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Abstract. Converting point samples and/or triangular meshes to a more compact
spline representation for arbitrarily topology is both desirable and necessary for
computer vision and computer graphics. This paper presents aC1 manifold inter-
polatory spline that can exactly pass through all the vertices and interpolatetheir
normals for data input of complicated topological type. Starting from the Powell-
Sabin spline as a building block, we integrate the concepts of global parametriza-
tion, affine atlas, and splines defined over local, open domains to arriveat an el-
egant, easy-to-use spline solution for complicated datasets. The proposed global
spline scheme enables the rapid surface reconstruction and facilitates theshape
editing and analysis functionality.

1 Introduction

Constructing smooth interpolatory spline surfaces from any data input in 3D is fre-
quently needed in visual computing. Given a scattered pointcloud,{Pi = (xi ,yi ,zi)}

m
i=1,

and associated normal vectors{ni = (nxi ,nyi ,nzi)}
m
i=1, the goal of this paper is to find

a smooth surfaceF that interpolates both the vertex positions and their normals simul-
taneously of complicated topological type.

Unlike most of the conventional methods which typically trim parametric spline
surfaces defined over open planar domains, stitch them alongtheir trimmed bound-
aries with care, and enforce the smoothness requirements ofcertain degree across their
common boundaries, our spline scheme is global and interpolatory. It can faithfully re-
construct smooth shapes of any manifold from geometric input without resorting to any
patching and/or trimming operations. The technical core ofour new approach is the
Powell-Sabin spline defined over any open, triangulated domain. The primary goal is
the exact interpolation (for both vertices and their normals), therefore, the Powell-Sabin
spline scheme is an ideal candidate for this requirement. Nonetheless, the technical
challenge is how to generalize the Powell-Sabin spline defined over planar, triangulated
domains to a global spline spanning over domain of complicated topology without any
cutting and patching work. We accomplish this mission through the following steps: (1)
The initial, raw data input is globally parameterized in order to map the 3D geometry
onto a 2D domain; (2) For any 3D point, we are only interested in a certain localized
2D region in its vicinity; (3) We decompose the entire 3D geometry into a suite of over-
lapping regions and construct their corresponding affine atlases on 2D; (4) These affine
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charts in 2D constitute all the local parametric domain for defining all the open Powell-
Sabin spline surfaces that interpolate only a subset of datapoints; (5) These locally
defined spline surfaces span across their neighbors and share some common regions;
and finally (6) We build a globally interpolatory spline by collecting all the control
points and using all the affine atlases as their global domain.

(a) (b) (c) (d)

Fig. 1.Globally interpolatatory spline: (a) A genus-6 Buddha model with 25K vertices; (b) Global
conformal parameterization; (c) A globalC1 spline surface which interpolates all the vertices and
their normals of (a); (d) Close-up view:top, original mesh;middle, spline surface;bottom, spline
surface with the red curves corresponding to the edges in the mesh.

2 Previous Work

2.1 Planar Powell-Sabin spline

Powell-Sabin splines are functions in the spaceS1
2(∆ps) of C1 continuous piecewise

quadratic functions on a Powell-Sabin refinement [1]. Such arefinement∆ps can be ob-
tained from an arbitrary triangulation∆ by splitting each triangle into six subtriangles
with a common interior point. In contrast to triangular Bézier splines, where imposing
smoothness conditions between the patches requires a greatnumber of nontrivial re-
lations between the control points to be satisfied, theC1 continuity of a Powell-Sabin
spline is guaranteed for any choice of the control points.

The first B-spline representation of Powell-Sabin spline was derived by Shi et al. [2].
However, their construction approach had serious drawbacks from the numerical point
of view. Dierckx [3] resolved the numerical problem by constructing a normalizedB-
spline basis for Powell-Sabin splines. This representation has a very nice geometric



Globally Interpolatory Spline 3

interpretation involving the tangent control triangles for manipulating the Powell-Sabin
surfaces. Since then, the normalized Powell-Sabin spline has been receiving much at-
tention in the computer aided geometric design community. Surface approximation and
interpolation using Powell-Sabin spline have been reported in [4–6]. Windmolders and
Dierckx solved the subdivision problem for uniform Powell-Sabin splines, that is on
triangulations with all equilateral triangles [7]. Recently, Vanraes et al. present the sub-
division rule for general Powell-Sabin spline [8].

