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Abstract

Constructing splines whose parametric domain is an arbitrary man-
ifold and effectively computing such splines in real-world appli-
cations are of fundamental importance in solid and shape model-
ing, geometric design, graphics, etc. This paper presents a gen-
eral theoretical and computational framework, in which spline sur-
faces defined over planar domains can be systematically extended to
manifold domains with arbitrary topology with or without bound-
aries. We study the affine structure of domain manifolds in depth
and prove that the existence of manifold splines is equivalent to
the existence of a manifold’s affine atlas. Based on our theoretical
breakthrough, we also develop a set of practical algorithms to gen-
eralize triangular B-spline surfaces from planar domains to mani-
fold domains. We choose triangular B-splines mainly because of
its generality and many of its attractive properties. As a result, our
new spline surface defined over any manifold is a piecewise poly-
nomial surface with high parametric continuity without the need
for any patching and/or trimming operations. Through our experi-
ments, we hope to demonstrate that our novel manifold splines are
both powerful and efficient in modeling arbitrarily complicated ge-
ometry and representing continuously-varying physical quantities
defined over shapes of arbitrary topology.

CR Categories: 1.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—curve, surface, solid and object rep-
resentations

Keywords: Geometric modeling, manifold spline, Riemann sur-
face, conformal structure, affine atlas

1 Introduction and Motivation

Real-world volumetric objects are oftentimes of complex geometry
and arbitrary topology. One fundamental goal of solid and phys-
ical modeling is to seek accurate and effective techniques for the
compact representation of smooth shapes with applications in both
scientific research and industrial practice. Towards this goal, subdi-
vision surfaces have been extensively investigated during the recent
past. Despite their modeling advantages for arbitrarily complicated
geometry and topology, subdivision surfaces have two drawbacks:
(1) accurate surface evaluation is frequently conducted via explicit,
recursive subdivision since most subdivision schemes (especially
those interpolatory schemes) do not allow closed-form analytic for-
mulation for their basis functions; (2) extraordinary points depend
on the connectivity of the control mesh and need special care, as
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their behaviors and smoothness properties differ significantly from
other regular regions nearby. This paper aims to tackle the afore-
mentioned technical challenges associated with popular subdivision
surfaces by articulating the new theory for manifold splines and de-
veloping novel algorithms for constructing such splines in practice.

Aside from subdivision surfaces, this research is equally motivated
by the rigorous mathematics of spline theory. Spline surfaces have
demonstrated their significance in shape modeling, finite element
analysis, scientific computation, visualization, manufacturing, etc.
Most popular examples include Bézier surfaces, tensor-product B-
spline surfaces, and triangular B-spline surfaces. Essentially, all
of them are piecewise polynomials defined over planar parametric
domains for efficient evaluation. While these spline surfaces are
ideal for modeling open surfaces with curved boundaries, they are
cumbersome to represent smooth surfaces with arbitrarily complex
topology. The feasible way is to trim parametric spline surfaces
defined over open planar domains, stitch them along their trimmed
edges with care, and enforce the continuity requirements of certain
degree across their shared boundaries as shown in [Eck and Hoppe
1996]. It is challenging to maintain high order continuity across
patches in both theory and practice. Therefore, there is a press-
ing need to introduce the new spline concept and develop the new
spline theory that define polynomial splines over arbitrary manifold
without trimming and stitching operations.

In essence, constructing splines defined over arbitrary manifolds
is of fundamental significance in geometric design, and interactive
graphics. This paper presents a general theoretical framework that
can systematically generalize spline surfaces with planar domains
to manifold domains with arbitrary topology with or without bound-
aries. The specific contributions of this paper include:

e While motivated by the above observations, it also signifi-
cantly advances the state-of-the-art of both subdivision sur-
faces and splines surfaces.

e This paper gives a theoretical proof for the existence of man-
ifold splines, i.e., it is equivalent to the existence of the affine
structure of the underlying manifold serving as a parametric
domain.

e Classical characteristic class theory has concluded that no
closed surface admits an affine atlas except tori, so it provides
evidence that the existence of extraordinary points depends
only on topology.

e Besides the theoretical advances, this paper also devises a set
of practical algorithms that enable the effective modeling of
triangular B-spline surfaces over manifold domains. The re-
sulting surface is a piecewise polynomial surface with high
parametric continuity without any patching or trimming oper-
ations.

e Due to the intrinsic topological obstructions associated with
domain manifolds, the manifold triangular B-spline still ad-
mits singular points (which can not be evaluated by the new
spline scheme). However, our modeling algorithms are able
to construct the manifold spline based on triangular B-splines
with the minimum number of singular points. This lower
bound results from Riemann surface theory (e.g., conformal
structure).



In this paper, we choose to work on triangular B-splines and their
manifold generalization, mainly because triangular B-splines have
many important properties:

e Triangular B-spline surfaces are defined over arbitrary planar
triangulations, and they generalize tensor-product B-splines.
Unlike tensor-product B-splines, it has no strict requirements
for connectivity of the underlying mesh domain.

e Local support, parametric affine invariance, the completeness
of basis functions, and polynomial reproduction are attractive
properties for triangular B-splines, and they still hold when
generalizing to manifold splines.

e Triangular B-splines exhibit the maximal order of continuity
with the lowest possible degree of their basis functions. For
example, they achieve C? continuity when using only cubic
polynomials. Furthermore, spatially-varying smoothness re-
quirements and sharp features can be easily achieved via dif-
ferent knot placements in the parametric domain.

With our new results shown in this paper, it is rather straightforward
to generalize other popular splines to their manifold counterparts by
adopting our techniques on triangular B-splines (see Figure 8). It
may be noted that the new triangular B-splines defined over arbi-
trary manifolds may still have special, singular points which must
require separate, additional care (Note that singular points for man-
ifold splines differ from extraordinary points of subdivision sur-
faces, where the vertex valence is the only criterion). The intrinsic
reason for the existence of singular points (when using manifold
splines) is due to the topological obstruction of the underlying do-
main. In principle, an arbitrary domain can not offer a special atlas
such that all transition functions are affine. In practice, however, by
removing a finite number of points, the domain will then admit the
affine atlas and subsequently allow the meaningful generalization
of triangular B-splines to arbitrary manifolds.

After the the problem statement and its motivation, the remainder
of this paper is organized as follows. Section 2 briefly reviews the
prior work. Section 3 presents the necessary mathematical tools for
manifold splines. Section 4 documents all the theoretical elements
of our novel manifold splines. Section 5 explains the algorithmic
details for constructing triangular B-splines over arbitrary manifold.
Section 6 discusses the implementation issues and presents our ex-
perimental results. Finally, we conclude the paper and briefly dis-
cuss the future research in Section 7.

