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Abstract

3D surface classification is a fundamental problem in com-
puter vision and computational geometry. Surfaces can be
classified by different transformation groups. Traditional
classification methods mainly use topological transforma-
tion groups and Euclidean transformation groups. This pa-
per introduces a novel method to classify surfaces by con-
formal transformation groups. Conformal equivalent class
is refiner than topological equivalent class and coarser than
isometric equivalent class, making it suitable for practical
classification purposes. For general surfaces, the gradient
fields of conformal maps form a vector space, which has
a natural structure invariant under conformal transforma-
tions. We present an algorithm to compute this conformal
structure, which can be represented as matrices, and use it
to classify surfaces. The result is intrinsic to the geometry,
invariant to triangulation and insensitive to resolution.To
the best of our knowledge, this is the first paper to classify
surfaces with arbitrary topologies by global conformal in-
variants. The method introduced here can also be used for
surface matching problems.

1. Introduction
3D surface classification and matching are fundamental
problems in computer vision and computational geometry.
Recent developments in modeling and digitizing techniques
have led to an increasing accumulation of 3D models. This
has highlighted the need for an efficient 3D object searching
technique in a data set.

Many methods have been developed based on the topo-
logical and geometric features of the surfaces in order to
describe shapes. In general, all the methods treat the sur-
face as a 2D manifold with a metric structure embedded in
R3.

In this paper, we view the surfaces from a completely
novel viewpoint: treating them as Riemann surfaces with
conformal structures. A Riemann surface is a surface cov-
ered by holomorphic coordinate charts. The conformal

structure can be represented as matrices and is invariant un-
der conformal transformations.

Compared to other surface classification methods, con-
formal classification has some advantages. It has a sound
theoretical basis. Conformal equivalent classes are much
refiner than the topological equivalent classes and much
coarser than the isometric classes. The conformal structures
are intrinsic to the geometry, independent of triangulation,
insensitive to resolution and local features, and robust to
noises. Also, conformal invariants are concise and efficient
to compute, and can be used as search keys conveniently.
Hence conformal classification is more suitable for practi-
cal surface classification problems.

Conformal invariants can also be used for general surface
matching problems. For many surface matching problems
based on geometric features, conformal invariants can offer
sufficient information to differentiate the different surfaces.

To the best of our knowledge, although conformal struc-
ture is well known, we are the first group to systematically
use it for surface classification problems.

We introduce previous work and the theoretic back-
ground in the following part of this section, followed by
detailed explanation of the algorithms in Section 2. Our
surface classification method is introduced in Section 3. Ex-
perimental results are reported in Section 4. Finally, a brief
summary and conclusion appears in Section 5, followed by
a discussion of topics for future work in Section 6.

1.1 Previous work

3D shape classification and recognition is a core problem in
computer vision. Due to its difficult boundary parameter-
ization and high dimension, 2D shape classification meth-
ods can not be easily extended to 3D shape classification
problems. To develop a 3D shape classification method,
which makes use of 3D object topological and geometric
features that is independent of tessellation and resolution,
becomes desirable. Roughly, the current 3D shape classifi-
cation methods fall into the following categories.
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1. Statistical properties based methods. The simplest ap-
proach represents objects with feature vectors in a mul-
tidimensional space where the axes encode global ge-
ometric properties. Ankerst et al. [?] proposed shape
histogram decomposing shells and sectors around a
model’s centroid. Osada et al. [?] represented shapes
with probability distributions of geometric properties
computed for points randomly sampled on an object’s
surface. However, these statistical methods are not
discriminating enough to make subtle distinctions be-
tween shapes.

2. Topology based methods. Hilaga et al. [?] computed
3D shape similarity by comparing Multiresolutional
Reeb Graphs(MRGs) which encodes the skeletal and
topological structure at various levels of resolution.
The MRG is constructed using a continuous function
on the 3D shape, preferably a function of geodesic dis-
tance. These methods can not describe the geometric
distinctions.

3. Geometry based methods. Novotni et al. [?] describe
a method based on calculating a volumetric error be-
tween one object and a sequence of offset hulls of
the other object. Tangelder et al. [?] represent the
3D shape by a signature representing a weighted point
set. A shape similarity measurement based on weight
transportation is used to compute the similarity be-
tween two shapes. Funkhouser et al. [?] developed a
3D matching algorithm that uses spherical harmonics
to compute discriminating similarity measures. Kazh-
dan et al.[?] introduced a reflective symmetry descrip-
tor that represents a measure of reflective symmetry
for an arbitrary 3D model for all planes through the
model’s center of mass. These methods take into ac-
count of the embedding of the geometric shapes. The
shape descriptors are respented as functions, incon-
vient for searching. The classifications are too restric-
tive also.

