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Abstract

Traditional approaches for modeling a closed manifold
surface with either regular tensor-product or triangular
splines (defined over an open planar domain) require de-
composing the acquired geometric data into a group of
charts, mapping each chart to a planar parametric domain,
fitting an open surface patch of certain degree to each chart,
and finally, trimming the patches (if necessary) and stitch-
ing all of them together to form a closed manifold. In this
paper, we develop a novel modeling method which does not
need any cutting or patching operations for genus zero sur-
faces. Our new approach is founded upon the concept of
spherical splines proposed by Pfeifle and Seidel. Our work
is strongly inspired by the fact that, for genus zero sur-
faces, it is both intuitive and necessary to employ spheres as
their natural domains. Using this framework, we can con-
vert genus zero mesh to a single rational spherical spline
whose maximal error deviated from the original data is less
than a user-specified tolerance. With the rational spheri-
cal splines, we can model sharp features and edit both the
global shape and the local details with ease. Furthermore,
we can accurately compute the differential quantities with-
out resorting to any numerical approximations. We conduct
several experiments in order to demonstrate the efficacy of
our approach for reverse engineering, shape modeling, and
interactive graphics.

1. Introduction

With the advent of sophisticated scanning technologies,
nowadays we can routinely acquire densely sampled and
highly detailed geometric data sets from complicated real-
world models. Typically, the acquired digital models are in
the form of dense point samples and/or triangular meshes. It
is both desirable and necessary to reverse-engineer a spline-
based surface from points/meshes for many scientific and
industrial applications. By converting dense points/meshes
to splines, we will achieve a more compact representa-
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Figure 1. Modeling a genus zero surface us-
ing a single rational spherical spline. (a),(d)
Spherical parameterization and domain trian-
gulation (1,022 spherical triangles); (b),(e) A
C2 spherical spline; (c),(f) Control net (4,601
control points) overlaid on the spline surface.

tion at different scales in terms of data size, the number
of control points, the user-specified threshold error, and
other relevant criteria. With a high-order spline formula-
tion, we can accurately compute all the differential quanti-
ties such as geodesics, curvatures, and areas without resort-
ing to any numerical approximations via bilinear interpola-
tion and/or local algebraic surface fitting. The rapid and pre-
cise evaluations of local and global differential properties
will facilitate certain applications such as surface segmen-
tation/classification, shape interrogation, and surface qual-



ity analysis and control. Moreover, a spline-based represen-
tation will enable downstream procedures including direct
shape modification, free-form deformation, finite element
analysis, evaluation, or even digital prototyping.

At present, tensor-product B-spline and NURBS are the
prevailing industrial standard for surface representation be-
cause of their many attractive geometric properties. Never-
theless, due to their rectangular structures, a single B-spline
(and NURBS) patch can represent only simple open sur-
faces, cylindrical surfaces, or torus-like surfaces. In order
to represent surfaces of other topological types without in-
troducing degeneracy, one must define a network of tensor-
product B-spline patches and maintain certain continuity
between adjacent patches [5, 11].

In shape modeling, many objects are closed-manifold
genus zero surfaces, which are topologically equivalent to
a sphere. However, most of the commonly-used splines,
such as regular tensor-product B-splines and irregular trian-
gular B-splines, are defined on finite open planar domains.
In order to model a closed manifold surface, one must cut
the scanned data set into a group of charts, mapping each
chart to an open planar domain, using a spline patch of cer-
tain degree to fit each data chart, and finally stitching all
the patches together. This process requires many user inter-
ventions and is much more labor intensive and far less in-
tuitive. Therefore, it is imperative to devise a natural and
automated way to effectively and accurately model genus
zero surfaces using splines without any cutting and patch-
ing work. This paper serves this need by formulating ratio-
nal spherical splines and presenting our prototype system.

