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Abstract structure can be represented as matrices and is invariant un

der conformal transformations.
3D surface classification is a fundamental problem incom-  Compared to other surface classification methods, con-
puter vision and computational geometry. Surfaces can beformal classification has some advantages. It has a sound
classified by different transformation groups. Traditibna theoretical basis. Conformal equivalent classes are much
classification methods mainly use topological transforma- refiner than the topological equivalent classes and much
tion groups and Euclidean transformation groups. This pa- coarser than the isometric classes. The conformal stestur
per introduces a novel method to classify surfaces by con-are intrinsic to the geometry, independent of triangutatio
formal transformation groups. Conformal equivalent class insensitive to resolution and local features, and robust to
is refiner than topological equivalent class and coarsentha noises. Also, conformal invariants are concise and efficien
isometric equivalent class, making it suitable for praatic to compute, and can be used as search keys conveniently.
classification purposes. For general surfaces, the gradien Hence conformal classification is more suitable for practi-
fields of conformal maps form a vector space, which has cal surface classification problems.
a natural structure invariant under conformal transforma- Conformal invariants can also be used for general surface
tions. We present an algorithm to compute this conformal matching problems. For many surface matching problems
structure, which can be represented as matrices, and use itbased on geometric features, conformal invariants cam offe
to classify surfaces. The result is intrinsic to the geometr sufficient information to differentiate the different sacgs.
invariant to triangulation and insensitive to resolutiomo To the best of our knowledge, although conformal struc-
the best of our knowledge, this is the first paper to classify ture is well known, we are the first group to systematically
surfaces with arbitrary topologies by global conformal in- yse it for surface classification problems.
variants. The method introduced here can also be used for e introduce previous work and the theoretic back-

surface matching problems. ground in the following part of this section, followed by
. detailed explanation of the algorithms in Section 2. Our
1. Introduction surface classification method is introduced in Section 3. Ex

perimental results are reported in Section 4. Finally, afbri
summary and conclusion appears in Section 5, followed by
a discussion of topics for future work in Section 6.

3D surface classification and matching are fundamental
problems in computer vision and computational geometry.
Recent developments in modeling and digitizing techniques
have led to an increasing accumulation of 3D models. This
has highlighted the need for an efficient 3D object searching1 1  Previous work

technique in a data set.

Many methods have been developed based on the topo3D shape classification and recognition is a core problem in
logical and geometric features of the surfaces in order to computer vision. Due to its difficult boundary parameter-
describe shapes. In general, all the methods treat the surization and high dimension, 2D shape classification meth-
face as a 2D manifold with a metric structure embedded in ods can not be easily extended to 3D shape classification
R3. problems. To develop a 3D shape classification method,

In this paper, we view the surfaces from a completely which makes use of 3D object topological and geometric
novel viewpoint: treating them as Riemann surfaces with features that is independent of tessellation and resolutio
conformal structures. A Riemann surface is a surface cov-becomes desirable. Roughly, the current 3D shape classifi-
ered by holomorphic coordinate charts. The conformal cation methods fall into the following categories.



1. Statistical properties based method$ie simplest ap- Figure 1 illustrates a conformal map from a female face
proach represents objects with feature vectors in a mul-surface to a square. All the rights angles on the texture are
tidimensional space where the axes encode global gepreserved on the surface, which is shown in (c) and (d).
ometric properties. Ankerst et al?][proposed shape Two surfaces are callesbnformal equivalerif there ex-
histogram decomposing shells and sectors around aists a conformal bijection between them. Conformal equiv-
model's centroid. Osada et aP][represented shapes alent surfaces share the sammformal invariantswhich
with probability distributions of geometric properties can be represented as a matrix.
computed for points randomly sampled on an object's  Figure 2 shows two genus one surfaces. Although
surface. However, these statistical methods are notthey are topologically equivalent, they are not conforgall
discriminating enough to make subtle distinctions be- equivalent. Each torus can be cut open and conformally
tween shapes. mapped to a planar parallelogram. The shape of this paral-

lelogram indicates the conformal equivalent class. We use

the acute angle (right angle in this case) of the parallalogr
and the length ratio between the two adjacent edges to rep-
resent the conformal invariants of the genus one surfaces,

