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Abstract

We solve the problem of computing global conformal parameterizations for surfaces with nontrivial topologies.
The parameterization is global in the sense that it preserves the conformality everywhere except for a few points,
and has no boundary of discontinuity. We analyze the structure of the space of all global conformal parameteri-
zations of a given surface and find all possible solutions by constructing a basis of the underlying linear solution
space. This space has a natural structure solely determined by the surface geometry, so our computing result is
independent of connectivity, insensitive to resolution, and independent of the algorithms to discover it. Our algo-
rithm is based on the properties of gradient fields of conformal maps, which are closedness, harmonity, conjugacy,
duality and symmetry. These properties can be formulated by sparse linear systems, so the method is easy to im-
plement and the entire process is automatic. We also introduce a novel topological modification method to improve
the uniformity of the parameterization. Based on the global conformal parameterization of a surface, we can con-
struct a conformal atlas and use it to build conformal geometry images which have very accurate reconstructed
normals.

Categories and Subject Descript@scording to ACM CCS) 1.3.5 [Computer Graphics]: Surface parameterization,
global conformal parameterization
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1. Introduction is defined in2227.21, Conformality of a map equivalently
Parameterization is the process of mapping a surface onto means scaling the metric, it is often describedsiasilari-
regions of the plane. It allows operations on a surface to be ties in the smallsince locally shapes are preserved and dis-
performed as if it is flat. Parameterization is essential for tances and areas are only changed by a scaling f&#ctar
many applications including texture mapping, texture syn- conformal mapping is intrinsic to the geometry of a mésh
thesis, remeshing, and construction of geometry images.  is independent of the resolution of the mesh, and preserves
This paper studies conformal parameterization, which the consistency of the orientatiéh
(© The Eurographics Association 2003.
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These nice properties make conformal parametriza- model. Furthermore we show how to construct a canonical
tion suitable for many practical applications. Because of conformal atlas for closed surfaces.
its angle preserving property, conformal parameterization
has been proposed for texture mapp#id* 21, geometry

. o 1.2. Previous Work
remeshiné®, and visualizatior?® 16 11, Conformal parame- Surf ization has b died velvin th
terization continuously depends on the metric of the sur- “Urace parameterization has been studied extensively in the

face, so it can be used to match two similar surfaces. One graphics field. General methods are based on functional op-
such matching method is introducedh Furthermore, all timization, where special metrics are defined to measure the

surfaces can be classified easily by conformal invariants. A deV|at|orT of the parameterlzatlor.l from an isometry.

method to compute the conformal invariants for meshes is ~ Tutte introduces théarycentric mapsand proves the

introduced int2. mapping is an embedding . Floater uses specific weights
Many techniques have been developed to compute con- to improve the quality of the mapping in terms of area de-

formal parameterizations, but almost all of them only deal formation and conformality. Levy and Mallé® take into

with genus zero surfaces and have to segment the surfaces,‘""ccount additional constraints to improve the orthogonal-

into patches. These methods decompose meshes into topo_|ty and homogeneous spacing of isoparametric curves of the

S i 3 i
logical disks, and then parameterize each patch individually. Parameterization. Ma;:lotd{%t af? lntr_odu%e a ge:)ormhatlon
This introduces discontinuity along the patch boundaries and energy to mefasure the |stqrt|qn introduced by the map-
conformality can not be preserved everywhere. To avoid the ping. Levy defines ar_lother criterion to measure smoothness
problems associated with discontinuous boundagkshal Td match features it?. !—lorme;]r_mhand Ghrlelnéﬁ propose
conformal parametrizationwhich preserves conformality the MIPS parametgrlzatlon, which roughly attempts t.o pre-
everywhere (except for a few points), is highly desirable serve the ratio of singular values over the parameterization.

L Sander et aP® develop a stretch metric to minimize texture
Global conformal parameterization for closed genus zero L
stretch and texture deviation. Furthermore, Sander €6 al.
surface has been addressed4id! 312, Global conformal

o . . . design the signal-stretch parameterization metric to measure
parameterization for closed surfaces with arbitrary genus is

; . . the signal error.
investigated in Gu and Yau’s woR 10, Global conformal 9

parameterization for nonzero genus surfaces with bound- 1 2 0.1. Conformal parameterization for genus zero sur-
aries still remains an open problem. This paper solves this faces Most works in conformal parametrization only deal

problem and discusses its application on constructing geom- yith genus zero surfaces.There are four basic approaches.
etry images. We also simplify the method introducedn

and make the whole process automatic. The algorithms are
based on the Riemann surfaces theotied he first figure
shows the global conformal parameterizations for surfaces
with and without boundaries.

1. Harmonic energy minimizatiorRinkall and Polthier de-
rive the discrete Dirichlet energy #. Eck et al.22 intro-
duce the discrete harmonic map, which approximates the
continuous harmonic maps by minimizingveetric dis-
persioncriterion. Desbrun et af>4 compute the discrete
Dirichlet energy and apply conformal parameterization to

1.1. Contribution interactive geometry remeshing. Levy e€atompute a

We introduce a purely algebraic method to compute global
conformal parameterizations for surfaces with nontrivial
topologies. To the best of our knowledge, this is the first
paper that solves the problem of global conformal param-

eterization of nonzero genus surfaces with boundaries. Our

method of global conformal parameterization has the follow-

ing properties:

e Our method can handle surfaces with arbitrary non zero
genus, with or without boundaries.

e No surface segmentation is needed. The parameterization
is global in the sense that it is conformal everywhere ex- 3.

cept for a few points and is boundary free.

e We find all possible parameterizations. Instead of finding
just one solution, we find a basis of the solution space
from which all the parametrizations can be constructed.

e The method is based on solving large sparse linear sys- 4.
tems, by using conjugate gradient method, it can be solved

in linear time.