2 Prior Work

This section briefly surveys some related work in triangular B-
splines and surfaces defined on manifolds.

2.1 Triangular B-splines

The theoretical foundation of triangular B-splines lies in the multi-
variate B-spline, or simplex spline, introduced by [de Boor 1976].
It has received much attention since its inception. [Dahmen et al.
1992] propose triangular B-splines from the point of view of blos-
soming, which offers a general scheme for constructing a collection
of multivariate B-splines (with n — 1 continuous derivatives) whose
linear span comprises all polynomials of degree at most n. [Fong
and Seidel 1991] present the first prototype implementation of tri-
angular B-splines and show several useful properties, such as affine

invariance, convex hull, locality, and smoothness. [Greiner and Sei-
del 1994] show the practical feasibility of multivariate B-spline al-
gorithms in graphics and shape design. [Pfeifle and Seidel 1995a]
demonstrate the fitting of a triangular B-spline surface to scattered
functional data through the use of least squares and optimization
techniques. [Franssen et al. 2000] propose an efficient evaluation
algorithm, which works for triangular B-spline surfaces of arbitrary
degree. [Neamtu 2001] describes a new paradigm of bivariate sim-
plex splines based on the higher degree Delaunay configurations.

Traditional B-splines are defined on planar domains. Many re-
searchers have explored the feasible ways to generalize splines to
be defined on sphere and manifolds with arbitrary topology. We
only document a few of them in the interest of space.

2.2 Spherical splines

Defining splines over a sphere has been studied during the past
decade. [Alfeld et al. 1996a] present spherical barycentric coor-
dinates which naturally lead to the theory of Spherical Bernstein-
Bézier polynomials (SBB). They show fitting scattered data on
sphere-like surfaces with SBB in [Alfeld et al. 1996b]. [Pfeifle
and Seidel 1995b] present scalar spherical triangular splines and
demonstrate the use of these splines for approximating spherical
scattered data. [Neamtu 1996] constructs a functional space of ho-
mogeneous simplex splines and shows that restricting the homoge-
neous splines to a sphere gives rise to the space of spherical simplex
splines. [He et al. 2005] present rational spherical spline for genus
zero shape modeling.

2.3 Surfaces Defined on Manifolds

There are some related work on defining functions on manifold,
such as [Grimm and Hughes 1995; Demjanovich 1996; Cotrina and
P1a 2000; Cotrina et al. 2002; Ying and Zorin 2004]. These methods
share similar construction procedures which can be summarized as
follows:

1. Find an atlas {U;,$;} to cover the domain manifold M, with
transition functions 0;; = ¢; 0 0; ! All transition functions

are required to be smooth, especially, analytical functions are
used in [Ying and Zorin 2004].

2. Define functional basis on each chart f; : ¢;(U;) — R.

3. For each point p € M, normalize these functions and define
the basis functions B; as

o filp)
Bi(p) = 5050

4. Define the functions as F(p) = Y;C;B;i(p) where C; are the
control points.

It is obvious that, suppose B; is a polynomial on chart (U;, ¢;), but
B; is not a polynomial on a different overlapping chart (U;,¢;),
because in general ¢;; is NOT algebraic and ¢;; o B; is not a poly-
nomial.

Our work is completely different from the above work in that: 1)
The transition functions of our method must be affine. Therefore,
the requirements of our method is much stronger. That is why topo-
logical obstruction plays an important role in our construction. 2)
Our method produces the polynomial or rational polynomials. On
any chart, the basis functions are always polynomials or rationals,
and represented as B-splines or rational B-splines.



A different approach using the concept of orbifold is introduced
in [Wallner and Pottmann 1997]. The transition functions of the
oribifold are not affine, the basis functions are not algebraic either.

In summary, we believe manifold splines have two fundamental cri-
teria:

1. Manifold: The splines are defined on the domain manifold,
namely, the evaluation of the splines is independent of the
choice of the chart.

2. Algebraic: locally, on any chart, the splines should be either
polynomials or rational polynomials.

All previous manifold constructions focus on the first point but can
not satisfy the second one. Most spline schemes emphasize the
algebraic aspect, but only are defined on planar domains. Our work
is the first one that satisfies both criteria, and discovers the intrinsic
relation between manifold splines with affine structures.

3 Theoretical Background

In order to define splines on manifolds, we must fully understand
the intrinsic properties of splines and the special structures inherent
to the domain manifold. This section presents the relevant theoreti-
cal tools.

Essentially, splines have local support, so we shall define spline
patches locally on the manifold and glue the locally-defined spline
patches to cover the entire domain manifold. Furthermore, since
splines are invariant under parametric affine transformations, we
seek to glue the patches using affine transition functions. Therefore,
if the domain surface admits an atlas on which all transition func-
tions are affine, then we can glue the patches coherently. However,
the existence of such an atlas is solely determined by the topology.
In principle, we can glue the patches to cover the entire surface ex-
cept a finite number of points, which are singular points and can not
be evaluated by the global splines on the manifold. These singular
points represent the topological obstruction for the existence of the
affine atlas.

3.1 Spline Theory and Properties

The most popular spline schemes, such as tensor product Bézier
surfaces, tensor product B-spline surfaces, triangular Bézier sur-
faces and B-patches, can be unified as the different variations of
polar forms [Ramshaw 1987; Ramshaw 1989; Seidel 1994]. We
shall briefly explain the concept of polar forms, and then, we con-
centrate on B-patches and triangular B-spline surfaces, because of
their flexibility and generality.

3.1.1 Polar Form

In essence, a polar form is a multivariate polynomial that is sym-
metric and multi-affine.
Definition 3.1 (Affine Map). A map f : R> — R" is affine, if
and only if it preserves affine combinations, i.e., if and only if
FEE o) = Y7 oo f(0;) whenever Y g oy = 1.
Definition 3.2 (Symmetric, Multi-Affine). Let F be an n-variable
map. F is symmetric if and only

F(uy,up, - uy) = F(ug),Un), -, Ug(y))
for all permutations © € Y,,. The map F is multi-affine if and only
if F is affine in each argument if the others are held fixed.

The well-known blossoming principle indicates that any polyno-

mial is equivalent to its polar form.

Proposition 3.3. Polynomials F : R — R! of degree n, and a sym-

metric multi-affine map f : (R?)* — R are equivalent. Given a

map of either type, unique map of the other type exists that satisfies

the identity F (u) = f(u,--- ,u). The map f is called the multi-affine
——

n
polar form or blossom of F.