The MRG is constructed using a continuous function we call therrshape _factorsFrom (b) and (d), itis clear that

. . the two tori have different shape factors. Hence conformal

on the 3D shape, preferably a function of geodesic dis- e ) ; e

tance. These methods can not describe the geometriglassmcgtmn is refiner than topological cIaSS|f!cat|0_n.
distinctions. For hlghe_r genus surfgces, the conformal invariants are

more complicated. Basically, each handle of the surface

3. Geometry based methodBlovotni et al. P] describe can be cut open and conformally mapped to a parallelogram
a method based on calculating a volumetric error be- with different shapes. Figure 4 demonstrates a genus three
tween one object and a sequence of offset hulls of surface, where each handle is conformally mapped to a par-
the other object. Tangelder et aR][represent the allelogram. The shapes of the three parallelograms are the
3D shape by a signature representing a weighted pointconformal invariants. The rigorous representation of con-
set. A shape similarity measurement based on weightformal invariants of a high genus surface, throymgriod
transportation is used to compute the similarity be- matrices is explained below.
tween two shapes. Funkhouser et &} developed a If a surface is mapped to the complex plane, and the map-
3D matching algorithm that uses spherical harmonics ping is conformal everywhere on the surface, then we call
to compute discriminating similarity measures. Kazh- the complex gradient vector field of the mappingedomor-
dan et al.p] introduced a reflective symmetry descrip- phic 1-form All the holomorphic 1-forms on the surface
tor that represents a measure of reflective symmetryform a real vector space, which we chtilomorphic differ-
for an arbitrary 3D model for all planes through the entials The dimension of the holomorphic differentials is
model’s center of mass. These methods take into ac-equal to two times the number of genus.
count of the embedding of the geometric shapes. The All the closed curves on the surface form a group in the
shape descriptors are respented as functions, inconsense that they can be duplicated, merged and split. Two
vient for searching. The classifications are too restric- closed curves areomologous equivalerit they together

2. Topology based methodg#lilaga et al. ] computed
3D shape similarity by comparing Multiresolutional
Reeb Graphs(MRGs) which encodes the skeletal and
topological structure at various levels of resolution.

tive also. bound a 2D surface patch. The group of all the homologous
equivalent classes is called themology group
1.2 Theoretic background Let M be a closed surface of genys and B =
{e1,e2,...,e94} be an arbitrary basis of its homology

The algorithms introduced in this paper are based on thEQroup_ We define the entries of tlersection matrix’
theories of Riemann surfaces, especially the holomorphicof B as

one-forms and period matrices as introduced?n?]. We
treat surfaces as Riemann surfaces, and compute their con-
formal structures. where the dot denotes the number of intersections, counting
A conformal maps a map which only scales the first +1 when the direction of the cross product of the tangent

fundamental form, hence preserving angles. If a mappingvectors ofe; ande; at the intersection point is consistent
f : My — Ms> is conformal, where\/; and M, are two with the normal direction;-1 otherwise.
surfaces, suppose’, u?) are local parameters and the first A holomorphic basiBB* = {w,ws, ..., ws,} is defined
fundamental form of\/; is ds? = > gijdu‘du?, thenthe  to be dual ofB if
first fundamental form o/, induced byf is

f*gij(ul7u2) _ )\(UI,UQ)gij(Ul, UQ). (1) Re /ev Wi = Cij- (3)

7

Cij = —€; - 6]' (2)



(a) Original Surface (b) Conformal map to the plane  (c) Cleelokard texture  (d) Texture mapped surface
Figure 1: Conformal mapping. The original surface is a remhan face (a), which is conformally mapped to a square (b). A
checker board texture (c) is mapped back to the face. Alliie angles on the texture are preserved on (d).