Based on the breakthrough work on spherical barycentric
coordinates and spherical Bernstein-Bézier (SBB) polyno-
mials by Alfeld, Neamtu and Schumaker [1], Pfeifle and
Seidel [14] present scalar spherical triangular B-splines.
These splines inherit many properties from their planar
counterpart (i.e., planar triangular B-splines), such as the
capability of representing any piecewise smooth surfaces
of Cn−1 continuity and modeling the SBB polynomials as
a special case. Furthermore, these spherical spline surfaces
exhibit no degeneracies that frequently arise when attempt-
ing to employ planar parametric spline surfaces for model-
ing sphere-like, geometrically closed point clouds [14]. Be-
cause of the topological equivalence between spheres and
other genus zero objects, spherical splines appear to be ideal
for modeling closed genus zero surfaces both in theory and
in practice.

However, the major drawback of the (non-rational)
spherical spline proposed by Pfeifle and Seidel is that it
does not satisfy the convex hull property. Therefore, it may
be difficult and less intuitive for ordinary users to interac-
tively edit a spline surface by modifying its control net. To
make spherical splines more accessible to a broader com-
munity and more useful in shape modeling applications,

we present the rational spherical spline which inher-
its all the attractive properties of Pfeifle and Seidel’s spline.
More importantly, they offer the convex hull property be-
cause of the partition of unity of the rational basis functions.
Figure 1 shows an example of modeling a genus zero sur-
face with rational spherical spline. In this paper, we present
a general framework to model genus zero surfaces with ra-
tional spherical triangular B-splines, which have the fol-
lowing features:

1. The shape is represented in a single degree n spline
without any patching and stitching work. The recon-
structed surface is Cn−1 continuous everywhere except
at the sharp features.

2. Our surface reconstruction algorithm is based on adap-
tive conformal spherical parameterization, which has
no local distortion and is insensitive to the triangu-
lation and resolution of the input discrete data. The
fitting quality can be further improved by enlarg-
ing/shrinking any user-specified region on its spherical
domain.

3. Based on its compact representation, we can intuitively
edit both the overall shape and the details. Also, it is
easy to compute the differential properties, such as cur-
vatures, without resorting to any numerical approxima-
tions via bilinear interpolation and/or local algebraic
surface fitting.

2. Previous Work

2.1. Spherical splines

Defining splines over a sphere has been studied during
the past decade. Alfeld et al. [1] present spherical barycen-
tric coordinates which naturally lead to the theory of Spher-
ical Bernstein-Bézier polynomials (SBB). They show fitting
scattered data on sphere-like surfaces with SBB in [2]. Pfei-
fle and Seidel [14] present scalar spherical triangular splines
and demonstrate the use of these splines for approximat-
ing spherical scattered data. Neamtu [13] constructs a func-
tional space of homogeneous simplex splines and shows
that restricting the homogeneous splines to a sphere gives
rise to the space of spherical simplex splines. Schröder
and Sweldens propose a wavelet construction for scalar
functions defined on sphere [16]. Lyche and Schumaker
present a multi-resolution method for fitting functions on
the sphere [12]. Their method is based on the tensor prod-
uct of quadratic B-splines and trigonometric splines of or-
der 3, and it produces surfaces which are tangent-plane con-
tinuous. Buss and Fillmore present the spherical averages
which result in the direct generalization of Bézier and B-
spline curves to spherical spline curves [3].



2.2. Spherical parameterization

Parameterization of 3D mesh data is also relevant in
shape modeling and interactive graphics applications, in-
cluding reverse engineering, texture mapping, remeshing,
morphing, and scattered data fitting. While planar param-
eterization has been studied extensively for many years,
spherical parameterization remains less investigated. Sev-
eral algorithms which guarantee a valid spherical embed-
ding exist. Haker et al. [9] introduce an algorithm to con-
formally map a genus zero surface to the sphere by us-
ing the Laplace-Beltrami operator. Gu et al. [8] use har-
monic maps to compute spherical conformal parameteriza-
tions. Sheffer et al. [17] present a non-linear optimization
procedure which deals with the angles of the spherical tri-
angulation. Gotsman et al. [7] show an intrinsic relationship
between spectral graph theory and spherical parametriza-
tion, and embed meshes on the sphere by solving a quadratic
system. Praun and Hoppe [15] present a technique for pa-
rameterizing genus zero models onto the sphere using pro-
gressive mesh, and introduce several approaches for resam-
pling the spherical signal onto regular domains with simple
boundary symmetries.