We also introduce a way to improve the quality of global
parameterizations, namely by modifying the topology of the

quasi-conformal parameterization of topological disks by
approximating the Cauchy-Riemann equation using the
least square method. Gu and Yaulfnintroduce a non-
linear optimization method to compute global conformal
parameterizations for genus zero surfaces. The optimiza-
tion is carried out in the tangential spaces of the sphere.

. Laplacian operator linearizationHaker et al.14 intro-

duce a method to compute a global conformal mapping
from a genus zero surface to a sphere by representing the
Laplacian-Beltrimi operator as a linear system.
Angle based metho&heffer et al3! introduce an an-
gle based flattening method to flatten a mesh to a pla-
nar region so that it minimizes the relative distortion of
the planar angles with respect to their counterparts in the
three-dimensional space.
Circle packing.Circle packing is introduced in32 16,
Classical analytic functions can be approximated using
circle packing. But for general surfacesRA, circle pack-
ing only considers the connectivity but not geometry, so
it is not suitable for our parameterization purpose.

(© The Eurographics Association 2003.
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(a) Homology basis (b) Gradient field (c) Gradient field* w (d) A conformal gradient field
dual toe;. orthogonal to (b) w+v—1*w

Figure 1: A conformal gradient field of a two hole torus. (a) shows the homology basis, which are four closed curves. (b) shows
the vector fieldo dual toey, i.e. fel wis nonzero,[e w=0,i=2,3,4. The shaded curves are the integration lines of the vector

field. (c) shows the vector fieftto that is orthogonal to (b) everywhere. (d) shows a conformal gradientdieidy/—1* .

1.2.0.2. Global conformal parameterization for nonzero dient fields form a linear space, whose structure is closely
genus closed surfacesThe problem of computing global  related to the topology of the surface.
conformal parameterizations for general closed meshes is We usehomology grougo represent the topology of the
first solved by Gu and Yau if?. The proposed method ap-  surface. All curves on a surface form a homology group as
proximates De Rham cohomology by simplicial cohomol- introduced in Appendix A. Ahomology basids a set of
ogy, and computes a basis of holomorphic one-forms. The curves that can be deformed to any closed curves on the sur-
method has solid theoretic bases, but it has some limitations fgce by operations including replicating, merging, and split-
of the geometric realization of the homology basis. Each ting. We use a set of loopges, &, -+, €24} to denote a ho-
homology base curve can only intersect its conjugate once. mology basis, wherg is the genus. A surface can be cut
Hence the method is not automatic and needs users’ guid- glong a homology basis (a cut graph) to a topological disk,
ance. Also, this method can not handle surfaces with bound- which is called gundamental domairFigure 2 (a) demon-
aries. strates a homology basis of a genus 4 surface, (b) shows the
The purely algebraic method introduced in this paper is boundary of its fundamental domain, both of them are manu-
based on the method #3, but it has no restrictions on the  ally labelled. The cohomology group is the linear functional
geometric realization of the homology basis. This method space of the homology group, which is defined in Appendix
is much simpler and it is automatic. We also generalize this A also.

method to handle surfaces with boundaries. According to Riemann surface theory, conformal gradient

1.2.0.3. Computational topology The computation of ho-  fieldsw++/—1"w have the following properties: .
mology group and polygonal schema has been studied in ® closednessy and *w are closed, meaning the curlix af

341856 |t ijs shown in8 that it is NP-hard to compute an and " w are both zero. . .

optimal polygonal schema with the shortest cut. e harmonity w and “w are harmonic, meaning that the
Laplacian of bothw and *w are zero.

2. Basic Idea and Sketch of Mathematical Theories e duality The cohomology class @b and *w can be deter-

In order to compute conformal maps, we compute their gra- mined by the values of their integration along the homol-

dient fields first. Each gradient field of a conformal map is ~ 09y basis’s.
a pair of tangential vector fields with special properties. All ® conjugacy*wis orthogonal tan everywhere.
such vector fields form a linear space. We will show how According to Hodge theory, givereg real numbers
to construct a basis of this linear space by solving a linear C1,C2,--,Cog, there is a unique real gradient figldwith the
system derived from these properties. We can then get a gra-first three properties, because each cohomology class has a
dient field of a conformal map by linearly combining the unique harmonic gradient fietd. These properties fab can
bases. Then by integrating the conformal gradient field, we be formulated as the following equations:
obtain a conformal parameterization. do = 0

In this paper, we use the termggadient fielt_jsandconfor-_ Aw = O 1)
mal gradient fieldgo refer to the mathemat!cally more rig- Jo® = Gi=12---.2g
orous termglosed one-formandholomorphic one-fornis
A conformal parameterization maps a local region of a sur-  The equatiow = O indicatesw is closed, where is the
face to the complex plane. We denote its gradient field as exterior differential operator; The equatidw = O repre-
W+ v/—1*w, wherew and *w are real gradient fields. Ac-  sents the harmonity @b, whereA is the Laplacian-Beltrami
cording to Riemann-Roch theoty all such conformal gra- operator; The equatiorfg w=¢,i=12--- 2grestrict the
(© The Eurographics Association 2003.
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(a) A homology basis.