Define matrixS as having entries 2.1 Computing homology

SupposeV/ is a triangular mesh, we usge, v], [u, v, w] to
Im /e Wi = Sig: 4 representits one and two dimensional simplices. We define
' chain spaces as the following:
The matrixR defined as
CPK = {ZOCZ'O';)|O[1' € Z}ap =0,1,2,

CR=S5 (5) ,
whereo,’s arep dimensional simplices if. Therefore,

satisfiesR*> = —1I, where[ is the identity matrix. After  the linear spac€, K is the space representing all the sur-
H.Weyl [?] and C.L.Siegel?], R is called thegperiod matrix face patches o/, C1 K is the the space representing all
of M with respect to the homology basdis the curves o/, andCy K is the space representing all the

The matriceg R, C) determine the conformal equivalent points onM. The boundary operators are linear mappings
class of M in the following sense: For two surfacég; dp: CpoK — Cp 1 K:
and M» with (Ry,Cy) and (R, C2) respectively,M; and 4 4
M, are conformal equivalent if and only if there exists an é)p(z @;0,) = Zaié)pa;,p =1,2.
integer matrixV.such that i i

The boundary operators defined on each simplex are as fol-

N7'RN = Ry;: NTC|N = C,. (6) lows:

We call(R, C) theconformal structuref M.
In the following sections, we will introduce a method
to compute the shape factors for genus one surfaces, anevherefu, v, w] is a face|u, v], [v, w] and[w, u] are its three
(R, C) for higher genus surfaces, and use them to classify edges with consistent orientation. Therefadg,is an op-
surfaces. eration that returns the boundary of a surface patghis
defined in a similar wayd, ando; are linear operators and
) ) can be represented as integer matrices with elements 0, 1 or
2 Computing Conformal Invariants -1.
The kernel space af; is the set of all closed curves,
In this section, we assume inputs to our algorithm are non-since closed curves do not have boundaries. The image
zero genus triangular meshes and introduce a method t&pace ob, is the set of all surface patch boundaries.

compute the holomorphic differential group and homology  The homology group is defined as the quotient space in
group. The method is improved from the algorithm intro- [?]

duced in [?].
Let K be a simplicial complex whose topological real- imgOy’

ization | K| is homeomorphic to a compact 2-dimensional 1, homology bases are the eigenvectors of the kernel space
manifold. Suppose there is a piecewise linear embedding ¢ the linear operatok : (1 K — C1 K-

02([U,U,’LU]) = [U,U] + [va] + [wvu]

Hi(M,Z) = kerdy

F:|K|— R%. L =0{0,+ 0,07

The pair(K, F) is called a triangular mesh and denoted as L is symmetric, the eigenvectors for the zero eigenvalue are
M. the basis off; (M, Z). SupposeB = {e1, ez, -+, eg4} IS @



(a) Torus one (b) Conformal map to (c) Torus two (d) Conformap to
a parallelogram a parallelogram
Figure 2: Topological equivalence but not conformal eqiemee. The two tori (a) and (c) are topologically equiva/éuit
not conformally equivalent. Because they conformally naaplanar parallelograms with different shapes.

2
>4 w?‘
(a) Real part of (c) (b) Imaginary part of (c) (c) Gradientdief a (d) Texture mapping
conformal map generated by (c)

Figure 3: Holomorphic 1-form is a complex gradient field ofanformal map from the surface to the complex plane. (c)
illustrates a holomorphic 1-form. (a) is the integratiomvas of the real part of (c), (b) is the integration curvestaf t
imaginary part of (c). (d) visualizes the holomorphic 1Ay a texture mapping.

set of homology basis, the intersection matrixs a skew- can be obtained b = BN In the following discussion,

symmetric matrix. In order to simplify the classification \ve assume the homology bases are canonical ones.
process, we can make the homology basis a canonical one

B, suchtha3 = {a1,---,a,,b1, -, by}, ai-bi = +1,and ) _
other intersection numbers are zeros. For any closed sur2-2 Computing harmonic one-forms

fapes, such canonical ho_mology basis always exists. Figuque define the linear functional spaces@fK, C; K and
6 illustrates such canonical homology bases for a genus oK asC2K, C'K andCK respectively. In other words,

surface. Canonical homology basis is not unique, as shown2 - ig the set of all the linear functions defined on the
in the figure. The intersection matrix of a canonical homol- surface patcheg;! K is the set of all linear functions de-

ogy basis has a special format: fined on the curves on the surface. We can then define the
_ 0 -1, coboundary; andd, as the adjoint operator @, ando,
= ( I, o > ; (7) such that
6pw(0) = wap+1(0)?p =0,1, (8)
wherel, is ag x g identity matrix. Lo
There exists an unitary integer mat¥(Its determinant Wlherew € C”’K,_ o € Cpi1K. Supposev € C K, if
is either 1 or -1), such that CN” = C. 0'w = 0, thenw is called aclosed one-formand for any
Both C andC are congruent skew-symmetric matrices. [u, v, 0] € K,
C andC can be diagonalized by orthogonal matri€eand
V respectively, i.e.C = UAUT andC = VAVT, A =
diag{Jl, JQ, ey, Jg},

dw([u, v, w]) = w(fu, v]) +w([v, w]) +w([w, u]) = 0. (9)