3. Spherical Triangular B-spline

In this section, we first briefly review the defini-
tions of spherical simplex splines and spherical triangular
splines [14]. Then we introduce the rational generaliza-
tion of the spherical spline and document its key geometric
properties for shape modeling.

3.1. Spherical simplex spline

Denote by S
2 = {x|x ∈ R

3,‖x‖ = 1} a unit sphere in
R

3. Consider V = {t0, . . . , tn+2} ∈ S
2 on the sphere. Fur-

thermore, select a split set W = {ti0 , ti1 , ti2} ⊂V . Then, for
n > 0, the degree n spherical simplex spline M(u|V ) is de-
fined as follows:

M(u|V ) =
2

∑
j=0

b j(u|W )M(u|V \{ti j}) (1)

where

b0 =
det(u, ti1 , ti2)
det(ti0 , ti1 , ti2)

,b1 =
det(ti0 ,u, ti2)
det(ti0 , ti1 , ti2)

,b2 =
det(ti0 , ti1 ,u)
det(ti0 , ti1 , ti2)

are the the spherical barycentric coordinates with respect to
W . Unlike the planar case, ∑2

j=0 b j(u|W ) ≥ 1 if u lies on or
within W .

When n = 0, we define

M(u|t0, t1, t2) =
χ[t0,t1,t2)(u)

|det(t0, t1, t2)| (2)

where χ[t0,t1,t2)(u) is the characteristic function on the half
open convex hull of [t0, t1, t2).

As was the case with triangular B-splines, the directional
derivative of M(u|V ) along a vector v (perpendicular to u)
can also be computed recursively as:

DvM(u|V ) = n
2

∑
j=0

b j(v|W )M(u|V \{ti j}) (3)

3.2. Spherical triangular spline space

The spherical triangular spline can be constructed in a
similar way as the planar triangular B-spline [4]. In the in-
terest of page limitation, we only discuss its construction
briefly: let points ti ∈ S

2, i ∈N, be given and define a spher-
ical triangulation

T = {∆(I) = [ti0 , ti1 , ti2 ] : I = (i0, i1, i2) ∈ I ⊂ N
3},

where every triangle is oriented counter-clockwise (or
clockwise). Next, with every vertex ti of T we asso-
ciate a cloud of knots ti,0, . . . , ti,n such that ti,0 = ti. To
clarify the notations, we call ti,0 the primary knot and
ti, j, 1 ≤ j ≤ n the sub-knots. For every spherical trian-
gle I = [ti0 , ti1 , ti2 ] ∈ T ,

1. all the triangles XI
β = [ti0,β0

, ti1,β1
ti2,β2

] with
β = (β0,β1,β2) and |β| = β0 + β1 + β2 ≤ n are
non-degenerate.

2. the set
ΩI

n = interior(∩|β|≤nXI
β)

satisfies
ΩI

n �= /0. (4)

Then the spherical triangular B-spline basis function NI
β,

|β| = n, is defined by means of spherical simplex splines
M(u|V I

β) as

N(u|V I
β) = |det(XI

β)|M(u|V I
β)

where V I
β = {ti0,0, . . . , ti0,β0

, . . . , ti2,0, . . . , ti2,β2
}.

A degree n spherical triangular B-spline surface F over
T is then defined as

F(u) = ∑
I∈T

∑
|β|=n

cI,βN(u|V I
β). (5)

where cI,β ∈ R
3 are the control points.

Figure 2(a) shows a quadratic spherical spline patch de-
fined on {t0, t1, t2}. We associate two sub-knots ti, j, j = 1,2
to each vertex ti. The six basis functions are shown in Fig-
ure 2(b)-(g). Since no three knots are co-circular, every ba-
sis function is C1 everywhere.