(b) The boundary of

a fundamental domain
Figure 2: (a) and (b) illustrate a topological model for gen-

eral surfaces. A general surface can be represented as a
sphere glued with several handles. Each handle has two spe-
cial curves, which form a basis of the homology group. Each
surface can be sliced open to a topological disk - a funda-
mental domain.

cohomology class of. The conjugacy property can be for-
mulated as

*w=1xw,

(2
wheren is the normal field on the surface, is the cross
product in R®. This equation holds everywhere on the sur-
face.

The solutionw to equations 1 depends anlinearly. The
linear solution space i&g dimensional. We can compute
a basis{wy,wy,--,wyg} of the solution space, such that
Jo wj = 8!, whered! is the Kronecker symbol. Then the
solution w corresponding tdcy,Cy, - -+, Cog} Can be repre-
sented aso = zizzglciwi. This paper uses linear systems to

section. We also use,v,w to denote vertices dfl, [u,V] to
denote an edge, arjd, v,w] to denote a face.

The methods of computing homology basis are described
in 24 or 18, We briefly summarize it here. In our implementa-
tion, we compute the eigenvectors of the following matrix

0101+ 0203, 3)

whered; andd, are the matrix representation of the bound-
ary operatorso; returns the boundary of a curve, adg
returns the boundary of a patch. The details are explained in
Appendix A. Each eigenvector of the null space is a homol-
ogy base curve. We denote each basgas=1,2,---,2g.

g can be represented as a sequence of oriented edges, for
example [ug,u1],[u1, U], - -, [Un—1,Un], whereun = up.

Recall that a conformal gradient field is represented as
w4+ v/—1*w, we approximatey by a function defined on the
edges, and associate each edge with a real number, denoted
aswlu,v].

3.1. The Real Part of Conformal Gradient Fields
This subsection computes the real parbf the conformal
gradient field by using the closedness, harmonity, and dual-
ity properties.

The closedness propertigo = 0 means the integration of
w along any simple closed curve (which bounds a topologi-
cal disk) is zero. Hence for each faeev, w], the integration
of walong its boundarg[u, v, w] is zero. Then for each face,
the equation for closedness can be approximated by the fol-
lowing linear equation:

(4)

The harmonity propertAw = 0 can be formulated using

w(0[u, v, w]) = w[u, V] + w[v,w] + w[w,u] = 0.

approximate equations 1 and 2 on meshes and automaticallythe well knowncotangentveighting coefficients 4. For any

computes a basis of conformal gradient fields. Once a con-
formal gradient field is obtained, we integrate it on a funda-
mental domain to find a conformal parametrization.

For surfaces with boundaries, we apply theuble cov-
ering method to convert them to closed ones. We get two
copies of the surface, reverse the orientation of one of them,
and glue them along the boundaries, then obtain a symmet-
ric closed surface. We can compute the conformal gradient
fields on the double covering of the surface, and find confor-
mal gradient fields for the original surface with boundaries.

Figure 3 demonstrates the base conformal gradient fields,
visualized by integrating them on a fundamental domain and
texture-mapping a checkerboard image.

3. Algorithm for Closed Surfaces

We have just sketched the analytical basis for computing
global conformal parameterization. Now we describe a nu-
merical procedure to carry this out. The main task is to trans-
form the mathematical concepts defined on smooth surfaces
to operations on triangulated meshes. Assumeithiata tri-
angulated mesh. We continue to use the notation of previous

vertexu, the Laplacian ofv onu s zero, hence the equation
for harmonity can be formulated as:

Aw(u) kuvolu,v] =0
luvjeM

(®)

kuyv

— % (cota + cotp) (6)

e’

5%
o &4

Figure 3: Visualizations of two base conformal gradient
fields by texture mapping a checkerboard.

(© The Eurographics Association 2003.
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whereaq, B are the angles against the edgey]. Thestar wedge product A of wandt on smooth surfaces
The duality propertyf, w = ¢ can be formulated in a is defined as follows:

straightforward way. Suppose homology baseonsists of . . .

a sequence of oriented edges= y"_;[uj_1,uj], where /Mw AT= /M‘D/\ = /wa -1, 11)

Up = Un, then

) 0 where *1 is obtained by rotating about the normd on the
/ W= 2 wluj_1,Uj] = Gi. (7) tangent plane at ea_ch pqint bf. The discrete star wedge
8 =1 product on meshes is defined as

Compared with previous methods #2247, we have __— T

used the duality condition to replace boundary conditions. /Tw AT=UMV?, (12)
By combining equations 4, 5, and 7 together, we get the where

discrete version of the system of equations 1:

s 43 13+13-15 131512
yio1([uj—1,uj]) = 0,V[up,U1,Up] € M,up = U3 M— L 12412212 a2 241212
Suvemkive(uv) = Ovuem 28\ 2pzo2 gazoz a2
iU u]) = Ve =3 [uj_1,uj],uo=un (13)