1.2 Theoretic background

The algorithms introduced in this paper are based on the
theories of Riemann surfaces, especially the holomorphic
one-forms and period matrices as introduced in [?, ?]. We
treat surfaces as Riemann surfaces, and compute their con-
formal structures.

A conformal mapis a map which only scales the first
fundamental form, hence preserving angles. If a mapping
f : M1 → M2 is conformal, whereM1 andM2 are two
surfaces, suppose(u1, u2) are local parameters and the first
fundamental form ofM1 is ds2 =

∑
ij gijduiduj , then the

first fundamental form onM2 induced byf is

f∗gij(u
1, u2) = λ(u1, u2)gij(u

1, u2). (1)

Figure 1 illustrates a conformal map from a female face
surface to a square. All the rights angles on the texture are
preserved on the surface, which is shown in (c) and (d).

Two surfaces are calledconformal equivalentif there ex-
ists a conformal bijection between them. Conformal equiv-
alent surfaces share the sameconformal invariants, which
can be represented as a matrix.

Figure 2 shows two genus one surfaces. Although
they are topologically equivalent, they are not conformally
equivalent. Each torus can be cut open and conformally
mapped to a planar parallelogram. The shape of this paral-
lelogram indicates the conformal equivalent class. We use
the acute angle (right angle in this case) of the parallelogram
and the length ratio between the two adjacent edges to rep-
resent the conformal invariants of the genus one surfaces,
we call themshape factors. From (b) and (d), it is clear that
the two tori have different shape factors. Hence conformal
classification is refiner than topological classification.

For higher genus surfaces, the conformal invariants are
more complicated. Basically, each handle of the surface
can be cut open and conformally mapped to a parallelogram
with different shapes. Figure 4 demonstrates a genus three
surface, where each handle is conformally mapped to a par-
allelogram. The shapes of the three parallelograms are the
conformal invariants. The rigorous representation of con-
formal invariants of a high genus surface, throughperiod
matrices, is explained below.

If a surface is mapped to the complex plane, and the map-
ping is conformal everywhere on the surface, then we call
the complex gradient vector field of the mapping aholomor-
phic 1-form. All the holomorphic 1-forms on the surface
form a real vector space, which we callholomorphic differ-
entials. The dimension of the holomorphic differentials is
equal to two times the number of genus.

All the closed curves on the surface form a group in the
sense that they can be duplicated, merged and split. Two
closed curves arehomologous equivalentif they together
bound a 2D surface patch. The group of all the homologous
equivalent classes is called thehomology group.

Let M be a closed surface of genusg, and B =
{e1, e2, . . . , e2g} be an arbitrary basis of its homology
group. We define the entries of theintersection matrixC
of B as

cij = −ei · ej (2)

where the dot denotes the number of intersections, counting
+1 when the direction of the cross product of the tangent
vectors ofei andej at the intersection point is consistent
with the normal direction,−1 otherwise.

A holomorphic basisB∗ = {ω1, ω2, . . . , ω2g} is defined
to be dual ofB if

Re

∫

ei

ωj = cij . (3)
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(a) Original Surface (b) Conformal map to the plane (c) Checkerboard texture (d) Texture mapped surface
Figure 1: Conformal mapping. The original surface is a real human face (a), which is conformally mapped to a square (b). A
checker board texture (c) is mapped back to the face. All the right angles on the texture are preserved on (d).

Define matrixS as having entries

Im

∫

ei

ωj = sij . (4)

The matrixR defined as

CR = S (5)

satisfiesR2 = −I, whereI is the identity matrix. After
H.Weyl [?] and C.L.Siegel [?], R is called theperiod matrix
of M with respect to the homology basisB.

The matrices(R, C) determine the conformal equivalent
class ofM in the following sense: For two surfacesM1

andM2 with (R1, C1) and(R2, C2) respectively,M1 and
M2 are conformal equivalent if and only if there exists an
integer matrixN such that

N−1R1N = R2; N
T C1N = C2. (6)

We call(R, C) theconformal structureof M .
In the following sections, we will introduce a method

to compute the shape factors for genus one surfaces, and
(R, C) for higher genus surfaces, and use them to classify
surfaces.