2.2 Interpolatory spline

Interpolation is a very useful and intuitive feature in computer aided geometric design.
Two different research directions have been pursued. One isbased on the subdivision
surfaces that recursively subdivide the control mesh, suchas the butterfly scheme [9]
or modified butterfly scheme [10]. The other direction consists of building a patch of
smoothly joined parametric patches. This paper focuses on the spline based interpola-
tion scheme. There exists a vast literature on interpolation by splines over triangulations
(see the survey [11] and the references therein). In the interest of the space, we only cite
few of them which are closely related to our work.

Hahmann and Bonneau [12] presented a piecewise quinticG1 spline surface inter-
polating the vertices of a triangular surface mesh of arbitrary topological type. They fur-
ther improved the method without imposing any constraint onthe first derivatives and
thus avoid any unwanted undulations when interpolating irregular triangulations [13].
Nürnberger and Zeilfelder presented [14] a local Lagrange interpolation scheme for
C1-splines of degreeq≥ 3 on arbitrary triangulations. This interpolating spline yields
optimal approximation order and can be computed with linearcomplexity.

2.3 Manifold construction

There are some related work on defining functions over manifold. Grimm and Hugues
[15] pioneered a generic method to extend B-splines to surfaces of arbitrary topology,
based on the concept of overlapping charts. Cotrina et al. proposed aCk construction on
manifold [16, 17]. Ying and Zorin [18] presented a manifold-based smooth surface con-
struction method which hasC∞-continuous with explicit nonsingular parameterizations.
Recently, Gu, He and Qin [19] developed a general theoretical framework of manifold
splines in which spline surfaces defined over planar domainscan be systematically gen-
eralized to any manifold domain of arbitrary topology (withor without boundaries).
Manifold spline is completely different from the above methods in that: 1) The transi-
tion functions of manifold spline must be affine. Therefore,the requirements of mani-
fold spline is much stronger. That is why topological obstruction plays an important role
in the construction. 2) Manifold spline produces the polynomial or rational polynomi-
als. On any chart, the basis functions are always polynomials or rational polynomials,
and represented asB-splines or rationalB-splines.

In [19], Gu et al. defined the manifold spline based on triangular B-spline [20]. This
construction requires a complicated data fitting procedurewhen converting points to
splines. Inspired by [19], we strive to devise a globally interpolatory splines that are
founded upon the original work of [3]. Our method is different from the above methods
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in that: 1) All the existing developments of Powell-Sabin splines are defined on the
planar domain; 2) The existing global interpolatory splines need patching and stitching
work; 3) All the manifold constructions except the manifoldsplines do not produce
globally polynomials or rational polynomials. Our work generalizes the planar Powell-
Sabin spline to arbitrary manifold without any patching andstitching work. Also, due to
the nice properties of the normalized Powell-Sabin spline,our method can interpolate
both positions and normals.

3 The Globally Interpolatory Spline

This section first reviews the normalized planar Powell-Sabin B-spline [3] and then
presents all the necessary components for our global splinescheme.

3.1 Powell-Sabin spline on the planar domain

Let Ω be a polygonal domain inR2 and let∆ be a conforming triangulation ofΩ , com-
prising trianglesρ j , j = 1, . . . ,Nt , having verticesVi := (xi ,yi),i = 1, . . . ,Nv. A Powell-
Sabin refinement,∆ps of ∆ is the refined triangulation, obtained by subdividing each
triangle of∆ into six sub-triangles as follows. Select an interior pointZ j in each tri-
angleρ j and connect it with the three vertices ofρ j and with the pointsZ j1,Z j2,Z j3
whereρ j1,ρ j2,ρ j3 are the triangles adjacent toρ j (See Figure 2). We denote byS1