3.1.2 B-patches and Triangular B-splines

Triangular B-spline surfaces can be defined on planar domains with
arbitrary triangulations. In particular regions, triangular B-splines
are B-patches. For the convenience, we introduce notations which
are similar to those employed in [Dahmen et al. 1992; Gormaz
1994]. Essentially, we formulate B-patches through the use of a
polar form. Let A" := [t} ¢}, t}] be the triangle “I” of our triangu-
lation 7" of R%. For each vertex t{ we assign a list of k distinct
additional knots

thi={tlo.t]y,....t]}. M

The rule Iproposed in [Dahmen et al. 1992] consists of producing a
subset Ve where B = (Bo,B1,B2) are three non negative integers, as

follows
I
Vi = {thooth 1ot gy oottt p o thosth oot 1

If we want to define a degree k simplex splines, we must impose

that
1Bl :=Bo+B1 +B2=k.

Vé is the set of all knots associated with one vertex in 7.

We further define AL t! | and

B [0[50 LB 252
(R2)IBI.

(@)

1. (¢l 1 1 1 1 1
XB = (t0707...7t07[50717t1707...7t17B1717t2707...7t273271) S

Xé is the set of knots associated with one control point f (Xé)
If AIB is non-degenerate, it is possible to define the barycentric co-
ordinates of u € R? with respects to this triangle:

2
u= ;}X{s’[(u)

2
tll-,ﬁﬂ and Zkfﬁ.,i(“) =1 3)
i=0

The generalized algorithm computes F(u) starting from the values
f (Xé), |B| = k. Those values are called the poles of F. Let us define

Xéllv Z=Xé x (u,u,...,u) € (R?)Bl+

~—

v

and assign Cg (u) := f(Xéu") with |B| = k — v, the algorithm uses
the k-affinity of f stating the recurrence relation:

COu) = £(X8). Bl =
v+l Z 7\.1
where ¢! denotes the canonical basis vector. Then F(u) = C&(u). If

the basis function for the pole f (Xé) is denoted as Bé(~), then we
obtain

(W)Ch o (), @)

W= Y rx})Bw).
[Bl=k



3.1.3 Triangular B-spline Properties

Triangular B-splines have the following valuable properties which
are critical for geometric and solid modeling:

1. Local support. The spline surfaces has local support. In order
to evaluate the image F(u) of a point u € A!, we only need
control points cé (associated with knot set VﬁJ on triangle J),
where triangle J belongs to the 1-ring neighborhood of trian-
gle I

2. Convex hull. The polynomial surface is completely inside the
convex hull of the control points.

3. Completeness. The B-spline basis is complete, namely, a set
of degree n B-spline basis can represent any polynomial with
degree no greater than n via a linear combination.

4. Parametric affine invariance. The choice of parameter is not
unique: if one transforms the parameter affinely and the corre-
sponding knots of control points are transformed accordingly,
then the polynomial surface remains unchanged (see Figure

1).

5. Affine invariance. If the control net is transformed affinely, the
polynomial surface will be consistently transformed affinely.

Note that parametric affine invariance is different from affine in-
variance. The diagrams below illustrate the radical difference.

w Vi s ou).0v)

F 0oF

F4>FO(])

(a) Parametric affine invariance (b) Affine invariance

The left one above represents parametric affine invariance, which
refers to the property that, under a transformation between parame-
ter domains, the shape of the polynomial surface remains the same;
the right one above indicates affine invariance, which refers to the
property that under a transformation of the control points, the poly-
nomial surface will change accordingly.

(a) Original DMS spline. (b) Transformed DMS spline.
Figure 1: Parametric Affine Invariance: (a) and (b) are two trian-
gular B-splines sharing the same control net, the two parametric
domains differ only by an affine transformation. The same control
nets result in the same polynomial surfaces shown in (a) and (b).
(Spline model courtesy of M. Franssen.)

The aforementioned properties are extremely important for geomet-
ric and solid modeling applications. For example, the local support
will allow designers to adjust the surface by moving nearby control
points without affecting the global shape. Therefore, it is crucial to
preserve these properties when we generalize the planar domain B-
splines to manifold B-splines. We will prove that a generalization

does exist, and these desirable properties can be preserved. The
generalization completely depends on the so-called affine structure
of the domain manifold. The local support and parametric affine
invariance are crucial for constructing manifold splines.

3.2 Affine Structure

Figure 2: Affine Manifold: The manifold is covered by a set of
charts (Uq, o), where ¢ : Uy — R2. If two charts (Uo; ) and
(Up, 9p) overlap, the transition function 0o : R? — R? is defined

as Ggg = Op © O ! If all transition functions are affine, then the

manifold is an affine manifold. The atlas {(Uy, o)} is an affine
structure.

Our manifold splines are defined over manifolds with arbitrary
topology with or without boundaries. A manifold can be treated
as a set of open sets in R? glued coherently.

Definition 3.4. A 2 dimensional manifold is a connected Haus-
dorff space M for which every point has a neighborhood U that
is homeomorphic to an open set V of R2. Such a homeomorphism
0:U — Viscalled a coordinate chart. An atlas is a family of charts
{(Ua,0a) } for which Uy, constitute an open covering of M.

An affine atlas is an atlas with special transition functions.
Definition 3.5. A 2 dimensional manifold M with an atlas
{(Ua,%0)}. if all chart transition functions

Oup = 05205 < Gu(Ua[\Ug) = 0p(Ua(\Up)

are dffine, then the atlas is called an affine atlas, M is called an
affine manifold (see Figure 2).

Two affine atlases are compatible if their union is still an affine
atlas. All the compatible affine atlases form an affine structure of
the manifold (see Figure 2).

For closed surfaces, only genus-one surfaces have affine structures
(see Figure 2), but all surfaces with boundaries have affine struc-
tures. Next, in order to construct affine atlas for general surfaces in
practice, we need certain theoretical tools which are induced from
the conformal structure of the domain manifold.

3.3 Conformal Structure

Similar to affine structure, conformal structure is also an intrinsic
structure of the surface. A conformal atlas is an atlas such that all
transition functions are conformal (analytic). Two conformal at-
lases are compatible if their union is still a conformal atlas. All



compatible conformal atlases form conformal structure. All sur-
faces have conformal structure and are called Riemann surfaces
[Jost and Simha 1997]. Conformal structure is closely related to
affine structure. In particular, an affine atlas can be computed by
using special differential complex forms defined on the conformal
atlas.

3.3.1 Riemann Surface

The Riemann surface is a surface with a conformal atlas, such that
all transition functions are analytic.

Definition 3.6 (Analytic Function). A function f:C — C, (x,y) —
(u,v) is analytic, if it satisfies the following Riemann-Cauchy equa-

tion

du v du _ 78\/

ox dy’dy  ox
Definition 3.7 (Riemann Surface). A Riemann surface M is a 2-
manifold with an atlas A = {(Uy,$0)}, such that all transition

Junctions Qqg C — C are analytic. All compatible affine atlas
forms a conformal structure of M.