2 Computing Conformal Invariants

In this section, we assume inputs to our algorithm are non-
zero genus triangular meshes and introduce a method to
compute the holomorphic differential group and homology
group. The method is improved from the algorithm intro-
duced in [?].

Let K be a simplicial complex whose topological real-
ization |K| is homeomorphic to a compact 2-dimensional
manifold. Suppose there is a piecewise linear embedding

F : |K| → R3.

The pair(K, F ) is called a triangular mesh and denoted as
M .

2.1 Computing homology

SupposeM is a triangular mesh, we use[u, v], [u, v, w] to
represent its one and two dimensional simplices. We define
chain spaces as the following:

CpK = {
∑

αiσ
i
p|αi ∈ Z}, p = 0, 1, 2,

whereσi
p’s arep dimensional simplices inK. Therefore,

the linear spaceC2K is the space representing all the sur-
face patches onM , C1K is the the space representing all
the curves onM , andC0K is the space representing all the
points onM . The boundary operators are linear mappings
∂p : CpK → Cp−1K:

∂p(
∑

i

αiσ
i
p) =

∑

i

αi∂pσ
i
p, p = 1, 2.

The boundary operators defined on each simplex are as fol-
lows:

∂2([u, v, w]) = [u, v] + [v, w] + [w, u]

where[u, v, w] is a face,[u, v], [v, w] and[w, u] are its three
edges with consistent orientation. Therefore,∂2 is an op-
eration that returns the boundary of a surface patch.∂1 is
defined in a similar way.∂2 and∂1 are linear operators and
can be represented as integer matrices with elements 0, 1 or
-1.

The kernel space of∂1 is the set of all closed curves,
since closed curves do not have boundaries. The image
space of∂2 is the set of all surface patch boundaries.

The homology group is defined as the quotient space in
[?]

H1(M, Z) =
ker∂1

img∂2
.

The homology bases are the eigenvectors of the kernel space
of the linear operatorL : C1K → C1K:

L = ∂T
1 ∂1 + ∂2∂

T
2 .

L is symmetric, the eigenvectors for the zero eigenvalue are
the basis ofH1(M, Z). SupposeB = {e1, e2, · · · , e2g} is a

3



(a) Torus one (b) Conformal map to (c) Torus two (d) Conformalmap to
a parallelogram a parallelogram

Figure 2: Topological equivalence but not conformal equivalence. The two tori (a) and (c) are topologically equivalent, but
not conformally equivalent. Because they conformally map to planar parallelograms with different shapes.

(a) Real part of (c) (b) Imaginary part of (c) (c) Gradient field of a (d) Texture mapping
conformal map generated by (c)

Figure 3: Holomorphic 1-form is a complex gradient field of a conformal map from the surface to the complex plane. (c)
illustrates a holomorphic 1-form. (a) is the integration curves of the real part of (c), (b) is the integration curves of the
imaginary part of (c). (d) visualizes the holomorphic 1-form by a texture mapping.

set of homology basis, the intersection matrixC is a skew-
symmetric matrix. In order to simplify the classification
process, we can make the homology basis a canonical one
B̃, such that̃B = {a1, · · · , ag, b1, · · · , bg}, ai·bi = +1, and
other intersection numbers are zeros. For any closed sur-
faces, such canonical homology basis always exists. Figure
6 illustrates such canonical homology bases for a genus 2
surface. Canonical homology basis is not unique, as shown
in the figure. The intersection matrix of a canonical homol-
ogy basis has a special format:

C̃ =

(
0 −Ig

Ig 0

)
, (7)

whereIg is ag × g identity matrix.
There exists an unitary integer matrixN (Its determinant

is either 1 or -1), such thatNCNT = C̃.
Both C andC̃ are congruent skew-symmetric matrices.

C andC̃ can be diagonalized by orthogonal matricesU and
V respectively, i.e.C = UΛUT andC̃ = V ΛV T , Λ =
diag{J1, J2, · · · , Jg},

Ji =

(
0 +1
−1 0

)
, i = 1, 2, . . . , g.

TheN is simplyN = V UT . The canonical homology basis

can be obtained bỹB = BNT . In the following discussion,
we assume the homology bases are canonical ones.