(a) A spline patch (b) N200 (c) N110 (d) N101 (e) N020 (f) N011 (g) N002

Figure 2. Six basis functions of a quadratic spherical spline patch.

3.3. Rational Spherical Spline

Despite many attractive properties for shape modeling,
one key drawback of spherical triangular B-splines is that
their control points do not lend themselves to an intu-
itive and natural geometric “handler” of the underlying
shape for convenient free-form shape editing, i.e., the con-
vex hull property does not hold. This deficiency results
from the fact that the spherical barycentric coordinate does
not yield partition of unity, since ∑2

j=0 b j(u|W ) ≥ 1. Thus,

∑I∈T ∑|β|=n NI
β(u|V I

β) ≥ 1 for every u ∈ S
2.

To further improve spherical splines, we present their ra-
tional generalization:

F(u) =
P(u)
Q(u)

=
∑I∈T ∑|β|=n ωI,βcI,βN(u|V I

β)

∑I∈T ∑|β|=n ωI,βN(u|V I
β)

. (6)

where ωI,β ∈ R
+ are the weights.

Because of partition of unity, rational spherical splines
satisfy the convex hull property. More importantly, by in-
troducing the non-negative weights, we have more degree
of freedom to control the spline shape. Figure 11 illustrates
the influence of different weights on a model for shape con-
trol.

For a general rational spherical spline surface, each trian-
gle I has its own set of control points cI,β and weights ωI,β.
However, in this paper we consider a more restricted class
of surfaces by sharing respective control points and weights
along common boundaries of two adjacent triangles in the
parametric triangulation.

For spherical splines with shared control points/weights,
we can prove

P(u) = ∑
I∈T

∑
|β|=n−1

c(1)
I,β(u)N(u|V I

β) (7)

Q(u) = ∑
I∈T

∑
|β|=n−1

ω(1)
I,β(u)N(u|V I

β) (8)

where

c(1)
I,β(u) =

2

∑
j=0

cI,β+e j ωI,β+e j b j(u|XI
β)

ω(1)
I,β(u) =

2

∑
j=0

ωI,β+e j b j(u|XI
β).

and e j = (δ j,i)2
i=0, j = 0,1,2 are the coordinate vectors.

Here, c(1)
I,β(u) and ω(1)

I,β(u) are also called virtual control
points and weights. Therefore, a degree n rational spheri-
cal spline F(u) = P(u)/Q(u) can be evaluated with the effi-
ciency of a degree n−1 spline. In practice, this property is
very useful to improve the performance of the evaluation al-
gorithm.

Similarly, the directional derivative along the direction v
can be calculated as follows:

DvF(u) =
DvP(u)−F(u)DvQ(u)

Q(u)
(9)

where

DvP(u) = n ∑
I∈T

∑
|β|=n−1

c(2)
I,β(v)N(u|V I

β) (10)

DvQ(u) = n ∑
I∈T

∑
|β|=n−1

ω(2)
I,β(v)N(u|V I

β) (11)

and

c(2)
I,β(v) =

2

∑
j=0

cI,β+e j b j(v|XI
β)

ω(2)
I,β(v) =

2

∑
j=0

ωI,β+e j b j(v|XI
β).

Note that F(u) and DvF(u) share the same basis functions.
Thus, the value F(u) and the first order derivatives can be
evaluated in a unified way, with a minimal extra cost.

We modify and extend Franssen et al. [6]’s evaluation
algorithm on planar triangular B-splines to a spherical set-
ting. For each parameter u ∈ S

2, we first locate the spher-
ical triangle I containing u and calculate the basis func-
tions N(u|V I

β) for triangle I and its 1-ring neighbors. Then
we choose two orthogonal vectors v1 and v2 such that u,



v1 and v2 form a local coordinate system. Next, we calcu-

late the virtual control points and weights, c(1)
I,β(u), ω(1)

I,β(u),

c(2)
I,β(v)|v=v1,v2 , and ω(2)

I,β(v)|v=v1,v2 . Finally, we can compute
the value of F and the normal Dv1F(u)×Dv2F(u) using
Equations (7) and (10).