(8) and vectord),V are
In order to get a basis of the conformal gradient fields, we
choose2g sets of{c}, where thejth set is{3}}. In Ap- U = (w(do),w(d1),0(dy)) 14)
pendix B, it is proven that the linear system 8 is of full rank. V = (1(dp),t(d1),T(d2)). (15)

This is the discrete analogue of Hodge theory, which claims _ )
each cohomology class has a unique harmonic one-formrep-  We can build a linear system to solve fqis based on the

resentativé’. following formula:
Once we have computeo, we can computé w by using . . )
the discrete Hodge star operatpwhich will be introduced /M WA W= /M W Awi=12-,29. (16)

in the next subsection. . .
Equivalently, we can expand each term, use discrete wedge

3.2. The Imaginary Part of Conformal Gradient Fields products and discrete star wedge products to get the follow-
Having selected aw in the space ofy, we compute the NG linear system directly
imaginary part of the conformal gradient fiefdo by using WA = B, 17)

the conjugacy property.

The Hodge star operator is defined on the gradient fields whereW has entriesvij = 1<y J7 Wi A wj, A has entries
on smooth surfaces. Intuitively, it locally rotates each vec- Aj, andB has entried = Sy J7 0 * A . In appendix D,
tor a right angle about the normal at each poifth can be we show that the linear system 17 is of full rank.
obtained by applying the Hodge star operatowoiThis sub-
section uses a linear system to approximate the Hodge star
operator on triangulated meshes.

Suppose{wy,p,---,upg} are a set of basis of all the
solutions to linear system 1, then baihand *w can be
represented as a linear combinationupk. Suppose”w =
zizfl)\iooi, our goal is to find ouh;’s.

Given two gradient fieldso, T, the wedge producth on

3.3. Conformal Map

By solving the linear system in section 3.1, we can compute
{w1, 6y, -+, apg}. By solving the linear system in section
3.2, we can computé®wy, *wy, - - -, *upg}. The conformal
gradient fields{on + v/ —1* w1, 0 + /=1 wy, -+, tpg +
V/—1*uypgy} are a set of basis of all conformal gradient fields

- ) oo n . onM.
smooth surfaces is defined as the following integration o ] )
From the finite dimensional space of all possible confor-
/ WAT = / WX T-ndo, 9) mal gradient fields, we can select a desirable one for the ap-
M M

plication. For example, if we want to optimize the unifor-
wherefi is the normal field oM, do is the area element, and m|ty, we can formulate it as a finite dimensional optimiza_
the x and- are the common cross product and dot product tion problem to minimize thé&.? norm of the derivative of
in R®. This can be approximated by the discrete wedge prod- streching factor function on surface. Once we get the confor-
uct defined below. The details can be found in Appendix C. mal gradient field, we integrate it on a fundamental domain
Suppose{do, ds,dz} are the oriented edges of a triangle of the surface to get the conformal map.

their lengths are{lo, |1,12}, and the area of is s, then the We first compute a fundamental domainwas described
discrete wedge produetis defined as in 12, We choose one base vertay, which is mapped to

1 w(dp) w(d1) w(dyp) the origin of the complex plane. For any vertex M, we
/ WAT= 2| 1(dp) T(d1) T(dp) (10) arbitrarily choose a path frorgg to v in the fundamental
T 6 1 1 1 domain. Suppose the patheis= ¥4 [ui_1,Ui], Un =V, then

(© The Eurographics Association 2003.
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the complex texture coordinates\ére

(/E;w+ V-1*w= _iw[ui,l,ui] + \/jli *olUi_1, i)
B - (18)

The complex texture coordinates are path independent, this

can be shown by using the fact that batland *w are closed
and the Stokes theorem.

4. Surfaces with Boundaries

This section generalizes the method for computing con-
formal gradient fields for closed surfaces to surfaces with
boundaries.

4.1. Double Covering
Suppose surfadd has boundaries, we construct a copyvbf
denoted ad/’, then reverse the orientation BF by chang-
ing the order of vertices of each face frdmv, w| to [v, u, w].
We then gluevl andM’ together along their boundaries. The
resulting mesh is denoted Bg and called thelouble cover-
ing of M. The double covering is closed so we can apply the
method discussed in the last section.

For each interior vertex € M, there are two copies of
in M, we denote them ag andv,, and say they ardualto
each other, denoted &% = v, andv; = v;. For each bound-
ary vertexv € oM, there is only one copy iM, we sayv is
dual to itself, i.,ev=v.

4.2. Symmetric Conformal Gradient Fields

We now compute the conformal gradient fieldshf Ac-
cording to Riemann surface theori®s all symmetric con-
formal gradient fields oM restricted onM are also con-
formal gradient fields oM. The real part of a symmetric
conformal gradient field satisfies the following property:

w[u,v] = W[T,v]. (19)

: = ;
%3‘:;23% 3 s
oo

11800331

i =
(a) Zero point of the open teapot (b) Zero pointf¢g) = Z

Figure 4: Zero points of parameterization.

are a set of basis of conformal gradient fieldS\bn

5. Global Conformal Atlas

In the last two sections, we have introduced a method to
compute conformal gradient fields for general surfaces, and
by integrating a conformal gradient field on a fundamental

domain, we can conformally map the surface to the complex
plane.