2.2 Computing harmonic one-forms

We define the linear functional spaces ofC2K, C1K and
C0K asC2K, C1K andC0K respectively. In other words,
C2K is the set of all the linear functions defined on the
surface patches,C1K is the set of all linear functions de-
fined on the curves on the surface. We can then define the
coboundaryδ1 andδ0 as the adjoint operator of∂2 and∂1,
such that

δpω(σ) = ω∂p+1(σ), p = 0, 1, (8)

whereω ∈ CpK, σ ∈ Cp+1K. Supposeω ∈ C1K, if
δ1ω ≡ 0, thenω is called aclosed one-form, and for any
[u, v, w] ∈ K,

δω([u, v, w]) = ω([u, v])+ω([v, w])+ω([w, u]) = 0. (9)

We useC1K to represent tangential vector fields onM

and associate an energy with eachω ∈ C1K:

E(ω) =
1

2

∑

[u,v]∈K1

ku,v||ω([u, v])||2, (10)
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(a) Genus 3 surface (b) Holomorphic 1-form (c) Holomorphic 1-form (d) Holomorphic 1-form
dual to the first handle dual to the second handle dual to the third handle

Figure 5: Holomorphic one-form basis of a genus 3 surface. Each holomorphic base is dual to one handle.

whereku,v = 1
2 (cotα + cotβ), α andβ are the two angles

against the edge[u, v]. E(ω) is called theharmonic energy
of ω. A closed one-form which minimizes the harmonic
energy is called aharmonic one-form. The Laplacian is a
linear operator∆ : C1K → C0K ,

∆ω(u) =
∑

[u,v]∈K

ku,vω([u, v]). (11)

Harmonic one-forms have zero Laplacian.
According to Hodge theory [?], all the harmonic one-

forms form a real linear space, which can be treated as a
dual space ( linear functional space ) of the homology group
H1(M, Z). Given a homology basisB = {e1, e2, · · · , e2g},
we can compute a dual basis of the harmonic one-forms
{ω1, ω2, . . . , ω2g} by the following linear system:





δωi ≡ 0
∆ωi ≡ 0∫
ej

ωi = δi
j

, (12)

whereδi
j is the Kronecker symbol. This linear system can

be solved by iterative methods efficiently.

2.3 Computing holomorphic one-forms

Holomorphic one-forms are the gradient fields of conformal
maps, which can be formulated asω +

√
−1 ∗ω, whereω

and ∗ω are harmonic one-forms, and∗ω is orthogonal toω
everywhere, i.e.

∗ω = n × ω, (13)

n is the normal field onM . ∗ω is called the conjugate har-
monic one-form ofω. In order to compute∗ω, we construct
a linear system based on the wedge product of closed one-
forms. Given two closed one-formsτ1, τ2 ∈ C1K, we
define the wedge product as the following linear operator
∧ : C1K × C1K → C2K,

τ1∧τ2([u, v, w]) =
1

6

∣∣∣∣∣∣

τ1([u, v]) τ1([v, w]) τ1([w, u])
τ2([u, v]) τ2([v, w]) τ2([w, u])

1 1 1

∣∣∣∣∣∣
.

(14)

Similarly, we can define the conjugate wedge product ofτ1

andτ2, denoted as∧∗,

τ1 ∧∗ τ2(f) = uMvT , (15)

where u = (τ1([u, v]), τ1([v, w]), τ1([w, u])), v =
(τ2([u, v]), τ2([v, w]), τ2([w, u])), and

M =
1

24S




2(l22 + l23) l21 + l22 − l23 l21 + l23 − l22
l21 + l22 − l23 2(l23 + l21) l22 + l23 − l21
l21 + l23 − l22 l22 + l23 − l21 2(l21 + l22)




(16)
|[u, v]| = l1, |[v, w]| = l2, |[w, u]| = l3, andS is the area of
face[u, v, w].

Given a harmonic one-formω, then ∗ω is still a har-
monic one-form and satisfies the following linear equations

∫

M

ωi ∧ ( ∗ω) =

∫

M

ωi ∧∗ ω, i = 1, 2, . . . , 2g (17)

whereωi’s are a set of basis of harmonic one-forms. Be-
cause∗ω is still a harmonic one-form, it can be represented
as a linear combination ofωi’s, suppose∗ω =

∑2g

i=1 αiωi,
then equation (17) becomes

∫

M

ωi ∧∗ ω =

2g∑

j=1

αi

∫

M

ωi ∧ ωj , i = 1, 2, . . . , 2g (18)

Given a harmonic one-form basis{ω1, ω2, . . . , ω2g}, we
can compute the conjugate harmonic one-forms∗ωi’s, then
{ωi +

√
−1 ∗ωi, i = 1, 2, . . . , 2g} is a basis of holomorphic

one-forms.