2(∆ps)

V
V

Z1

Z2

S

(a) (b)

Fig. 2.The Powell-Sabin refinement∆∗ (b) of a triangulation∆ (a).

the space of piecewiseC1 continuous quadratic polynomials on∆ps. Powell and Sabin
[1] proved that the dimension of the spaceS1

2(∆ps) equals to 3Nv and any element of
S1

2(∆ps) is uniquely determined by its value and its gradient at the vertices of∆ , i.e.,
there exists a unique solutions(x,y) ∈ S1

2(∆ps) for the interpolation problem

s(Vi) = fi ,
∂
∂x

s(Vi) = fx,i ,
∂
∂y

s(Vi) = fy,i , i = 1, . . . ,Nv. (1)

So given the function and its derivative values at each vertex Vi , the B́ezier ordinates
on the domain sub-triangles are uniquely defined and the continuity conditions between
sub-triangles are automatically enforced.
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Dierckx [3] showed that each piecewise polynomials(x,y) ∈ S1
2(∆ps) has a unique

representation

s(x,y) =
Nv

∑
i=1

3

∑
j=1

ci j B
j
i (x,y), (x,y) ∈ Ω (2)

where the basis functions form a partition of unity, i.e.,

B j
i (x,y) ≥ 0 (3)

n

∑
i=1

3

∑
j=1

B j
i (x,y) = 1 for all x,y∈ Ω (4)

Furthermore, these basis functions have local support:B j
i (x,y) vanishes outside the so-

called moleculeMi of vertexVi , which is the union of all trianglesTk containingVi .
The basis functionsB j

i (x,y) can be obtained by finding three linearly independent
triplets(αi j ,βi j ,γi j ), j = 1,2,3 for each vertexVi . B j

i (x,y) is the unique solution of the
interpolation problem with( fk, fxk, fyk) = (δkiαi j ,δkiβi j ,δkiγi j ), whereδki is the Kro-
necker delta. The triplets(αi j ,βi j ,γi j ), j = 1,2,3 are determined by the following Dier-
ckx’s algorithm [3, 21]:
1. For each vertexvi , find its Powell-Sabin triangle points, which are the immediately

surrounding B́ezier domain points of the vertexvi and vertexvi itself.
2. For each vertexvi , find a triangleti(Qi1,Qi2,Qi3) which contains all the Powell-

Sabin triangle points ofvi from all the triangles in the moleculeMi . DenoteQi j =
(Xi j ,Yi j ) the position of vertexQi j .

3. Three linearly independent triplets of real numbersαi j ,βi j ,γi j , j = 1,2,3 can be
derived from the Powell-Sabin triangleti of a vertexvi as follows:
(αi1,αi2,αi3) = Barycentric coordinate ofvi with respect toti ,
(βi1,βi2,βi3) = ((Yi2−Yi3)/h,(Yi3−Yi1)/h,(Yi1−Yi2)/h),
(γi1,γi2,γi3) = ((Xi3−Xi2)/h,(Xi1−Xi3)/h,(Xi2−Xi1)/h),

whereh = det





1 1 1
Xi1 Xi2 Xi3

Yi1 Yi2 Yi3



.

We then define the control triangles asTi(Ci1,Ci2,Ci3). Dierckx proved that the
normalized Powell-Sabin spline has a very nice geometric interpretation that the control
triangle is tangent to the spline surface [3].

Figure 3 illustrates an example of Powell-Sabin spline surface over a planar triangu-
lated domain. Note that, their basis functionsB j

i (u) vanish outside the moleculeMi (see
Figure 3(e-h)). Furthermore, the control points(Ci1,Ci2,Ci3) form a control triangle
which is always tangent to the spline surface ats(vi) (see Figure 3(d)).