Analytic functions are conformal, which intuitively means angle
preserving. It is well known that all oriented metric 2 manifolds are
Riemann surfaces and have a unique conformal structure, such that
on each chart Uy, @, the first fundamental form can be represented
as ds* = Mu,v)(du® +dv?). [Gu and Yau 2002; Gu and Yau 2003]
introduce practical algorithms to compute this conformal structure
on general triangular meshes.

3.3.2 Holomorphic 1-form

In order to find an affine atlas, we need special differential forms
defined on the conformal structure.

Definition 3.8 (Holomorphic 1-form). Given a Riemann surface
M with a conformal structure A, a holomorphic I-form w is a com-
plex differential form, such that on each local chart (U,0) € 4,

o = f(z)dz, 5)

where f(z) is an analytic function, z = u-+ iv is the local parameter
in the complex form.

Genus zero surface has no holomorphic 1-forms. The holomor-
phic 1-forms of closed genus g surface form a g complex dimen-
sional linear space, denoted as Q(M). A conformal atlas can be
constructed by using a basis of Q(M). This is the method derived
in [Gu and Yau 2002; Gu and Yau 2003]. Considering its geomet-
ric intuition, a holomorphic 1-form can be visualized as two vector
fields ® = (@y, wy), such that the curlex of ®, and ®, equal zero.
Furthermore, one can rotate ®, about the normal a right angle to
arrive at ®,

Vxmy=0,Vxoy=0,0,=nxw,.

By integrating a holomorphic 1-form, an affine atlas can be easily
constructed. Figure 8(a), 4(a), 5(a) illustrate holomorphic 1-forms
on surfaces. The texture coordinates are obtained by integrating the
1-form on the surface (see [Gu and Yau 2003] for the details).

3.3.3 Singular Points

According to Poicaré-Hopf theorem, any vector field on a surface
with nonzero Euler number must have singularities where the vector
field is zero. Such singularities of ® = (0, ) are called zero
points,

Definition 3.9 (Zero Point). Given a Riemann surface M with a
conformal structure A, a holomorphic one-form ®, ® = f(z)dz,
where f(z) is an analytic function and z = u+ iv is the local pa-
rameter. If at point p, f(z) equals to zero, p is a zero point of ®.

In fact, it can be proven that zero points do not depend on the
choice of the local chart at all. For a Riemann surface M with
genus g, a holomorphic 1-form ® has 2g —2 zero points in princi-
ple. Zero points are singular points for our manifold splines (to be
constructed later). Figures 8(a), 4(a), demonstrate the zero points
(singular points) on the 1-form. The centers of regions with oc-
tagons are the zero points.

4 Manifold Spline Theory

In this section, we will systematically define manifold splines using
our theoretical results on affine structure and triangular B-splines
and show their existence is equivalent to that of affine structure. We
first discuss the existence of affine structure for general manifolds,
and then we compute the affine structure through the use of confor-
mal structure for any manifold. For the consistency of our manifold
spline theory, we shall utilize the parametric affine invariance and
polynomial reproduction properties of general spline schemes (tri-
angular B-splines in particular for this paper).

4.1 Definition and Concept

A manifold spline is geometrically constructed by gluing spline
patches in a coherent way, such that the patches cover the entire
manifold. The knots and control points are also defined consistently
across the patches and the surface evaluation is independent of the
choice of chart. First of all, we define the local spline patch. After
that, we define a global manifold spline which can be decomposed
into a collection of local spline patches.

Definition 4.1 (Spline Surface Patch). A degree k spline surface
patch is a triple S = (U,C,F), where U C R? is a planar simply-
connected parametric domain. F : U — R3 is a piecewise poly-
nomial surface and C is the set of control points, C := {cé,Xé €

(R2)BI,|B| = k}. F can be evaluated from C by polar form.

Definition 4.2 (Manifold Spline). A manifold spline of degree k is
a triple (M,C,F), where M is the domain manifold with an atlas
A ={(Uq,00)}. Fisamap F:M — R representing the entire
spline surface. The knots t11-7 j are defined on M directly. C is the

1

control points set, each control point i is associated with a set of

knots Xé which are defined on the domain manifold M directly,
C:={cp, X5 e MP |B| =k}

such that

1. For each chart (Ug, 0q), the restriction of F on Uy, is denoted
as Fo =Fodq ! a subset of control points Cy, can be selected
from C, such that (¢q(Uy,),Co, Fo) form a spline patch of de-
gree k, where Cq := {cfs7¢a(Xé) € (]R2)\ﬁ\7 B =k}

2. The evaluation of F is independent of the choice of the local
chart, namely, if Uy intersects Up, then Fo = Fg o §qp, where
Oop is the chart transition function.

The technical essence of the above definition is to replace a planar
domain by the atlas of the domain manifold, and the surface eval-
uation of the spline patches is independent of the choice of charts



(see Figure 7). After the formal definition, we use one simple ex-
ample to further illustrate the concept of our manifold splines (see
Figure 3).

One Dimensional Example. Here the domain manifold is a unit
circle S'. There are n distinct points fg,11,- - ,#, distributed on
the circle in a counterclockwise way. All the summation and sub-
traction on indices are modular n. The intervals between points are
arbitrary. The control net is a planar n-gon, the control points are
denoted as ¢g, ¢y, -+ ,¢,—; also in a counterclockwise way, and the
knots for ¢; are t;_»,ti_1,t;,ti11,ti4+2.

The affine atlas of S' is constructed in the following way: the arc
segment U; = (t;_o — &,ti_1,i,tis1,ti12 +€),€ € RT is mapped to
an interval in R! by ¢; : S' — R!, such that

0ilt) =a0i(t) =a+b [ dsac R bERT. (6

14

where a, b are arbitrarily chosen. The union of all local charts
(Ui, ¢;) form an affine atlas 4 = {(U;,¢;)}. Note that by choosing
different a, b, there might be infinite local charts in 4.

The control net corresponding to local chart (U;, ;) is the line seg-
ments C; = {¢;_1,¢;,Ci+1,¢i+2 }. The piecewise polynomial curve is
formed by n pieces of polynomials, the i-th piece F; : [t;, ;1] — R?
is evaluated on (U;,¢;) with control polygon C; using cubic B-
spline.

Then we define the cubic B-spline curve on the unit circle consis-
tently. It is C% continuous everywhere. The B-spline patches are

{0:(U1), Gy, Fi}.