We useC' K to represent tangential vector fields dh

0 +1 and associate an energy with eack C'K:
Jl:< 1 0 ),'_1,2,...,9.
N 1
o " . . Ew) =3 > kuollw(u, o)), (10)
TheN issimplyN = VU*. The canonical homology basis [w,0]€ K1



(a) Genus 3 surface (b) Holomorphic 1-form (c) Holomorphiodm (d) Holomorphic 1-form
dual to the first handle dual to the second handle dual to irethlandle
Figure 5: Holomorphic one-form basis of a genus 3 surfacehBalomorphic base is dual to one handle.

wherek,, , = %(cot a + cot ), a andg are the two angles Similarly, we can define the conjugate wedge produet; of
against the edgi:, v]. F(w) is called thenarmonic energy ~ andr,, denoted as\",
of w. A closed one-form which minimizes the harmonic

* . T
energy is called &armonic one-form The Laplacian is a T A" Ta(f) = uMv”, (15)

linear OperatOA : ClK - COK ! where v = (Tl([u’a U])7 Tl([va ’UJ]), Tl([w7 U’]))’ vo=
Aw(u) = Z keu v ([u, v]). (11) (72([u, v]), 72([v, w]), 72([w, u])), and
[uv]€K 1 g(lg + 13)2 5 +2l§ 7213 li + lg - l%
Harmonic one-forms have zero Laplacian. M=g5 lé + l% - lg 22(13 + 11)2 53 +213 *211
According to Hodge theory?], all the harmonic one- B+l3-15 L+i-15 207 +13)
forms form a real linear space, which can be treated as a _ (16)
dual space ( linear functional space ) of the homology group |[; v]l = I1, [[v,w]| = Iz, |[[w, u]| = I3, andS'is the area of
H,(M, Z). Givenahomology basiB = {ey, ea,- - -, eq,},  [8C€[u, v, w]. _ o
we can compute a dual basis of the harmonic one-forms Given a harmonic one-forw, then *w is still a har-
{w1,ws, ..., way} by the following linear system: monic one-form and satisfies the following linear equations
ow; = 0 /w-/\ *w —/wl/\*wi—12 2
- 3 ) - ) )ttt g (17)
Awi = 0 | (12) W D=
fej Wi = 55’ wherew;’s are a set of basis of harmonic one-forms. Be-

cause*w is still a harmonic one-form, it can be represented
as a linear combination af;’s, SUppose‘w = Zfil oW,
then equation (17) becomes

29
/wi/\*w:Zai/ wi ANwj,i=1,2,...,2g (18)
M = M

whereé;i is the Kronecker symbol. This linear system can
be solved by iterative methods efficiently.
2.3 Computing holomorphic one-forms

Holomorphic one-forms are the gradient fields of conformal
maps, which can be formulated as+ v—1 *w, wherew

and *w are harmonic one-forms, arid is orthogonal tav Given a harmonic one-form basis,wa, ..., wag}, We
everywhere, i.e. can compute the conjugate harmonic one-formags, then
*w=nXw, (13) {wi+v—-1*w;,i=1,2,...,2g} is a basis of holomorphic

n is the normal field on\/. *w is called the conjugate har- one-forms.

monic one-form obv. In order to comput€&w, we construct . ] ]
a linear system based on the wedge product of closed one2.4 Computing period matrix
forms. Given two closed one-forms, m» € C'K, we
define the wedge product as the following linear operator
AN:C'K x C'K — C?K,

For a genus one surfadd, there are two homology base
curveses, ea. SUPpPOSe, e only intersect at a point. we
can cut the surface open aloag e, then obtain a topologi-