3.2 Generalizing Powell-Sabin spline to arbitrary topology

In [19], Gu et al. addressed several key technical issues of manifold splines in which
spline surfaces defined over planar domains can be systematically extended to mani-
fold domains of arbitrary topology. In a nutshell, a manifold spline can be intuitively
interpreted as a set of spline patches that are automatically glued in a coherent and



6 Ying He et al.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3. Powell-Sabin spline over a planar domain: (a) Domain triangulation; (b) Spline surface;
(c) Spline surface, the red curves correspond to the edges in the domain triangulation; (d) Spline
surface overlaid by the control triangles (shown in red) which are tangent to the surface; (e) The
molecule of one vertexv; (f)-(h) Three basis functions associated with vertexv.

consistent way without any gap, such that all the patches collectively cover the entire
manifold. The surface evaluation can be easily conducted using the control points and
corresponding basis functions of any overlapping patches,without leading to any incon-
sistency. The followings are the necessary theoretical results which enable our global
spline scheme based on Powell-Sabin’s approach.
Theorem 1.The sufficient and necessary condition for a manifold M to admit manifold
spline is that M must be an affine manifold.

This theorem implies that the existence of manifold splinessolely depends on the
existence of affine atlas. If the domain manifoldM is an affine manifold, we will be able
to directly generalize the local spline patches to a global spline defined onM. Details
about the affine manifold and affine atlas can be found in the Appendix.
Theorem 2.The only closed surface admitting affine atlas is of genus one. All oriented
open 2-manifolds admit an affine atlas.

Theorem 2 points out that not all surfaces admit the affine atlas. The topological
obstruction of a global affine atlas is the Euler class. In fact, by removing one point
from the closed domain manifold, we can convert it to an affinemanifold.
Theorem 3 (Affine atlas deduced from conformal structure).Given a closed genus
g surface M, and a holomorphic 1-formω. Denote by Z= {zeros o fω} the zero points
of ω. Then the size of Z is no more than2g−2, and there exists an affine atlas on M/Z
deduced byω.

Essentially, Theorem 3 indicates that an affine atlas of a manifold M can be deduced
from its conformal structure in a straightforward fashion.

3.3 Algorithmic details

Given a triangle meshM of arbitrary topological type, we want to find a manifold
Powell-Sabin spline which interpolates the vertices ofM and their normals. Our spline
surface construction algorithm consists of two consecutive steps: (1) compute the global
conformal parameterization; and (2) construct the global spline.
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Compute global conformal parameterization and affine atlas. As mentioned
above, the domain manifoldM admits a manifold spline if and only if it has affine
atlas, which can be deduced from the conformal structure ofM directly. Thus, in order
to construct our global spline, we shall first compute the conformal structures of the
domain manifoldM. A conformal atlas is an atlas such that all transition functions are
analytic. Two conformal atlases are compatible if their union is still a conformal atlas.
All compatible conformal atlases form conformal structure. It is known that all surfaces
have conformal structure and are called Riemann surfaces. The algorithm to compute
global conformal parameterization and affine atlas is as follows:

1. Compute the holomorphic 1-formω of M using Gu-Yau’s algorithm [22].
2. Remove the zero pointsZ of ω and the adjacent faces.
3. Construct an open covering forM/Z. For each vertexV i , take the union of all faces

within its molecule as an open set, denoted byUi .
4. Test if the union of any twoUi ’s is a topological disk by checking the Euler number.

If not, subdivideUi .
5. Pick one vertexpi ∈Ui , for any vertexp∈Ui , defineφi(p) =

∫ p
pi

ω.

6. Compute coordinate transition functionsφi j =
∫ p j

pi
ω.

(a) (b) (c) (d)

Fig. 4. Interpolation of a genus-2 model. (a) The two-hole bottle model with 2K vertices; (b)
Global conformal parameterization; (c) Spline surface; (d) Controltriangles.

Global spline construction.Note that the evaluation of Powell-Sabin spline over any
planar region relies on the computation of Barycentric coordinates of the parameter with
respect to the domain triangles. If we change the parameter by an affine transformation,
the evaluation is invariant and the final shape of the spline surface will not be changed.
Figure 5 highlights the transition from local patches to theglobal spline. The algorithm
to construct the global spline is as follows:

1. Prepare the underlying parameteric domain (For any vertex V i ∈ M, denote by
(Ui ,φi) its parametric chart which contains the molecule ofV i).