3.4. Properties of Spherical Spline

The rational spherical triangular B-spline shares many
properties with its planar counterpart, including:

• Piecewise rational polynomial: F(u) is a piecewise ra-
tional polynomial of degree n defined on the sphere.

• Locality: The movement of a single control point cI,β
only influences the surface on the triangle I and on the
triangles directly surrounding I.

• Smoothness: If the knots of each set V I
β are in “spher-

ical” general position (i.e., no three knots in V I
β lie on

the same great circle), then F(u) is Cn−1 continuous
everywhere.

• Convex Hull: F(u) lies inside the convex hull of its
control net. The non-negative weights also provide ex-
tra degrees of freedom to control the spline shape.

4. Surface Approximation Algorithm

4.1. Overview

We now discuss the problem of finding a good approx-
imation of a given set of points P = {pi}m

i=1 by a rational
spherical triangular spline. In this paper, we assume that
these data form a closed manifold genus-zero surface.

A commonly-used technology is to minimize a linear
combination of interpolation and fairness functionals, i.e.,

minE = Edist +λEf air. (12)

The first part is

Edist =
m

∑
i=1

‖F(ui)−pi‖2

where ui ∈ S
2 is the parameter for pi, i = 1, . . . ,m.

The second part Ef air in (12) is a smoothing term. Two fre-
quently used examples are the membrane energy and thin
plate energy,

Ef air =
∫∫

S2
(F2

u +F2
v)dudv,

Ef air =
∫∫

S2
(F2

uu +2F2
uv +F2

vv)dudv,

where u and v are spherical coordinates of u ∈ S
2, i.e., u =

(cos(u)sin(v),sin(u)sin(v),cos(v))T , u ∈ [0,2π), v ∈ [0,π].

Both parts are quadratic functions of the unknown control
points.

The pseudo code of our algorithm is as follows:

1. Perform adaptive spherical conformal
parameterization (Sec. 4.2).

2. Construct the initial domain
triangulation (Sec. 4.3).

3. while max‖pi −F(ui)‖ > ε,i = 1, . . . ,m
4. Compute the control points(Sec. 4.4).
5. Parameter correction (Sec. 4.5).
6. Adaptive refinement (Sec. 4.6).
7. end

We further illustrate the pipeline with the example of
David’s head as shown in Figure 3.

4.2. Adaptive conformal spherical parameteriza-
tion

In this step we construct an invertible mapping between
the surface and the unit sphere. We use the conformal spher-
ical parameterization, as introduced in [8]. Conformal pa-
rameterization has no local distortion and is suitable for tex-
ture mapping spline surfaces. In terms of computation on
manifolds, conformal parameterization introduces the sim-
plest Riemannian metric form (also differential operators).
This will simplify the computation. More importantly, con-
formal parameterization is insensitive to triangulation and
resolution, and similar geometries induce similar confor-
mal spherical parameterizations. Therefore, such a param-
eterization is also valuable for reverse engineering, where
the quality of surface reconstruction hinges upon the map-
ping between the data input and the spline-modeled surface.

There are infinite spherical parameterizations for a given
surface. Different parameterizations affect the quality of the
result spherical spline surfaces. Suppose a spherical param-
eterization of surface M is φ : M → S

2, and τ : S
2 → S

2 is
an automorphism of S

2 (a one-to-one differential map from
the unit sphere to itself), then τ◦φ is also a spherical param-
eterization of M. In our current work, we use a subset of the
automorphism group of S

2, the so called Möbius transfor-
mation group, then τ is a Möbius transformation.

Suppose ζ : S
2 → C is the stereo-graphic projection,

ζ(x,y,z) = (
x

1− z
,

y
1− z

), (13)

A Möbius transformation for the complex plane is

γ(z) =
az+b
cz+d

,ad−bc = 1,a,b,c,d ∈ C. (14)

Any spherical Möbius transformation can be reprented as
ζ−1 ◦ γ◦ζ.