The above example can be trivially extended to construct a two-
dimensional surface in a similar way. The key step is to find an
affine atlas for the domain manifold. The next section will discuss
the existence of such an atlas for general 2-manifolds in detail.

i
Ci—1 !
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Figure 3: Manifold splines on S': (a) The domain manifold is a unit
circle S! with n distinct knots 7y, .. .,z,—1; (b) The i-th spline patch
U; = (ti—p —¢€,...,tip + €); (c) The i+ 1-th spline patch U;y; =
(ti*l —&,...,0iy3 +£)

4.2 Equivalence to Affine Atlas

The central issue of constructing manifold splines is that the atlas
must satisfy some special properties in order to meet all the require-
ments for the evaluation independence of chart selection. We will

show that for a local spline patch, the only admissible parameteri-
zations differ by an affine transformation. This requires that all the
chart transition functions are affine.

4.2.1 Admissible Parameterizations

From the evaluation process in (4), it is obvious that the only
information used there are barycentric coordinates (3) of the
parameter with respect to the knots of the control points. If we
change the parameter by an affine transformation, the evaluation
is invariant and the final shape of the spline surface will not be
modified. On the other hand, an affine transformation is the only
parametric transformation that will keep the consistency between
the spline surface and its parameters. In other words, affine
transformations are the only admissible parametric transformations
for a spline patch. Note that we present four major theorems as
our theoretical results in this section. However, in the interest of
technical flow, we defer their proof to the appendix at the end of
this paper.

Theorem 1. The sufficient and necessary condition for a manifold
M to admit manifold spline is that M is an affine manifold.

This theorem indicates that the existence of manifold splines de-
pends on the existence of affine atlas. If the domain manifold M
is an affine manifold, we can easily generalize the planar triangular
B-spline surfaces to be defined on M directly. We use the same sym-
bols for manifold spline as in Section 3.1.2. The major differences
are as follows:

1. The knots associated with each vertex t{ in (1) are defined on
the manifold directly.

2. The knots associated with each pole Xé in (2) are defined on
M directly.

3. The barycentric coordinates 7‘{31’ used in the evaluation pro-

cess (3) are defined on any cha7rt of 4. Because A is affine,
the value of the barycentric coordinates is independent of the
choice of the chart.

4.3 Existence

From the previous discussion, it is clear that in order to define a
manifold spline, an affine atlas of the domain manifold must be
found first. According to characteristic class theory [Milnor and
Stasheff 1974], general closed 2-manifolds do not have an affine
atlas. On the other hand, all open surfaces admit an affine atlas.
In order to define manifold splines, the domain manifold has to be
modified to admit an atlas by removing a finite number of points.
This offers a theoretical evidence to the existence of singular points
due to the topological obstruction.

A classical result from characteristic class theory claims that the
only closed surface admitting affine atlas is of genus one.

Theorem 2 (Benzécri). Let S be a closed two dimensional affine
manifold, then Y (S) = 0.

This result is first proven by Benzécri [Benzécri 1959]. Shortly
after his proof, J. Milnor presented a much more broader result
using vector bundle theories [Milnor 1958]. In this framework, the
topological obstruction of a global affine atlas is the Euler class. In
fact, by removing one point from the closed domain manifold, we
can convert it to an affine manifold.



Theorem 3 (Open Surfaces are Affine Manifold). Let M be an
orientable open 2-manifold, then M is affine manifold.

4.4 Spline Construction

The existence theorem gives rise to the possibility of generalizing
triangular B-splines to manifold domains. Next, we shall present an
explicit way to construct affine atlas by utilizing the holomorphic
1-forms of M.

Given a holomorphic 1-form ® on a surface M, assume its zero
point set is Z; then, an affine atlas 4 for M \ Z can be constructed
straightforwardly.

Theorem 4 (Affine Atlas Induced from Conformal Structure).
Given a closed genus g surface M, and a holomorphic 1-form ®,
the zero set of W is Z, then the size of Z is no more than 2g —2 and
there exists an affine atlas on M\ Z deduced by .

4.4.1 Singular Points

Traditional subdivision surfaces, such as Catmull-Clark [Catmull
and Clark 1978], Doo-Sabin [Doo and Sabin 1978], and Loop
subdivision [Loop 1987] surfaces can be considered special cases
of manifold splines. The existence of extraordinary points in
all subdivision schemes results from their intrinsic topological
obstructions. No matter how the domain manifold is remeshed, the
extraordinary points can not be entirely removed unless the domain
manifold is a torus. Similarly, we can define triangular B-splines
on any triangular mesh. If the Euler number of the domain mesh is
nonzero, there must be singular points.

Corollary 1 (Existence of Singular Points). The manifold splines
must have singular points if the domain manifold is closed and not
a torus.

In addition, based on the above discussion, we conclude that the
minimal number of extraordinary points is one for all kinds of
closed 2-manifolds.

Corollary 2 (Minimal Number of Singular Points). Given a
closed domain 2-manifold, if its Euler number is not zero, a man-
ifold spline can be constructed such that the spline has only one
singular point.

The theoretic results in this section naturally guide us to design
practical algorithms to compute affine atlases for arbitrary triangu-
lar meshes and subsequently define manifold splines on them.

5 Manifold Spline Algorithm

This section presents a set of practical algorithms for constructing
manifold splines based on triangular B-spline scheme. It is straight-
forward to define manifold NURBS using similar algorithms.

5.1 Algorithm Overview

The major procedures can be summarized as the following main
control flow,

Construction of manifold splines
1. Compute a holomorphic l-form basis for the domain

mesh M (Section 5.2).

2. Select one holomorphic l-form which optimizes a
specified criteria, such as uniformity
(see [Jin et al. 2004]).

3. Locate zero points of the l-form (Section 5.3).
Remove zero-point neighborhoods, denote the union
of zero-point neighborhoods as Z.

4. Compute the affine atlas for M\Z (Section 5.4).

. Assign knots for each control point (Section 5.5).

6. Evaluate the spline surface (Section 5.6).

(8]

5.2 Holomorphic 1-form

The algorithm for computing the holomorphic 1-form for a triangu-
lar mesh is as follows:

Compute Holomorphic One Form

1. Compute the first homology group basis of the
domain manifold M, H;(M,Z).

2. Compute the first cohomology group basis of the
domain manifold M, H'(M,R).

3. Compute harmonic 1l-form basis from H'(M,R) using
heat flow method.

4. For each harmonic l-form basis ®,, locally rotate
a right angle about the normal to get ®, (Hodge
star operator), pair (®,,0,) to form a holomorphic
1-form basis.

The computation process is equivalent to solving an elliptic partial
differential equation on the surface using finite element method.
The details for computing holomorphic 1-form are thoroughly ex-
plained in [Gu and Yau 2002; Gu and Yau 2003].

5.3 Locating Singular Points

If the resolution of a mesh is high enough, the holomorphic 1-form
is accurate enough to locate the zero points automatically.