1| (o)) milfo,w])  7i([w,u]) cal disk)M’. Then we choose one vertex to map to the origin
AT ([u,v,w]) = = | T2([u,v]) 7o([v,w]) 7o(fw,u]) |. of the complex plane, and integrate the holomorphic one-
6 1 1 1 form on M’. ThenM’ is conformally mapped to the com-

(14) plex plane. Poinp will be mapped to four points, which



form a parallelogram. We can compute the acute angle andhe ears. (d) illustrates a holomorphic one-form computed
adjacent edge length ratio of this parallelogram, which are on the double covering, visualized by texture mapping a

the conformal invariants af/. checkerboard pattern.
For a higher genus surface, suppose we have computed a
canonical homology basB = {ej, e, ..., ea4}, Such that . .
ei-e; = 0M9,1< i< g < j< 2,6 is the Kronecker 3 Surface Classification and Match-
symbol, and constructed a dual holomorphic differential ina Method
basisB* = {w1 —|—\/—1*w1,w2+\/—1*w2,...,w2g+ g
V—=1"wsg}, then the matrice§” andS have entries: SupposeM; and M, are two surfaces, the corresponding
period matrices aréR,, C1) and(Rz, C2) respectively.R;
Cij :/ wj, Sij :/ *wj. (19) can be decomposed d@A; P, ', whereA; is the Jordan

i norm form of R;. If M; is conformal equivalent td/,

ThenR is computed aft = C~1S. (R, C) are the confor-  then
mal invariants. A=Ay (20)

andN = P, P, ! is an integer matrix with determinatl.
2.5 Double covering Furthermore,

T _
For surfaces with boundaries, we can convertthem to closed N7 CiN = C. (21)

ones by the so calledouble coveringechnique. Given a  Equations (20) and (21) are the sufficient and necessary
surfaceM with boundaries, we make a copy bf denoted  conditions to verify whether two surfaces are conformal
asM’, then reverse the orientation &f’. We simply glue equivalent. In our case,;’'s are canonical, matrices sat-
M and M’ together along their corresponding boundaries, isfying equation 21 are called symplectic matrices.
the obtained surfac@/ is a closed surface and called the Then the surface classification problem is reduced to
double coveringpf M. We can then classify the surfaces how to classify period matriceB under the integer sym-
with boundaries by the period matrices of its double cover- plectic matrix group. It has been proven that for gepus
ing. Figure 7 shows an example of double covering, (a) is surfaces, the equivalent class Bfis 6g — 6 dimensional
the original genus one surface with three boundaries. (c) is[?]. We will introduce a method to compute theGe — 6
its double covering, which is of genus four. (d) shows a tex- parameters in our future work.
ture mapping generated by a holomorphic one-form of the  In practice, we use the sorted eigenvaluesioés the
double covering. indices for surface indexing and matching.

All genus zero surfaces are conformal equivalent. It is
impossible to differentiate them by their conformal struc- .
tures directly. In practice, we can locate the critical poin 4~ EXperiments Results
of their Gaussian curvature and remove them from the sur-
face. The obtained surfaces are with boundaries and can b&he algorithm is purely algebraic and easy to implement.
classified by using the double covering technique. The algorithm is intrinsic to the geometry, independent

Figure 3 shows a genus zero example. Three holes aref triangulation and insensitive to resolution. The con-
punched on the bunny surface, the bottom, and the tips offormal structure is global and insensitive to local feasure
and robust to noises. Figure 8 illustrates holomorphic one-
forms, visualized by texture mapping a checkerboard im-
age. The scaling of each texcel, and direction of iso-
parametric curves are consistent under different trisagul
tion and resolution. Comparing (a) and (c), we can see that

(a) Genus 3 surface (b) Conformal mapping.
Figure 4: For higher genus surfaces, each handle can be
conformally mapped to a parallelogram on the complex
plane. Figure 6: Canonical homology bases.




the resolutions and the triangulation are quite differ&his
shows the algorithm is intrinsic to the geometry and inde-
pendent of the surface representation.