(a) Parameterization (b) Simplified mesh (c) Initial domain (d) Initial spline (e) Control net of (d)

(f) Final domain (g) Final spline (h) Control net of (g) (i) Back view (j) Back view

Figure 3. Illustration of surface reconstruction using spherical splines. (a) Conformal spherical pa-
rameterization. (b) Simplified mesh with 1,000 triangles. (c) Map (b) to the sphere. (d) A degree 5
spherical spline defined on (c), r.m.s. error 0.07%. (e) The control net of (d), 12,502 control points.
(f) Adaptively refined domain triangulation with 1,236 spherical triangles. (g) Reconstructed spline
based on (f), r.m.s. error 0.04%. (h) Control net of (g), 15,452 control points. (i-j) Back view.

First we compute one specific spherical parameteriza-
tion φ, then by composing with different spherical Möbius
transformations, we can adapt the parameterization to the
purpose of the spline fitting. Figure 4 shows an exam-
ple of adaptive conformal spherical parameterization. In
the original parameterization, the Isis’s head shrinks to a
small area (Figure 4(a)), which causes difficulties in recon-
struction due to fewer domain triangles in that area. Us-
ing the above adaptive conformal spherical parameteriza-
tion method, we can enlarge the head area (Figure 4(b)) by
a Möbius transformation. With more domain triangles and
control points, we can reconstruct the head more accurately
(Figure 5(a)&(b)).

4.3. Construct the domain triangulation

In this step we seek to generate an appropriate triangu-
lation of the sphere S

2. A naive method is to construct the
domain triangulation uniformly, i.e., the vertices are placed
“uniformly” (equidistantly) on the sphere and each triangle
has roughly the same area. However, this scheme does not
yield good results in practice since the parameters {ui}m

i=1
are not distributed uniformly on the sphere. One principle in
constructing such a triangulation is that each triangle should
contain a similar number of parameter points, i.e., more tri-

angles are needed in the area with denser features and vice
versa. In this paper, we present an effective method to con-
struct the domain triangulation. Note that one advantage of
conformal parameterization is its insensitivity to the trian-
gulation and resolution of the model, i.e., similar geome-
tries induce similar conformal spherical parameterizations.
Based on these observations, we first simplify the original
model (dense mesh) with a user-specified number of faces.
Then we perform conformal spherical parameterization on
this simplified model and use this parameterization as the
initial domain triangulation. Figure 3(a) shows the parame-
terization of the David’s head model. Figure 3(b) shows the
simplified mesh with 1,000 triangles. We then map the sim-
plified mesh to the sphere as shown in Fig 3(c). Note that
this domain triangulation roughly represents the original ge-
ometry.

4.4. Compute the control points

We solve Equation 12 for the unknown of control points
and weights by Conjugate Gradient method. The value and
gradient of the interpolation functional can be computed
straightforwardly. However, it is difficult to calculate the ex-
act value of the fair functional and the corresponding gra-
dients. In our implementation, we use the thin-plate energy



(a) (b)

Figure 4. Adaptive conformal spherical pa-
rameterization. (a) Original conformal spher-
ical parameterization. It is difficult to recon-
struct the details of the head based on (a)
due to the corresponding small area on the
sphere. (b) Enlarging the head part using a
Möbius transformation.

as the fair functional. For each spherical triangle I, we uni-
formly split it to a user-specified number of patches (400 in
our experiments, i.e., 
i

I , i = 1, . . . ,400). Denote by ui
I the

centroid of 
i
I and si

I the area of 
i
I . Then we linearize the

integral as

Ef air ≈ ∑
I

∑
i
(F2

uu(u
i
I)+2F2

uv(u
i
I)+F2

vv(u
i
I))s

i
I .

The second order derivative of F with respect to control
points and weights can be calculated analytically. We set
the initial fairness factor λ = 0.01 in our experiments and
decrease the value gradually during the fitting iteration.