Using the holomorphic 1-form, the neighborhood of the zero point
will be mapped to a planar region. The behavior of the map is
similar to the map z — z2,z € C in the neighborhood of the origin.
More rigorously, a circle around the zero point will be mapped to a
curve which passes around the origin at least twice. (The winding
number of the image curve about the origin is no less than 2.)

The following algorithm aims to locate zero points:

Locate Zero Points
Given a vertex veM, a holomorphic l-form o,

1. Find all the vertices connecting to vertex v sorted
counterclock-wisely, denoted as wo,wi, - ,Wy_| .

2. Map w; to the plane using ®, 0(w;)=[""®.

3. Compute the summation of the exterior angles of the
planar polygon 0(wp),d(w;),---,0(w,—1), if the summation
is 2n, then v is a normal point; if summation is no
less than 4mn, then v is a zero point.

5.4 Constructing Affine Atlas

An affine atlas can be constructed in the following way.



Construct Affine Atlas

1. Locate zero points of ®, denote the zero points Z.

2. Remove zero points and the faces attaching to them.

3. Construct an open covering for M\Z. For each
vertex, take the union of all faces within its
k-ring neighbor as an open set U.

4. Test if the union of any two Uy, Up is a topol-
ogical disk by checking the Euler number of Uyl Up.
If not, subdivide U,.

5. Pick one vertex p, €Uy, for any vertex pec U,
define ¢u(p) = [, .

6. Compute coordinate transition functions, %ﬁ:jﬁ .

5.5 Assigning Knots

The connectivity of the control net can be easily determined by the
uniform subdivision of the domain mesh. For example, if the de-
sired spline surface is quadratic, each face on M will be subdivided
to four faces on the control net. Therefore, each face on the con-
trol mesh is covered by one face on M. Each control point will
then associate with a group of knots. The knots are defined in the
following way.

Knot Assignment Algorithm

1. Given a control point c€C and a face f attached
to ¢. Suppose f is covered by F €M. Choose one
local chart (Ug,0y) covering F, and assign knots XBF
to ¢ in this local chart.

2. Record the chart id o, the knots XﬁF for c.

5.6 Surface Evaluation

As explained above, the evaluation process is independent of the
choice of the chart. The chart can be chosen arbitrarily, and all
associated knots must then be converted to the selected chart.

Evaluation Algorithm

1. Choose a face F on M, choose a coordinate chart
(Uqs0a) covering F.

2. Locate all control points associate with F.

3. If the knots of a control point ¢ is define on
coordinate chart [, then convert the knots to
chart (Uy,¢q) using transition function ¢g,.

4. Evaluate the polynomial surface using the eval-
uation algorithm for B-spline surface with
planar domain on (Ug,0q).

6 Implementation and Experimental Re-
sults

In our implementation, we consider domain manifolds represented
as triangular meshes M. We use v; to denote the vertices of M,
[vi,v;] denote the oriented edge from v; to vj, [vi,v},vk] to denote
an oriented face of M.

Table 1: Spline configurations

#singular #domain | #control

object genus points degree triangles | points
Knot 1 0 3 400 1800
Two-hole torus 2 2 3 502 2270
Sculpture 3 4 3 1458 6583

6.1 Data Structure

The primary data structures in our prototype system for construct-
ing manifold splines are domain mesh M, control net C, affine atlas
A, and holomorphic 1-form .

Domain Mesh M. The domain mesh in general is a triangular
mesh, represented by a half-edge data structure. Each face is cov-
ered by several coordinate charts.

Control Net C. The control net is also a triangular mesh, repre-
sented by half edge data structure. The connectivity of the control
net is deduced from that of the domain mesh by uniform subdivi-
sion and the degree of the manifold spline. Each face on the control
net corresponds to one covering face in the domain mesh.

Atlas 4. The atlas is set of charts and all the transition functions
among them. The transition functions are translations on the plane;
if the a-th chart and the B-th chart intersect, there is a transition
function ¢, represented as a translation vector in R2. Each chart
is a set of adjacent faces, which form a topological disk. We ensure
that the union of two intersecting charts is still a topological disk.
The local coordinates are not recorded, but computed in real-time
by integrating holomorphic 1-form ®.

Holomorphic 1-Form ®. A holomorphic 1-form is represented by
a map from the oriented edge (half-edge) set of M to RZ, 0 : E —
RR?, such that for any face [vg,vi,v2],

®[vo,vi]+ ®[vi,va] + ©[va,v] = 0.

6.2 Experimental Results

Our prototype system is implemented in C++ on windows platform.
We build a complete system for computing topological structure,
conformal structure, and affine structure. The system is based on
a half-edge data structure, and uses the finite element method to
solve elliptic partial differential equations on surfaces. The system
includes traditional mesh processing functionalities, such as mesh
simplification, subdivision, smoothing, and progressive mesh algo-
rithms. But the main functionalities of the system are computing the
homology group, cohomology group, harmonic 1-forms, holomor-
phic 1-forms, global conformal parameterizations, manifold spline
construction, and surface evaluation.

Table 6.2 summarizes our experiment results. Figure 4 illustrates
the process of our manifold spline by constructing a manifold spline
on a genus 2 surface. A sophisticated genus 3 manifold spline con-
struction is demonstrated in Figure 8. Both of the above manifold
splines have singular points. Figure 5 shows a genus 1 manifold
spline without singular points. The results prove both the theoretic
rigor and feasibility in practice.

7 Conclusion

We have proved in this paper that defining triangular B-splines over
arbitrary manifolds is equivalent to the existence of an affine atlas of
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Figure 4: Construction of manifold spline: (a) Holomorphic 1-form ®, the octagonal region indicates a singular point; (b) Domain manifold
M; (c) Singular point removal M \ Z; (d) Manifold spline F; (e) Spline surface F covered by control net C; (f) The regions of singular points

are filled.

Figure 5: Manifold spline example: (a) Holomorphic 1-form ®;
(b) Domain manifold M; (c) Spline surface F'; (d) Spline surface F
covered by control net C.

the underlying manifold. In addition, we have articulated a system-
atic way to construct an affine atlas for general manifolds and de-
veloped a suite of algorithms that enable the definition and compu-
tation of triangular B-splines over any manifold domain (consisting
of general meshes). Our theoretical and algorithmic contribution to
the field of solid and physical modeling is a general framework that
extends spline surfaces with planar domains to manifold splines,
which are piecewise polynomials defined over arbitrary manifold.
Because of the intrinsic topological obstruction for any manifold,
singular points are unavoidable. We utilize the concept and compu-
tational techniques of Riemann surface theory (especially the holo-
morphic 1-forms) to obtain the affine atlas and minimize the num-
ber of singular points for our manifold splines simultaneously. The
prototype software and experimental results have demonstrated the
great potential of our manifold splines in shape modeling, geomet-
ric design, graphics, and engineering applications.