This section analyzes the global structure of the image of
a conformal mapping. For a general surfddeeach handle
of the surface is conformally mapped to the complex plane
periodically, where each period isparallelogram The set
of such parallelograms fgrhandles is thglobal conformal
atlasof M.

If the surface is of genus one, then the mapping is one-to-
one. Otherwise, the mapping is in general one-to-one locally,
but there ar@g — 2 special points that are calleéro points
In the neighborhood of zero points, the mapping has special
structures. The local structure of the zero points is explained
below.

5.1. Zero Points

We can simply perform the process described in the last According to the Poincare-Hopf index theoréa confor-

section orM: compute homology basis &; computewy’s;
compute*wy’s. Thenw; + v/ —1*wis are a set of basis of all
conformal gradient fields okl. Define the dual operator for
each gradient field as follows:

w([u,v]) = w([T,V]),V[u,v] € M. (20)

mal gradient fieldo must have zero pointsM is not homeo-
morphic to a torusZero pointof w are the points where the
mapping is degenerated. According to Riemann-Roch the-
ory, there are totallgg— 2 zero points for a genugsurface.
The map wraps the neighborhood of each zero point twice
and double covers the neighborhood of the image oh

The dual operator exchanges the numbers a gradient field as-the complex plane. Locally, the map is similar to the follow-
sociates with an edge and its counterpart in the double cov- ing mapf : C — C in the neighborhood of the origin:

ering. Then anyw can be decomposed to a symmetric part
and an asymmetric part:

1 1 .
W= (W+0) + = (W—),
where 3 (w+ ) is the symmetric part.
Given a conformal gradient fielé+ /—1*w on M, the
symmetric componerg(w+®) + v/~ 13 *(w+®) is also a
conformal gradient field ofl. If we restrict it onM, then

(21)

Dot/ L er@) @)

f(2) =2 (23)

Figure 4 demonstrates the zero points on the global con-
formal parameterizations. For the open teapot model, its
double covering is of genus two. There are two zero points,
one of them is illustrated near the bottom.

In order to find the zero points, we define the following
stretching factor for each vertexc M,

2

_ 1 Jolu, V|2
valencéu) , &, [[[u. V[

(© The Eurographics Association 2003.
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(a) Genus two surface (b) Conformal atlas of (a) (c) Genus three surface (d) Conformal atlas of (c)
Figure 5: Global conformal atlas. For a genug surface, there arg — 2 zero points. We pair them t9— 1 pairs, and

construct a loop to go through each pair. These loops separate the handles. Each handle is mapped conformally to a modular
parallelogram. The conformality is preserved across all the boundaries. The grey disks show the modular structure of each
handle, the grey line segments are handle separators, the white disks show that conformality is preserved across the handle
separators.

The minimum points of(u) approximate the positions of The grey line segments in the interior of each modular

the zero points. space are the images of the closed curves which separate
different handles, and they are calleahdle separatorsThe

52 Modular Structure of Each Handle ending points of the handle separators are zero points. The
next subsection will explain how to find the handle separa-

Given a topological toruM and a conformal gradient field
won it, we pick a base poinfy and issue curves fromnn ar-
bitrarily to any point on the surface. By integratingalong .
these curves, we ma to the plane conformally. The curves ~ 2-3- Handle Separation

can be extended to infinity, and the mapping can also be con- For general surfaceld with genus higher than one, by in-

tors.

sistently extended. The image set of the base point is tegratingw on a fundamental domairM is conformally
mapped tog overlapping modular parallelograms on the
{a/ w+b/ wla,be Z}, (25) complex plane. This subsection discusses how to separate
& 7€ these parallelograms to construct the global conformal atlas.
where{e } are homology basis curves. Suppose the conformal mappingfisBetween two adja-

The mapping iperiodicor modular Then the entire torus ~ cent handles oM, there are two zero pointpg andp;. We
is conformally mapped to one period, which is a parallelo- can always find a closed curve that goes through them and
gram spanned by, , [, w. The top and bottom of the par- ~ separates the handles. We denote the curve segmenpfyom
allelogram are identical, the left and right are identical, and to p1 as[po, p;], and the curve segment fropy to pp as
the four corners are identical. We call this parallelogram a [Pz, Po]. Thenf maps|po, p1] and[py, po] to the same curve

modular spacand use it as the global conformal atlagvbf segment on the plane. We call this kind of curves handle sep-
We call{ [, 0, [o, w} the periods oM. arators.
Suppose the genus bf is greater than one, then we can In figure 5, the handle separator is shown on the two-hole