Table 1 shows the conformal invariants of the genus one
surfaces illustrated in figure 9. By examining their shape
factors, it is easy to verify that there are no two surfaces
that are conformal equivalent.

mesh | angle (degree) length ratio | vertices| faces
torus 89.987 2.2916 1089 2048
knot 85.1 31.150 5808 | 11616
knot2 89.9889 25.2575 2050 | 3672
rocker 85.432 4.9928 3750 7500
teapot 89.95 3.0264 17024 | 34048

Table 1: Conformal invariants of genus one surfaces.

The following are the period matriceB's for some
genus two surfaces. All the intersection matricés are
in the canonical form as equation (7).

The two hole torus mesh as shown in 10(a) has 861 ver-
tices and 1536 faces. Its period matrix is

-1.475e-3 4.840e-4 4.501le-1 2.132e
4.858e-4  -1.439e-3  2.132e-2  4.50le- 22)

-2.260e+0 1.090e-1  1.476e-3 -4.858e-
1.090e-1 -2.260e+0 -4.840e-4  1.439%¢

The vase model shown in 10(b) has 1582 vertices and 295
faces. Its period matrix is

1.053e-3 -8.838e-6 4.47%-1 2.127e¥2
-1.080e-4 -1.031e-3 2.127e-2  4.042e- 23)
2.309e+0 1.241e-1 1.053e-3 -1.080e-
-1.241e-1 -2.564e+0 8.851e-6 1.03le

The flower model shown in 10(c) has 5112 vertices and
10000 faces. Its period matrix is

6.634e-3  -1.950e-3  2.86le-1 -6.076e
-1.909e-3 7.091e-3 -6.076e-2  2.497e- (24)
-3.768e+0  -9.111e-1 -6.634e-3  1.909e-
-9.111e-1  -4.303e+0  1.950e-3 -7.091e

The knotty bottle model shown in 10(d) has 15000 vertices
and 30000 faces. Its period matrix is

-1.911e-2 2.757e-3  5.617e-2 -1.001e\3
1.213e-3  -9.294e-2 -1.003e-3  5.699%e- (25)

-1.792e+1  -4.829%e-1  1.912e-2 -6.224e-

-4.817e-1  -1.819e+1 -3.355e-3  9.295e

By checking the conditions of equations (20) and (21), it
can be verified easily that all the surfaces above belong to
different conformal equivalent classes.

We tested our algorithm on other complex models

scanned from real models, the highest genus is 7 and the rg

biggest surface is with hundreds of thousands of faces.

The computational procedure is stable. We also retrian-
gulated several surfaces, and compared the computing re-
sults, which are very close. For example, we computed the
shape factors of the teapot surfaces with different resolu-
tions as shown in figure 8, the high resolution shape fac-
tors are(89.95,3.0264), the low resolution shape factors
are(89.98,3.0936).

5. Summary and Conclusions

This paper introduces a surface classification method based
on the Riemann surface theories. All surfaces can be classi-
fied by the conformal transformation group and their con-
formal invariants can be represented by period matrices.
The method is intrinsic to the geometry, independent of tri-
angulation and insensitive to resolution. The conformal in
variants are global features of surfaces, hence they are ro-
bust to noises. The conformal equivalent classification is
refiner than topological classification and coarser than iso
metric classification, making it suitable for surface cifkss
cations and matching.

6 Future Work

In the future, we will test our algorithm using larger scale
eometric databases. We also would like to explore ways
o improve efficiency in computing harmonic one-forms,

which is the most time consuming step of the current pro-

cess. We also would like to generalize our current algorithm
to non-manifold surfaces and implicit surfaces.
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(a) Original Surface (b) Reversed orientation (c) Doubleecimg (d) Holomorphic one-form
Figure 7: Double covering. Green means the back faced péneafurface. Glue (a) and (b) along the boundaries to get (c).
A holomorphic 1-form is visualized by a checkerboard tegttmapping.

(a) Surface with 4K faces  (b) Holomorphic 1-form of (a) (cyfase with 34K faces  (d) Holomorphic 1-form of (c¢)
Figure 8: Conformal structure is only dependent on geomiettiependent of triangulation and insensitive to resoluti

(a) A torus surface (b) A knot surface (a) (c) Another knoface
Figure 9: Genus one surfaces with different conformal stmes.

(a) A two hole torus surface (b) A vase surface (c) Arose serfa (d) A knotty surface
Figure 10: Genus two surfaces with different conformaldtrtes.



