□ → ◆ □ → ◆ □ → ◆ □ → ◆ ○ ◆

Discrete Metrics

Definition (Discrete Metric)

A Discrete Metric on a triangular mesh is a function defined on the vertices, $I: E = \{all \ edges\} \rightarrow \mathbb{R}^+$, satisfies triangular inequality.

A mesh has infinite many metrics.

Discrete Curvature

Definition (Discrete Curvature)

Discrete curvature: $K : V = \{vertices\} \rightarrow \mathbb{R}^1$.

$$K(v) = 2\pi - \sum_{i} lpha_{i}, v
ot\in \partial M; K(v) = \pi - \sum_{i} lpha_{i}, v \in \partial M$$

Theorem (Discrete Gauss-Bonnet theorem)

$$\sum_{v\notin\partial M} K(v) + \sum_{v\in\partial M} K(v) = 2\pi \chi(M).$$

Discrete Metrics Determines the Curvatures

Angle and edge length relations: cosine laws $\mathbb{R}^2, \mathbb{H}^2, \mathbb{S}^2$

$$\cos I_{i} = \frac{\cos \theta_{i} + \cos \theta_{j} \cos \theta_{k}}{\sin \theta_{j} \sin \theta_{k}}$$
(1)

$$\cosh I_{i} = \frac{\cosh \theta_{i} + \cosh \theta_{j} \cosh \theta_{k}}{\sinh \theta_{j} \sinh \theta_{k}}$$
(2)

$$1 = \frac{\cos \theta_{i} + \cos \theta_{j} \cos \theta_{k}}{\sin \theta_{j} \sin \theta_{k}}$$
(3)

David Gu Conformal Geometry

Definition (Edge Weight)

Given an edge $[v_i, v_j]$ adjacent to two faces $[v_i, v_j, v_k]$ and $[v_j, v_i, v_l]$, then the edge weight is defined as

$$w_{ij} = \cot \theta_{ij}^k + \cot \theta_{ji}^l.$$

Given a discrete function $f: V \to \mathbb{R}$,

$$\Delta f(\mathbf{v}_i) = \sum_j w_{ij}(f(\mathbf{v}_j) - f(\mathbf{v}_i)).$$

Definition (ε -net)

Given a smooth metric surface *S*, a point set $V \subset S$ is called an ε -net, if $\forall p \in S$, the geodesic disk D_p with radius ε , there must be at least one point $q \in V$.

Definition (Geodesic Delaunay Triangulation)

Suppose *S* is a metric surface, T is a triangulation, such that all edges are geodesics, and each geodesic circle through the three vertices of each face doesn't contain the fourth vertex.

Theorem

Given a compact metric surface, with an ε -net, if ε is small enough, the geodesic Delaunay triangulation exists.

・ロト ・回ト ・ヨト ・ヨト

Closest Point Mapping

Given a compact metric surface *S*, one can design a random sample set, which is an ε -net, and compute a geodesic Delaunay triangulation. Then, approximate the surface with piecewise Euclidean triangle mesh *M*. If the original surface is embedded in \mathbb{R}^3 , then if ε is small enough, then *M* is contained in a tubular neighborhood of *S*.

Definition (Closest Point Mapping)

 $\forall p \in M$, if ε is small enough, $\exists ! q \in S$, such that

$$d(p,q) = \min_{q \in S} d(p,q).$$

The mapping $h: p \rightarrow q$ is called the closest point mapping.

Theorem

If ε is small enough, the closest point mapping is a homeomorphism.

Closest Point Mapping

Suppose *p* is in the tubular neighborhood of *S*, h(p) is the closest point on *S*. Fixing a point q_2 on the surface, then $h^{-1}(q_2)$ is a curve orthogonal to the surface. This gives a parameterization of the tubular neighborhood. If the sample density is high enough, then the mesh is a section of the tubular neighborhood (normal bundle of the surface.)

(ロ) (同) (E) (E)

Theorem (Convergence Analysis)

Let *M* be the piecewise linear discrete surface induced by an ε -net on a compact metric surface (S, \mathbf{g}_S) , the mesh has induced Euclidean metric \mathbf{g}_M if ε is small enough, then $h^{-1}: S \to M$, induces the pull back metric $(h^{-1})^* g_M$ converges to \mathbf{g}_s .

・ロト < 回ト < 国ト < 国ト < 国 ・ < のへの