At present, we are planning to pursue several directions as future
work. First, the behavior of singular points is not yet known. We
shall seek new mathematical tools for the rigorous analysis of sin-
gular points. Second, we shall investigate other new spline schemes
and explore their manifold generalizations.

Acknowledgement

This work was partially supported by the NSF CAREER Award
CCF-0448339 to X. Gu and the NSF grant ACI-0328930, the ITR
grant 11S-0326388, and Alfred P. Sloan Fellowship to H. Qin.

References

ALFELD, P., NEAMTU, M., AND SCHUMAKER, L. L. 1996.
Bernstein-bezier polynomials on spheres and sphere-like sur-
faces. Computer Aided Geometric Design 13, 4, 333-349.

ALFELD, P., NEAMTU, M., AND SCHUMAKER, L. L. 1996.
Fitting scattered data on sphere-like surfaces using spherical
splines. J. Comput. Appl. Math. 73, 1-2, 5-43.

BENZECRI, J. 1959. Variétés localement affines. Sem.Topologie et
Géom.Diff., Ch.Ehresmann(1958-1960), 7.

BENZECRI, J. 1960. Sur les variétés localement affines et projec-
tives. Bull.Soc.Math.France 88, 229-332.

CATMULL, E., AND CLARK, J. 1978. Recursively generated B-
spline surfaces on arbitrary topological meshes. Computer-Aided
Design 10, 6, 350-355.

COTRINA, J., AND PLA, N. 2000. Modeling surfaces from meshes
of arbitrary topology. Computer Aided Geometric Design 17,7,
643-671.

COTRINA, J., PLA, N., AND VIGO, M. 2002. A generic approach
to free form surface generation. In Proceedings of the seventh
ACM symposium on Solid modeling and applications, 35-44.

DAHMEN, W., MICCHELLI, C. A., AND SEIDEL, H.-P. 1992.
Blossoming begets B-spline bases built better by B-patches.
Mathematics of Computation 59, 199, 97-115.



DE BOOR, C. 1976. Splines as linear combinations of B-splines.
A survey. In Approximation theory, 1I (Proc. Internat. Sympos.,
Univ. Texas, Austin, Tex., 1976). Academic Press, New York, 1—
47.

DEMIJANOVICH, Y. K. 1996. Finite-element approximation on
manifolds. In Proceedings of the International Conference on
the Optimization of the Finite Element Approximations (St. Pe-
tersburg, 1995), vol. 8, 25-30.

D00, D., AND SABIN, M. 1978. Behaviour of recursive division
surfaces near extraordinary points. Computer-Aided Design 10,
6, 356-360.

ECK, M., AND HOPPE, H. 1996. Automatic reconstruction of B-
spline surfaces of arbitrary topological type. In Proceedings of
SIGGRAPH 96, 325-334.

FONG, P., AND SEIDEL, H.-P. 1991. Control points for multi-
variate B-spline surfaces over arbitrary triangulations. Computer
Graphics Forum 10, 4, 309-317.

FONG, P., AND SEIDEL, H.-P. 1992. An implementation of mul-
tivariate B-spline surfaces over arbitrary triangulations. In Pro-
ceedings of Graphics Interface *92, 1-10.

FRANSSEN, M., VELTKAMP, R. C., AND WESSELINK, W. 2000.
Efficient evaluation of triangular B-spline surfaces. Computer
Aided Geometric Design 17,9, 863-877.

GORMAZ, R. 1994. B-spline knot-line elimination and Bézier con-
tinuity conditions. In Curves and surfaces in geometric design.
A K Peters, Wellesley, MA, 209-216.

GREINER, G., AND SEIDEL, H.-P. 1994. Modeling with triangu-
lar B-splines. IEEE Computer Graphics and Applications 14, 2
(Mar.), 56-60.

GRIMM, C. M., AND HUGHES, J. F. 1995. Modeling surfaces
of arbitrary topology using manifolds. In Proceedings of ACM
SIGGRAPH 95, ACM Press, 359-368.

Gu, X., AND YAU, S.-T. 2002. Computing conformal structures

of surfaces. Communications in Information and Systems 2, 2,
121-146.

Gu, X., AND YAU, S.-T. 2003. Global conformal surface parame-
terization. In Proceedings of the Eurographics/ACM SIGGRAPH
symposium on Geometry processing, 127-137.

HE, Y., GU, X., AND QIN, H. 2005. Rational spherical splines for
genus zero shape modeling. In Shape Modeling International.

JIN, M., WANG, Y., YAU, S.-T., AND GuU, X. 2004. Optimal
global conformal surface parameterization. In IEEE Visualiza-
tion, 267-274.

JosT, J., AND SIMHA, R. R. 1997. Compact Riemann Surfaces:
An Introduction to Contemporary Mathematics. Springer-Verlag
Telos.

Loop, C. 1987. Smooth subdivision surfaces based on triangles.
Master’s thesis, University of Utah, Dept. of Mathematics.

MILNOR, J. W., AND STASHEFF, J. D. 1974. Characteristic
Classes. Princeton University Press.

MILNOR, J. 1958. On the existence of a connection with curvature
zero. Comm. Math. Helv. 32, 215-223.

MILNOR, J. 1977. On fundamental groups of complete affinely flat
manifolds. Adv.Math. 25, 178-187.

NEAMTU, M. 1996. Homogeneous simplex splines. J. Comput.
Appl. Math. 73, 1-2, 173-189.

NEAMTU, M. 2001. Bivariate simplex B-splines: A new paradigm.
In SCCG °01: Proceedings of the 17th Spring conference on
Computer graphics, 71-78.

PFEIFLE, R., AND SEIDEL, H.-P. 1995. Fitting triangular B-
splines to functional scattered data. In Graphics Interface ’95,
26-33.

PFEIFLE, R., AND SEIDEL, H.-P. 1995. Spherical triangular B-
splines with application to data fitting. Computer Graphics Fo-
rum 14, 3, 89-96.

RAMSHAW, L. 1987. Blossoming: A connected-the-dots approach
to splines. Tech. rep., Digital Systems Research Center, Palo
Alto.

RAMSHAW, L. 1989. Blossom are polar forms. Computer-Aided
Geom. Design 6, 4, 323-358.

SEIDEL, H.-P. 1994. Polar forms and triangular B-spline surfaces.
In Euclidean Geometry and Computers, 2nd Edition, D.-Z. Du
and F. Hwang, Eds. World Scientific Publishing Co., 235-286.

WALLNER, J., AND POTTMANN, H. 1997. Spline orbifolds.
Curves and Surfaces with Applications in CAGD, 445-464.

YING, L., AND ZORIN, D. 2004. A simple manifold-based
construction of surfaces of arbitrary smoothness. ACM Trans.
Graph. 23, 3, 271-275.