still map each handle to a modular space, but now differ- torus as the boundary of two regions. Itis mapped to the line
ent handles may have different periods. The entire surface is sSegments on the modular spacesbin
mapped tay overlapping modular parallelograms. Two par- The mapping is conformal across the handle separator.
allelograms may attach to each other through the images of The white disk in (a) across the handle separator is mapped
zero points, and cross each other between the images of theto two half disks on the two modular spaces in (b). We
zero points. We can separate the parallelograms, thereforecan see that the conformality is preserved across this handle
separate the handles. separator. Similarly, there are two handle separators in (c),
As shown in figure 5 (a) and (b), the two-hole torus is Which are mapped to two line segments in the three mod-
separated into two handles, and each handle is conformally ular spaces as in (d), the two white disks demonstrate that
mapped to a modular space. The mapping across the bound-conformality is preserved across them.
ary is still conformal. The grey disks on the two handles in The zero points and the handle separators are determined
(a) are mapped to the modular spaces in (b); this illustrates by the conformal gradient field. So handle separation is
the modular structure of the conformal parameterization of different from traditional segmentation, which is processed
each handle. (c) and (d) demonstrate a global conformal pa- before the parameterization. In practice, we examine the
rameterization of a genus three torus. From (d) we can tell stretching factor of each vertex, and select the minima as
that each handle has different period. zero points. Any two adjacent handles are mapped to two
(© The Eurographics Association 2003.
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parallelograms, attached by two zero points. We simply 6.3. Summary of the Process
choose the line segment connecting the two zero points on Figure 7 in color section illustrates the process of the global
these two parallelograms, and their pre-images are the han-conformal parameterization and the construction of a con-
dle separators on the surface. formal geometry imageé for the bunny mesh.

Topology ModificationFirst, three holes are punched at
6. Implementation the tips of the ears and the bottom of the bunny model in or-
The implementation of the algorithms is very simple, since der to improve the uniformity of the parameterization.
it only involves solving sparse linear systems. We use itera- Double CoveringNe make two copies of the mesh, reverse
tive methods to solve them. We use both steepest descendenthe orientation of one of them, and glue them together along
method and conjugate gradient method. The conjugate gra-the boundaries of the three punched holes. The punched
dient method is linear. In order to improve the stability and holes and the two copies are illustrated in (a), one of them is

efficiency, the meshes are preprocessed first.

6.1. Preprocessing

In 7, it is shown that if the mesh has obtuse angles, the dis-
crete harmonic map is not bijective, i.e. local triangle flips
may occur. During our numerical experiments, we find that
efficiency and stability are related to the positivity of string
constantkyy. Bern et.aP introduce a method to triangulate

displayed as a wireframe.

Homology Basi#\ homology basis of the double covering is
shown in (b) as the blue curves.

Conformal gradient FieldVe then solve a set of linear sys-
tems 8 and 17 to find a basis of the conformal gradient field
space on the double covering. Then we choose the symmet-
ric conformal gradient fields basis 22 dh Figures (c) and

(d) are two such base conformal gradient fields.

planar regions with non-obtuse angles. For general surfaces Conformal AtlasBy linearly combining the base gradient

with arbitrary topologies, it is still an open problem to trian-
gulate them with all acute angles. In appendix E, we show
that all smooth surfaces admit a triangulation with all acute
angles, such that all tHey’s are positive.

In our implementation, we do some simple preprocessing

fields, we can construct all global conformal parameteriza-
tions. We select one with a highly uniform stretching factor
function as shown in (e) and map the bunny to the global
conformal atlas as shown in (f). From the shading, we can
locate the ear, head and body parts. (g) are two geometry

to remove obtuse angles by heuristic methods. We subdivide images constructed from (f) directly. The geometry images
the mesh to very fine level, and use edge collapse to remove have very good qualities in terms of the reconstructed nor-

edges with the minimum lengths to simplify the subdivided
mesh. The complexity of the simplified mesh is similar to

mals, and regular connectivities, which are shown in (h).

the original one. After several processes, the angles of the 6.4. Results

resulting mesh are almost all acute without increasing the
complexity of the mesh.

6.2. Topology Modification

We have applied our method to different data sets, com-
prising meshes created with 3D modelers and scanned
meshes. We tested our algorithm for meshes with different
topologies, different resolutions, with boundaries or without

Conformal parametrizations map surfaces to canonical pa- boundaries.

rameter domains, and encode the three channel geometric in-

formation (x,y,z) to one channel stretching factor function.
The stretching factor has to be nonuniform. For the extruding

Figure 6 demonstrates that our algorithm is insensitive to
different triangulation and resolutions. A teapot mesh is sim-
plified to reduce the resolution, and the connectivity is also

parts, such as the ears of the bunny, the stretching factors arechanged. The global conformal parameterizations are illus-

highly nonuniform. This is illustrated in figure 8 (a) in color

section, when the bunny is conformally mapped to a sphere,

trated by texture mapping a regular checkerboard. Compar-
ing (a) and (c), we can tell the changes in resolutions and

the ears parts are shrunk to tiny regions. The corresponding triangulation. (b) and (d) show the similarity of the parame-

parameterization in (b) indicates the high nonuniformity of
this parameterization.

Here we introduce aopological modificationmethod
to deal with this problem. Because the parametrization is
highly dependent on the topology, by punching small holes
on the surface, we can change the topology easily without
affecting the geometry too much. Generally, we remove sev-
eral faces from the extruding parts of the surface manually,
for example at the ear tips and the center of the bottom of
the bunny, and compute its global conformal parametriza-
tion. The results for the bunny are as shown in (c) and (d).
The uniformity of the parameterization is improved a great
deal. The original surface is of genus zero, after topology
modification, it is of genus two.

terizations.