4.5. Parameter correction

It is well known that the parameter choice critically af-
fects the fitting result. Therefore, we utilize a parameter cor-
rection procedure in the pipeline. The standard method, in-
troduced by Hoschek in [10], is derived from the observa-
tion that the error pi −F(ui) will not be orthogonal with re-
spect to the approximating surface in general and will thus
not represent the minimal distance between the surface and
the data point. If that happens, the parameter value ui should
be corrected. This is done by minimizing the following ob-
jective function

minDi(u) = ‖F(u)−pi‖2 (15)

for each sample pi. In our implementation, we use Newton
method to solve this problem.

Object #points n Nt Nc r.m.s
Beethoven 40,000 3 1,022 4,601 0.02%
David 203,219 5 1,236 15,452 0.03%
Dog 195,586 5 472 5,902 0.01%
Isis 187,644 4 540 4,322 0.02%
Teeth 116,604 4 554 4,434 0.007%

Table 1. Spline configuration. n, degree of
spherical splines; Nt , # of domain triangles;
Nc, # of control points; r.m.s., root mean
square error.

4.6. Adaptive refinement

In our method, we control the quality of the spherical
spline by specifying the maximal fitting tolerance L∞ =
max‖F(ui)−pi‖, i = 1, . . . ,m (We set L∞ = 0.1% of the di-
agonal of the object in our experiments). If the current sur-
face does not satisfy this criterion, we employ adaptive re-
finement to introduce new degrees of freedom into the sur-
face representation to improve the fitting quality. Suppose
triangle I violates the criterion and denote LI

∞ the L∞ error
on triangle I. If the LI

∞ > 2ε, split the triangle I using 1-to-
4 scheme and then split the neighboring triangles to avoid
T-junctions; Otherwise, we split the longest edge.

After adaptive refinement, we then repeat the fitting pro-
cedure until the maximal fitting tolerance is satisfied. The
reconstructed David’s head is shown in Figure 3(f)-(j). The
refined domain has 1,236 triangles and 15,452 control
points. The root-mean-square (r.m.s.) error is 0.03%.

5. Results & Applications

We have implemented a prototype system on a 3GHz
Pentium IV PC with 1GB RAM. We perform experiments
on various closed genus zero surfaces from sphere-like sur-
faces, such as David’s head, teeth, to surfaces with long ex-
truding parts, such as Isis. In order to compare the fitting
error across different models, we uniformly scale the mod-
els to fit within a unit cube. Table 1 shows the spline com-
plexities. By converting dense meshes to spherical splines,
we achieve a compact representation, high continuity and
small approximation error.

5.1. Editing the details

We can easily edit the details by adding a separate scalar
spherical spline to the existing base one. Figure 5 shows an
example of embossing on the Isis model. We first sketch
a flower on the sphere. Next, we construct a scalar spheri-
cal spline D(u) and enhance its control points according to
the sketch. Finally, we evaluate the scalar spline as the dis-



(a) (b) (c)

Figure 5. Editing the details on the spheri-
cal spline. (a) A degree 4 spherical spline. (b)
4,402 control points. (c) We sketch another
scalar spherical spline on (a).

placement and add it to the original spline F(u), i.e., the
modified spline F̃(u) can be evaluated as follows:

F̃(u) = F(u)+D(u)Fv1(u)×Fv2(u) (16)

where v1, v2 and u form a local coordinate system at u.

5.2. Editing the control net

As shown in Figure 6(b), the dog model is reconstructed
by a degree 5 spherical spline containing 5,902 control
points (Figure 6(a)). We deform the control net (Figure
6(c)), and obtain the deformed spline (Figure 6(d)).

5.3. Computing the differential properties

One key advantage of the spline based representation is
that we have the analytical form of the underlying shape.
Thus, we can compute the normals, curvatures, geodesic, ar-
eas, etc., anywhere on the surface. Figure 8 shows the mean
curvature and principal direction on the dog model.

(a) Control net (b) Spherical spline

(c) Deformed control net (d) Deformed spline

Figure 6. Editing the control net. (a)&(b) A de-
gree 5 spherical spline. We deform the con-
trol net and re-evaluate the spline. (c)&(d) De-
formed control net and spline surface.