Appendix

(d)

Figure 6: Open surfaces are affine manifolds.

We present the detailed proof of our major theoretic results in the
Appendix.

Lemma 1. Assume there are two spline surface patches of C* con-
tinuity, k > 0,

S=(U,C,F)and § = (U,C,F).
The parametric transformation

o6:U—U



is invertible. Suppose S7~§ share the same knot configuration,
namely, the trlangulanan T is induced from ‘T by ¢, and the knots
tI are induced from t by (]

=l 1
fij = 0(ti5); ™
the control points with corresponding knots coincide cIB = EIB, then

1. if ¢ is affine, then F = F o ¢ holds for arbitrary control nets.
2. if F = F o holds for arbitrary control nets, then ¢ is affine.

In other words, the following diagram commutes for arbitrary con-
trol nets

U C R? U c R?

FU )CR3 TF( )CR3
if and only if ¢ is affine.

Proof. The sufficient condition part is obvious, because the evalu-
ation of the splines only involves barycentric coordinates. Affine
transformations preserve the barycentric coordinates; therefore the
diagram is commutative.

The proof for the necessary condition requires the completeness of
the spline scheme 3.3. We set all control points of C to be zero
except the one corresponding to knots Xé. Correspondingly, we set

all control points of C to be zero except one corresponding to knots
Xé Then we get the basis functions F(u) = Né(u), F= Né(ﬁ), by
F =Fo¢, we get
1 A (s

Therefore, all basis functions of S equal the corresponding basis
functions of S. Suppose w = (u1,u3), then u; is a polynomial of
(u1,up). By completeness of the spline scheme, u; can be repre-
sented as the linear combination of Né(u), therefore it can be rep-

resented as the linear combination of Né (@). As aresult, u; and up

can be represented as piecewise polynomials of @ of Ck continuity.
Because S and § are symmetric, @i are also piecewise polynomials
of u of C* continuity. Therefore, u and @ can linearly represent
each other piecewisely with C¥ continuity. So, because the param-
eter transition ¢ is piecewise linear and C¥ continuous, ¢ must be a
global linear map over all pieces. In other words, ¢ is affine. O

Theorem 1. The sufficient and necessary condition for a manifold
M to admit manifold spline is that M is an affine manifold.

Proof. Consider two intersecting local charts (Uy,0y) and
(Uﬁ , ¢B), where the manifold spline F restricted on them are Fy, and
Fp, respectively. We select a subset of control points C whose knots
are contained in Uy Up- The spline patches (0a(UaN UB)7C7F(1)
and (¢p(UaNUp),C, Fp) satisty the condition in lemma 1, there-
fore, the chart transition function ¢,g must be affine. a

Theorem 2 (Benzécri). Let S be a closed two dimensional affine
manifold, then ¥(S) =

The proof for this classical result can be found in Benzécri’s
work [Benzécri 1959; Benzécri 1960]. Milnor used vector bundle
theories to prove it in [Milnor 1958; Milnor 1977].

Theorem 3 (Open Surfaces are Affine Manifold). Let M be an
orientable open 2-manifold, then M is an affine manifold.

Proof. Figure 6 illustrates the proof by constructing an affine atlas
for the open surface M in (a). One boundary may be a closed curve
or a single point as shown in (a) by a dark spot. We deform (a)
continuously to generate (b) by gradually enlarging the hole. (b)
is homeomorphic to the ribbon figure in (c), which is immersed in
R2. Then we cut each annulus of () to get a fundamental domain
as shown in (d).

The colored disks Uy, are open sets of M, another open set U can
be defined to cover M\ |JUy. (d) shows the way U and Uy’s are
mapped to R2. Tt is obvious that all chart transition functions are
combinations of translations and rotations.

For surfaces with multiple boundaries, we can fill all of the bound-
aries with disks except one, and the proof is similar. O

Theorem 4 (Affine Atlas Induced from Conformal Structure).
Given a closed genus g surface M, a holomorphic 1-form ®. The
zero set of ® is Z, then the size of Z is no more than 2g — 2 and there
exists an affine atlas on M\ Z deduced by ®.

NS

/1%\

Proof. The existence and the number of zero points Z of the holo-
morphic 1-form ® can be proved using Riemann-Roch theorem
[Jost and Simha 1997] or Poicaré-Hopf theorem. Because ® =
®y + iy is holomorphic, ®, is a harmonic 1-form. Since we treat
o, as a vector field, the singularities can only have negative in-
dices, and the summation of their indices equals to the Euler num-
ber 2 — 2g. Hence, the geometric number of zero points is no more
than 2g — 2.

Suppose an open covering of M\ Z is a collection of open sets
{Uv,Uy,---,}. We require that if two open sets Uq,Up intersect
each other, UsUp # ¢, then their union Uy |J Up is a topological
disk. If this requirement can not be satisfied, we can subdivide the
open sets until the requirement is met. Then we select one point in
each Uy, denoted as pg, € Ug, for any point p € Uy, we define the

coordinate of p as
p
da(p)= | o,
Pa

where the path from pg to p is arbitrarily chosen. Then we claim
A ={(Uq, o)} is an affine atlas for M \ Z.

We want to show for any p € Us(\Up, 9(p) = ¢a(p) + const,

namely, the coordinate transition function g : R? — R? is a trans-
lation. Suppose p,q € UaﬂUﬁ as shown in the above figure,

p q q
D=[ o [o-["o+ ['0

P Po P Po
(C)]
Because Uq |JUp is a topological disk, the closed curve r = pg —
P — Po, — ¢ — pp is homotopic to zero. Because the curlex of both
o, and 0, are zeros, the above integration is zero, §,.® = 0. There-
fore ¢g(p) — 0o(p) = const for arbitrary p € Ua (\Up, the transition
function ¢ is a translation. a

(9g(P) —0a(p)) —(9p(q)



Figure 7: Key elements of manifold splines: The parametric domain M is a triangular mesh with arbitrary topology as shown at the bottom.
The polynomial spline surface F' is shown at the top. Two overlapping spline patches (0o (Ua),Co:, Fa) and (¢g(Up),Cp, Fp) are magnified
and highlighted in the middle. On each parameter chart (Uq, 9a),(Up, ), the surface is a triangular B-spline surface. For the overlapping
part, its two planar domains differ only by an affine transformation ¢g. The zero point neighbor is Z.
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Figure 8: A genus 3 manifold spline (M, F,C): (a) Holomorphic 1-form ® which induces the affine atlas 4; (b) Parametric domain manifold
M with singular points Z marked; (c) Polynomial spline F' defined on the manifold M in (a); (d) The red curves on spline F' correspond to the
edges in the domain manifold M; (e) Spline F covered by control net C.