Figure 9 in color section shows several results for differ-
ent meshes. (g) is a minimal surface model of genus one with
three boundaries. Its double covering is of genus four, with
10k vertices and 20k faces. The most complicated model we
tested is the whole body David model (f), the double cover-
ing is of genus 16, 365k vertices, 730k faces. This demon-
strates the algorithm is robust enough for practical applica-
tions. The sculpture modelin (h) is of 5k vertices, 10 k faces.
The knot model (e) is of 2050 vertices and 3672 faces.

7. Summary and discussion

We have introduced a purely algebraic method to compute

global conformal parameterizations for surfaces with arbi-
(© The Eurographics Association 2003.
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(a) Original teapot model

(b) Global conformal

parameterization
Figure 6: Global conformal parameterization algorithm is insensitive to triangulation and resolution.

trary nontrivial topologies, with or without boundaries. This

(c) Simplified teapot model (d) Global conformal

parameterization

BecauseM has a simplicial complex structure, we

method can be used to compute all possible solutions. Eachcan compute the simplicial homology.(K,R) and co-

genug closed surface can be conformally mapped tood-
ular parallelograms. The conformality is preserved all over
the surface except fd2g — 2 zero points. The parameteri-
zation is intrinsic to the geometry only. The canonical atlas

constructed in this paper can be used to construct geometry

homology H*(K,R). We denote thechain complexas
C«K = {CqK,dq}¢>0, and cochain complexas C*K =
{CIK, 3%} ¢>0, whereCIK = Hom(CqK; R).

d%wo = wdg: 10, (29)

images that have accurate reconstructed normals. In orderwherew € CIK ando € Cq 1K. The kernel 0Bq is ZgK, the

to improve the uniformity of the parameterization, we have
also introduced a topology modification method.

According to Klein’s Erlangen program, different geom-
etry branch studies the invariants of a space under differ-
ent transformation group. The topological structure and Eu-
clidean geometric structure are well studied in computer sci-

ence. But the conformal structure has not been adequately

studied or applied in the field. This paper has introduced
a practical method to compute thmnformal structures

of general surfaces. The holomorphic one-form (conformal
gradient field) cohomology group and the periods computed
in this paper are the invariants under conformal transforma-
tion group. We will continue to research further applications,

and improve the efficiency of the algorithms.

Appendix A: Homology and Cohomology
LetK be a simplicial complex whose topological realization
|K| is homeomorphic to a compact 2-dimensional manifold.

Suppose there is a piecewise linear embedding,
F: K| —R. (26)

The pair(K,F) is called a triangular mesh and we denote
it as M. The g-cells ofK are denoted af,vy,---,vg]. A
g-chainis a linear combination of g-simplices,

2

[Vo,v1,--+,Vg] EK

Clvo,va,-+ Vg [Vo, V1, - -+, Vg). (27)

The set of all g-chains is denoted@gK. The boundary op-
erator is a linear map froifigK to Cy4_1K. Boundary opera-
tor dq takes the boundary of a simplex,

q
a[VOaVL o 7Vq} = Z)[V07 e ./Vi,]_,VH,]_, e 7Vq}'
=

(© The Eurographics Association 2003.

(28)

image ofdq, 1 is By, and theg-th homology groujis
HgK = ZgK /BgK. (30)

Similarly, the kernel 089 is Z9K, the image o691 is BIK,
and theg-th cohomology group is

HY =79 /BK. (31)
Appendix B: Full rank of the linear system of closedness,
harmonity and duality

In order to prove the nondegeneracy of the linear system of
closedness, harmonity and duality, it is sufficient and neces-
sary to show its kernel space is zero only. Suppose we have
a homology basiges, e,...,ey}, and a one-formw, such
thatw is closed and harmonig, w = 0, we would like to
show thatw = 0. First we want to show the integration af

on any closed loop is zero. Suppose a curigclosed, then

r can be represented as a linear combinatios; 'sfwith a
patch boundary, = zizzgl cie + 0o, whereo € C,.

. 29 .
/wzzlci/uﬂ—/ w=| w
r = 51 do il¢]
Because of the closedness condition, the derivative of
zero,dw = 0. According to the Stokes theorem, the above

equation is
/ oo:/éw:O.
00 o

Next, we want to showb is zero. Suppose is nonzero at
an edgdu, V], assumeo([u,v]) > 0, then we extend the edge
[u,V] to a path{vg, V1, .. .,Vn}, such thaty([vi,vi.1]) > 0and
the path can not be extended further. The path has no self in-
tersection, otherwise there is a loop, on which the integration
of wis positive, contradictory to the previous preposition.

(32

(33)
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Let's examinevn, by construction, the path can not be ex-
tended any further, so for any edgesvn] adjacent to it,
([u,vn] > 0, with w([vh—1,Vn]) > 0. The Laplacian fow at
vertexvn is

Aw(vn) = ku,ve([u, vn]).
uvn]eM

(34)

According to appendix E, we can assukyg > O for all
edges, then the Laplacianwatis nonzero. Contradiction.

So the space of harmonic one-forms2iy dimensional.
Our proof is very general, since we only assume that
are positive. In fact we can prove the following fact, given a
functional on all functions from the universal covering space
of M to R, (or equivalently a functional on all closed one
formsw=df),

E(f) = kvl (u) = FW)]1%

[uvjeM

(35)

All the critical points of this functional form a linear space,
and the dimension of this space 2. For example, if
we change the harmonic energy to barycentric energy with
kuyv = 1, all the parameterizations with minimum barycen-
tric energy form &g linear space.