5.4. Modeling features

Although it is desirable in principle to have surfaces that
are as smooth as possible, in practice it is necessary to be
able to model discontinuities like sharp edges or corners
as well. We know that the rational spherical spline is glob-
ally Cn−1 continuous if the knots are in “spherical” general
position (Section 3.4). However, we can model sharp fea-
tures by intentionally placing knots co-circularly. Figure 9
shows an example of modeling features on the teeth model.
Benefiting from the conformal spherical parameterization,
the sharp features on the original model can be faithfully
mapped to the sphere. Therefore, by constructing the do-
main triangulation according to the features and place the
knots along the desired knot lines, we can model the fea-
tures easily and accurately in one single representation.

6. Discussion

A degree n spherical triangular B-spline has globally
Cn−1 continuity if there are no degenerate knots. However,
in some cases, there exist some so-called “knot-lines” where
the corresponding curvatures are larger than other regions.



For example, Figure 10(a) and (b) show a degree 5 spheri-
cal triangular B-spline and the mean curvature respectively.
These knot lines are the images of the edges in the domain
triangulation. Therefore, we can eliminate these knot lines
by adjusting the control points and weights. Denote by L the
set of edges in the domain triangulation which corresponds
to the knot lines. We minimize the integral of principal cur-
vature along the lines in L:

min
∫

L
∑
i, j

(
∂ki

∂u j
)2 (17)

where k1, k2 are the principal curvature and u1, u2 represent
u and v. Note that we fix the control points and only allow
the weights to be free variable in Equation 17. Therefore, it
results in small changes in the overall shape, but the curva-
ture distribution improves significantly as shown in Figure
10(c) and (d).

7. Conclusion

We have proposed a new shape modeling paradigm for
genus zero surfaces based on the concept and formulation
of rational spherical triangular B-splines. This new spline
scheme utilizes a sphere as its parametric domain, making it
fundamentally different from other popular splines defined
over open planar domains. As a result, spherical splines ap-
pear to be ideal for the effective representation of genus zero
closed surfaces without any cutting, trimming, and patching
operations. After presenting the theory of rational spheri-
cal splines, we have articulated a computational framework
to convert genus zero mesh to a single rational spherical
spline whose maximal error is less than the user-specified
value. Our reverse engineering algorithm is based on adap-
tive conformal spherical parameterization, which has less
local distortion and is insensitive to the triangulation and
resolution of the geometric data input. Benefiting from the
closed-form analytical formulation of any modeled spline
surfaces, we have also developed the modeling toolkits for
interactive editing, feature transfer, shape deformation, and
shape analysis. Our experiments demonstrate both the effi-
cacy and the accuracy of spherical splines in reverse engi-
neering, intuitive deformation, and shape modeling, espe-
cially for genus zero surfaces.
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Figure 7. Close-up of the reconstructed
David’s head model. (a),(e) Spherical trian-
gulation; (b),(f) The red curves on the spline
correspond to the edges of domain triangu-
lation; (c),(g) Spline surface; (d),(h) Spline
overlaid with control points.
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Figure 8. Computing the differential proper-
ties. Left: Mean curvature; Right: Principal di-
rection of kmin.

Figure 9. Modeling features by degenerate
knots. Left: A degree 4 spherical spline is
C3 continuous everywhere except at the fea-
tures (at the base) which is C0; Right: Spher-
ical parametrization and domain triangula-
tion. The knots associated to the vertices on
the blue lines are degenerate.

(a) (b)

(c) (d)

Figure 10. Knot-line elimination. (a)-(b) A de-
gree 5 spherical spline and its mean cur-
vature; (c)-(d) Spline surface after knot line
elimination and mean curvature distribution.

Figure 11. Non-negative weights provide
more degree of freedom to control the spline
shape. From left to right, the weight of the
top-most control point is set to 0, 0.5, 1 and
10, respectively. Other weights are set to 1.
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