2.4 Computing period matrix

For a genus one surfaceM , there are two homology base
curvese1, e2. Supposee1, e2 only intersect at a pointp. we
can cut the surface open alonge1, e2, then obtain a topologi-
cal diskM ′. Then we choose one vertex to map to the origin
of the complex plane, and integrate the holomorphic one-
form onM ′. ThenM ′ is conformally mapped to the com-
plex plane. Pointp will be mapped to four points, which
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form a parallelogram. We can compute the acute angle and
adjacent edge length ratio of this parallelogram, which are
the conformal invariants ofM .

For a higher genus surface, suppose we have computed a
canonical homology basis̃B = {e1, e2, . . . , e2g}, such that
ei · ej = δ

i+g
j , 1 ≤ i ≤ g < j ≤ 2g, δ

i+g
j is the Kronecker

symbol, and constructed a dual holomorphic differential
basisB∗ = {ω1 +

√
−1 ∗ω1, ω2 +

√
−1 ∗ω2, . . . , ω2g +√

−1 ∗ω2g}, then the matricesC andS have entries:

cij =

∫

ei

ωj, sij =

∫

ei

∗ωj . (19)

ThenR is computed asR = C−1S. (R, C) are the confor-
mal invariants.

2.5 Double covering

For surfaces with boundaries, we can convert them to closed
ones by the so calleddouble coveringtechnique. Given a
surfaceM with boundaries, we make a copy ofM denoted
asM ′, then reverse the orientation ofM ′. We simply glue
M andM ′ together along their corresponding boundaries,
the obtained surfacẽM is a closed surface and called the
double coveringof M . We can then classify the surfaces
with boundaries by the period matrices of its double cover-
ing. Figure 7 shows an example of double covering, (a) is
the original genus one surface with three boundaries. (c) is
its double covering, which is of genus four. (d) shows a tex-
ture mapping generated by a holomorphic one-form of the
double covering.

All genus zero surfaces are conformal equivalent. It is
impossible to differentiate them by their conformal struc-
tures directly. In practice, we can locate the critical points
of their Gaussian curvature and remove them from the sur-
face. The obtained surfaces are with boundaries and can be
classified by using the double covering technique.

Figure 3 shows a genus zero example. Three holes are
punched on the bunny surface, the bottom, and the tips of

(a) Genus 3 surface (b) Conformal mapping.
Figure 4: For higher genus surfaces, each handle can be
conformally mapped to a parallelogram on the complex
plane.

the ears. (d) illustrates a holomorphic one-form computed
on the double covering, visualized by texture mapping a
checkerboard pattern.

3 Surface Classification and Match-
ing Method

SupposeM1 andM2 are two surfaces, the corresponding
period matrices are(R1, C1) and(R2, C2) respectively.Ri

can be decomposed asPiΛiP
−1
i , whereΛi is the Jordan

norm form ofRi. If M1 is conformal equivalent toM2,
then

Λ1 = Λ2 (20)

andN = P1P
−1
2 is an integer matrix with determinant±1.

Furthermore,
NT C1N = C2. (21)

Equations (20) and (21) are the sufficient and necessary
conditions to verify whether two surfaces are conformal
equivalent. In our case,Ci’s are canonical, matrices sat-
isfying equation 21 are called symplectic matrices.

Then the surface classification problem is reduced to
how to classify period matricesR under the integer sym-
plectic matrix group. It has been proven that for genusg

surfaces, the equivalent class ofR is 6g − 6 dimensional
[?]. We will introduce a method to compute these6g − 6
parameters in our future work.

In practice, we use the sorted eigenvalues ofR as the
indices for surface indexing and matching.

4 Experiments Results

The algorithm is purely algebraic and easy to implement.
The algorithm is intrinsic to the geometry, independent
of triangulation and insensitive to resolution. The con-
formal structure is global and insensitive to local features
and robust to noises. Figure 8 illustrates holomorphic one-
forms, visualized by texture mapping a checkerboard im-
age. The scaling of each texcel, and direction of iso-
parametric curves are consistent under different triangula-
tion and resolution. Comparing (a) and (c), we can see that

Figure 6: Canonical homology bases.
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the resolutions and the triangulation are quite different.This
shows the algorithm is intrinsic to the geometry and inde-
pendent of the surface representation.