2. Compute the three linear independent triplets,(αi j ,βi j ,γi j ), j = 1,2,3. Build the
basis functions using the above Dierckx’s algorithm.
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M

s

Ui U j
φi

φ j

φi(Ui)

φ j (U j )

Fig. 5. Constructing local spline patches: The parametric domainM is a triangular mesh of ar-
bitrary topology as shown on the left. The polynomial spline surfaces is shown on the right.
Two overlapping spline patches are magnified and highlighted in the middle. On each parameter
chart(Ui ,φi), (U j ,φ j ), the surface is a locally defined planar Powell-Sabin spline patch. For the
overlapping part, its two planar domains differ only by an affine transformationφi j .

3. Assign the control points(Ci1,Ci2,Ci3) which satisfy

V i =
3

∑
j=1

αi j Ci j (5)

and
(Ci1−Ci2)× (Ci1−Ci3)

‖ (Ci1−Ci2)× (Ci1−Ci3) ‖
= ni = (nxi ,nyi ,nzi)

T (6)

One can prove that the control triangle(Ci1,Ci2,Ci3) is tangent to the spline surfaces
atV i , i.e.,

s(φi(V i)) = V i (7)

su(φi(V i))×sv(φi(V i))

‖ su(φi(V i))×sv(φi(V i)) ‖
= ni (8)

The detailed proof is in the Appendix.
Variational shape design.In the Powell-Sabin spline scheme, each vertex of the

domain triangulation is associated with three control points. In the above spline con-
struction step, we require the control points satisfying Equation (5) and (6). Therefore,
there are still three degrees of freedom remaining. We can use these free variables for
variational shape design. For example, we can fair the spline surface by minimizing the
following energy functional subject to the interpolation constraints:

min α
∫∫

M
(s2

u +s2
v)dudv+β

∫∫

M
(s2

uu+2s2
uv+s2

vv)dudv (9)

subject to V i =
3

∑
j=1

αi j Ci j

〈Ci1−Ci2,ni〉 = 0

〈Ci2−Ci3,ni〉 = 0, for each vertexV i ∈ M,
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where〈,〉 is the inner product,u andv are parameters on the local charts. The objective
function is the standard thin-plate energy with membrane terms, which can be written
as a quadratic form of control points. Therefore, the above optimization problem can be
solved efficiently using the Lagrange multiplier method.

Handling the singular points. In [19], Gu et al. showed the manifold splines must
have singular points if the domain manifold is closed and nota torus. The number of
singular points is no more than 2g−2 for a genusg domain manifoldM. The singular
pointsZ can be automatically detected from the conformal structureof M by checking
the winding number. Then the molecule ofZ is removed fromM. No spline patches are
defined on the molecule ofZ. Therefore, there exist holes in the spline surface. For each
hole, we compute a minimal surface spanning the hole such that it satisfies the given
boundary condition.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 6. Manipulation of manifold Powell-Sabin spline: The input is a triangular meshM with
normal information as shown in (a). We construct a manifold Powell-Sabin splineS to interpolate
both the positions and normals ofM (shown in (b)). We insert a new vertexv in the original mesh
and assign a normal tov (shown in (c)). The corresponding spline is shown in (d). We can also
change the normal but fix the positions, the spline and control triangles are shown in (e) and
(f), respectively. We can even fix the vertices positions and their normals but change the size of
the control triangles without violating the interpolation property. In (h), we enlarge the control
triangle of the top-most vertex and get a new surface shown in (g). Notethat the new spline still
interpolates the positions and normals.