Appendix C: Wedge product

Supposew and T are two closed one-forms. We con-
struct local isometric coordinates of a fate= [A,B,C].
A(0,0),B(a,0),C(b,c), wherea = ||[B—A||, b= ||C—
Aj|cosA ¢ = ||C — Al|sinA w andT can be represented as
piecewise constant one-forms with respect to these coordi-
nates,

© aic(cw[A,B]dXJr(aco[A,C}—bw[A,B])dy) (36)

1
ac
By direct wedge product defined for De Rham one-forms,
we get

T (ct[A,Bldx+ (at[A,C] — bt[A,B])dy) (37)

WAT = alc (—IA, BJT[C, Al + w[C, AlwlA B])dxA dy.(38)
Then
AwAr:%(—w[A,B]t[C,A]+w[C,A]w[A,B}). (39)

BecauseA,B,C are circular symmetric, by circulating
A,B,C, we get two similar equations. By adding them to-
gether, we get

1 w/AB] wB,C] w[C,A]
/ wAT==| TAB] TBC] TCA (40)
T 6 1 1 1

Supposer € 71, then we build the same local coordinates
system and representas formula [6], then use the formula
of Hodge star,

*dx= +dy, *dy= —dx 41)

Then supposeT is a face, and the three edges are
{do,d1,d}, their lengths arélo, 11,12} respectively, then

/ WA T=UMVT, (42)
.
whereU = (wdp, wds ), V = (wdp, wd1 ), and

1 212 1215413

B 83( —12-15+13 212 (43)

Becausedyp,d;,d, are circular symmetric, by circulating
them we get the other two equations. Adding them together,
we get

U= ((A)do,(x)db(x)dz), V= (Tdo,'[dlﬂ'dz), and

1 —4g 31212 1341312
M=ou| B+8-12 -4 13+15-13
1241812 1341215 —413

(44)

Appendix D: Full rank of the linear system of wedge
products

Suppose a homology basis{ie;, &, ..., &g}, the dual har-
monic one-form basis ifwy, uy, . .., tpg}, we would like to
show that the matrix

JorAhw [ Awp J w1 Aty
Jopnwr  [opAoy Jwpnong | e
JopgAwr [ apg Aoy J g A g

is of full rank.

First, we can assung’s are a set of canonical homology
basis. That meang only intersects withg, g at one point,
foralli=1,2,... g, as shown in figure 2. Then there exists
a fundamental domaib , such that

0D =eje1,4€ lefjgezez+gez_lez_+lg e 9992999_132_9246)
The wedge produab; A wj can be geometrically interpreted
as the oriented area of tdg— gon Dembedded in the plane,
the embedding is defined as follows: We choose one point as
the base point, given a poipte D, find an arbitrary path
from the base to it, then

i) =(fo [w).

It is easy to se€w, wjg) will map the boundary 06D
to a curved square. Féwi, wj), j # i +9, 0D is mapped to
two curved segments. This shows

(47)

/u)iij:6=+g,i<g,i<j. (48)
So the matrix 45 is non-degenerated.

In general cases, the homology basis is not canonical, then
there exists a linear transformati@to map the basis to the
canonical one. Itis easy to show that the dual harmonic one-
form bases can be transformed By L Wedge product is
bilinear, so the new 45 is still nondegenerated.

(© The Eurographics Association 2003.
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Appendix E: Smooth Surface with Triangulation with All
Acute Angles

We want to prove that each smooth surface admits a triangu-
lation with all acute angles. Here we only sketch the proo
for genus zero closed surfaces.

SupposeSis a genus zero smooth surface, tf&can be
conformally mapped t& without singularities. A sphere
can be triangulated with all acute angles easily, one example
is to subdivide an octahedron and map each line segmentto a

geodesic on the sphere. Then we map this triangulation back 17.

to S. Because the mapping is angle preserving, the triangula-

tion onSis also with all acute angles. We can use a mesh to 1s.

approximateS by changing each curved triangle to a planar
one. If the triangulation is dense enough, the planar triangle

is very close to the curved one, and each angle is acute. 19.

For surfaces with higher genus and boundaries, the proof

can be conducted in a similar way. Hence, for a smooth sur- 20.

face, we can find a mesh to approximate it, such that the
string constanky,y is positive for each edge.

21.
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(a) Punched surface (b) A homology basis
and double covering.
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(e) A special conformal gradient  (f) Global conformal atlas  (g) Conformal geometry image  (h) Regular connectivity.

field with high uniformity
Figure 7: Process of global conformal parameterization and generating a geometry image.

(a) Spherical conformal map of (b) The global parameterization (c) One parameterization with (d) Another parameterization with
the bunny mesh. induced from (a) topology modification topology modification

Figure 8: Improve uniformity of the global conformal parameterization by topology modification.

(e) Conformal parameterization (f) Conformal parameterization (g) Conformal parameterization (h) Conformal parameterization
of genus one surface of genus 16 surface computed by double covering of genus three surface

Figure 9: Global conformal parameterization results.
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