Table 1 shows the conformal invariants of the genus one
surfaces illustrated in figure 9. By examining their shape
factors, it is easy to verify that there are no two surfaces
that are conformal equivalent.

mesh angle (degree) length ratio vertices faces
torus 89.987 2.2916 1089 2048
knot 85.1 31.150 5808 11616
knot2 89.9889 25.2575 2050 3672
rocker 85.432 4.9928 3750 7500
teapot 89.95 3.0264 17024 34048

Table 1: Conformal invariants of genus one surfaces.

The following are the period matricesR’s for some
genus two surfaces. All the intersection matricesC ’s are
in the canonical form as equation (7).

The two hole torus mesh as shown in 10(a) has 861 ver-
tices and 1536 faces. Its period matrix is




-1.475e-3 4.840e-4 4.501e-1 2.132e-2
4.858e-4 -1.439e-3 2.132e-2 4.501e-1

-2.260e+0 1.090e-1 1.476e-3 -4.858e-4
1.090e-1 -2.260e+0 -4.840e-4 1.439e-3


 (22)

The vase model shown in 10(b) has 1582 vertices and 2956
faces. Its period matrix is




1.053e-3 -8.838e-6 4.479e-1 2.127e-2
-1.080e-4 -1.031e-3 2.127e-2 4.042e-1
2.309e+0 1.241e-1 1.053e-3 -1.080e-4
-1.241e-1 -2.564e+0 8.851e-6 1.031e-3


 (23)

The flower model shown in 10(c) has 5112 vertices and
10000 faces. Its period matrix is




6.634e-3 -1.950e-3 2.861e-1 -6.076e-2
-1.909e-3 7.091e-3 -6.076e-2 2.497e-1
-3.768e+0 -9.111e-1 -6.634e-3 1.909e-3
-9.111e-1 -4.303e+0 1.950e-3 -7.091e-3


 (24)

The knotty bottle model shown in 10(d) has 15000 vertices
and 30000 faces. Its period matrix is




-1.911e-2 2.757e-3 5.617e-2 -1.001e-3
1.213e-3 -9.294e-2 -1.003e-3 5.699e-2

-1.792e+1 -4.829e-1 1.912e-2 -6.224e-4
-4.817e-1 -1.819e+1 -3.355e-3 9.295e-2


 (25)

By checking the conditions of equations (20) and (21), it
can be verified easily that all the surfaces above belong to
different conformal equivalent classes.

We tested our algorithm on other complex models
scanned from real models, the highest genus is 7 and the
biggest surface is with hundreds of thousands of faces.

The computational procedure is stable. We also retrian-
gulated several surfaces, and compared the computing re-
sults, which are very close. For example, we computed the
shape factors of the teapot surfaces with different resolu-
tions as shown in figure 8, the high resolution shape fac-
tors are(89.95, 3.0264), the low resolution shape factors
are(89.98, 3.0936).

5. Summary and Conclusions
This paper introduces a surface classification method based
on the Riemann surface theories. All surfaces can be classi-
fied by the conformal transformation group and their con-
formal invariants can be represented by period matrices.
The method is intrinsic to the geometry, independent of tri-
angulation and insensitive to resolution. The conformal in-
variants are global features of surfaces, hence they are ro-
bust to noises. The conformal equivalent classification is
refiner than topological classification and coarser than iso-
metric classification, making it suitable for surface classifi-
cations and matching.

6 Future Work

In the future, we will test our algorithm using larger scale
geometric databases. We also would like to explore ways
to improve efficiency in computing harmonic one-forms,
which is the most time consuming step of the current pro-
cess. We also would like to generalize our current algorithm
to non-manifold surfaces and implicit surfaces.
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(a) Original Surface (b) Reversed orientation (c) Double covering (d) Holomorphic one-form
Figure 7: Double covering. Green means the back faced part ofthe surface. Glue (a) and (b) along the boundaries to get (c).
A holomorphic 1-form is visualized by a checkerboard texture mapping.

(a) Surface with 4K faces (b) Holomorphic 1-form of (a) (c) Surface with 34K faces (d) Holomorphic 1-form of (c)
Figure 8: Conformal structure is only dependent on geometry, independent of triangulation and insensitive to resolution.

(a) A torus surface (b) A knot surface (a) (c) Another knot surface (d) A rocker
Figure 9: Genus one surfaces with different conformal structures.

(a) A two hole torus surface (b) A vase surface (c) A rose surface (d) A knotty surface
Figure 10: Genus two surfaces with different conformal structures.
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