3.4 Properties

The proposed globally interpolatory spline (based on Powell-Sabin spline over the pla-
nar domain) exhibits the following features:

1. Piecewise polynomial.The global spline surface is a quadratic piecewise polyno-
mial defined on the manifoldM which has arbitrary triangulation. It is globally
C1-continuous and very efficient to evaluate.
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2. Local support.It has local support since the basis functionsB j
i (u) vanish outside

the molecule ofvi .
3. Tangent plane control/Interpolation/Local shape modification. The control triangle

(Ci0,Ci1,Ci2) is tangent to the spline surfaces at V i . Thus, by manipulating the
control triangle, the spline surface can interpolate both positions and normals. Fur-
thermore, besides interpolation of the positions and normals, the control triangle
still has three degrees of freedom which can be used for localshape modification
and variational shape design.

4. Convex hull.The polynomial surface is inside the convex hull of the control points.
5. Local adaptive refinement.Since there is no restriction on the triangulation ofM,

the spline surface can be locally refined by knot insertion, e.g., inserting a new
vertex inside the existing triangle, or splitting any edge.

6. Minimal number of singular points.The number of singular points depends only
on the topology of the manifoldM, i.e., no more than 2g−2 singular points for a
genusg domain manifold.

4 Results

We have implemented a prototype system on a 3GHz Pentium IV PCwith 1GB RAM.
Figure 6 illustrates the various properties of manifold Powell-Sabin spline which is
useful in computer aided geometric design. We perform experiments on several models
of various topological types, i.e., a genus-0 face (Figure 7), a genus-1 rockerarm (Fig-
ure 8), a genus-2 bottle (Figure 4), and a genus-6 Happy Buddha (Figure 1). The overall
computational procedure requires about 6∼ 30 minutes for our test models.

(a) (b) (c)

Fig. 7. Example of a genus-0 open surface: (a) The face model with 4K vertices; (b) Global
conformal parameterization; (c) The globally interpolatory spline.

5 Conclusion

In this paper, our goal is to seek a global spline solution that will allow us to interpolate
all vertices and their normals using one-piece spline representation without any cutting
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(a) (b) (c)

Fig. 8. Example of a genus-1 surface: (a) The rockerarm model with 10K vertices; (b) Global
conformal parameterization; (c) The globally interpolatory spline.

and stitching operations. Founded upon the Powell-Sabin spline, we have developed a
new globally interpolatory spline which is truly one-pieceformulation without gener-
ating any seams when crossing triangular edges on its domainmesh. The interpolation
property is valuable for the reverse engineering task that can effectively convert point-
cloud raw data to the compact spline formulation. Our globally interpolatory spline is
also relevant to surface modeling, variational design, andinteractive editing.
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Appendix: Proof of the Interpolation Property

We prove that our global spline (based on Powell-Sabin spline) interpolates the domain
manifoldM and its normals, i.e., for a vertexV i ∈M, s(φi(V i)) = V i andn(φi(V i)) = ni

whereφi : Ui → R
2 maps the molecule ofV i to the planar domain.

The basis functions of verticesVk have local support, i.e., they vanish outside the
molecule ofφk(Vk). Therefore,

s(φi(V i)) =
Nv

∑
i=1

3

∑
j=1

Ci j B
j
i (φi(V i)) =

3

∑
j=1

Ci j B
j
i (φi(V i)) =

3

∑
j=1

Ci j αi j = V i .

The last equation results from the fact thatαi j , j = 1,2,3 are also the Barycentric co-
ordinate ofV i with respect to(Ci1,Ci2,Ci3). Similarly, the normaln(φ(V i)) can be
calculated as

n(φi(V i)) ∝ su(φi(V i))×sv(φi(V i)) = (
3

∑
j=1

Ci j βi j )× (
3

∑
j=1

Ci j γi j )

= λ (Ci1×Ci2 +Ci2×Ci3 +Ci3×Ci1)

= λ (Ci1−Ci2)× (Ci1−Ci3) ∝ ni ,

whereλ = βi1γi2−βi2γi1 = βi3γi1−βi1γi3 = βi2γi3−βi3γi2. Therefore, the control tri-
angle(Ci1,Ci2,Ci3) is tangent to the surfaces at vertexV i .


