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Abstract. Converting point samples and/or triangular meshes to a more compact
spline representation for arbitrarily topology is both desirable and negefs
computer vision and computer graphics. This paper prese@itsranifold inter-
polatory spline that can exactly pass through all the vertices and interpotate
normals for data input of complicated topological type. Starting from thvesto
Sabin spline as a building block, we integrate the concepts of global paizane
tion, affine atlas, and splines defined over local, open domains to atrase el-
egant, easy-to-use spline solution for complicated datasets. The ptbglabal
spline scheme enables the rapid surface reconstruction and facilitateisaibe
editing and analysis functionality.

1 Introduction

Constructing smooth interpolatory spline surfaces from data input in 3D is fre-
quently needed in visual computing. Given a scattered booid, {P; = (xi,Vi,z) }",,
and associated normal vectdns = (nx, ny;,nz)}",, the goal of this paper is to find
a smooth surfacg that interpolates both the vertex positions and their néssianul-
taneously of complicated topological type.

Unlike most of the conventional methods which typicallyrtrparametric spline
surfaces defined over open planar domains, stitch them dharigtrimmed bound-
aries with care, and enforce the smoothness requiremenéstain degree across their
common boundaries, our spline scheme is global and intatiguy! It can faithfully re-
construct smooth shapes of any manifold from geometrictinithout resorting to any
patching and/or trimming operations. The technical corewfnew approach is the
Powell-Sabin spline defined over any open, triangulatedadionThe primary goal is
the exact interpolation (for both vertices and their noshaherefore, the Powell-Sabin
spline scheme is an ideal candidate for this requiremenheleless, the technical
challenge is how to generalize the Powell-Sabin spline ddfover planar, triangulated
domains to a global spline spanning over domain of com@at&bpology without any
cutting and patching work. We accomplish this mission tigtothe following steps: (1)
The initial, raw data input is globally parameterized in@rtb map the 3D geometry
onto a 2D domain; (2) For any 3D point, we are only interested certain localized
2D region in its vicinity; (3) We decompose the entire 3D getmyinto a suite of over-
lapping regions and construct their corresponding affitasas on 2D; (4) These affine
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charts in 2D constitute all the local parametric domain ffirdng all the open Powell-
Sabin spline surfaces that interpolate only a subset of plaitats; (5) These locally
defined spline surfaces span across their neighbors ane sbare common regions;
and finally (6) We build a globally interpolatory spline bylleating all the control
points and using all the affine atlases as their global domain

@ (b) (©

Fig. 1. Globally interpolatatory spline: (a) A genus-6 Buddha model with 25K vesti¢h) Global
conformal parameterization; (c) A glob@} spline surface which interpolates all the vertices and
their normals of (a); (d) Close-up viewop, original meshmiddle spline surfacehottom spline
surface with the red curves corresponding to the edges in the mesh.

2 Previous Work

2.1 Planar Powell-Sabin spline

Powell-Sabin splines are functions in the spééeﬂps) of C! continuous piecewise
quadratic functions on a Powell-Sabin refinement [1]. Suafiaemeniips can be ob-
tained from an arbitrary triangulatiof by splitting each triangle into six subtriangles
with a common interior point. In contrast to triangulag®er splines, where imposing
smoothness conditions between the patches requires argnediter of nontrivial re-
lations between the control points to be satisfied,Gheontinuity of a Powell-Sabin
spline is guaranteed for any choice of the control points.

The first B-spline representation of Powell-Sabin spline derived by Shi et al. [2].
However, their construction approach had serious drawgbfiokn the numerical point
of view. Dierckx [3] resolved the numerical problem by consting a normalized-
spline basis for Powell-Sabin splines. This representatias a very nice geometric
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interpretation involving the tangent control trianglesiiganipulating the Powell-Sabin
surfaces. Since then, the normalized Powell-Sabin splisebleen receiving much at-
tention in the computer aided geometric design communityfaSe approximation and
interpolation using Powell-Sabin spline have been repart¢4—6]. Windmolders and
Dierckx solved the subdivision problem for uniform Pow8hlbin splines, that is on
triangulations with all equilateral triangles [7]. RedgnVanraes et al. present the sub-
division rule for general Powell-Sabin spline [8].

2.2 Interpolatory spline

Interpolation is a very useful and intuitive feature in cartgy aided geometric design.
Two different research directions have been pursued. Ohased on the subdivision
surfaces that recursively subdivide the control mesh, sisctine butterfly scheme [9]
or modified butterfly scheme [10]. The other direction cassif building a patch of
smoothly joined parametric patches. This paper focuseb®sijiline based interpola-
tion scheme. There exists a vast literature on interpaldtjosplines over triangulations
(see the survey [11] and the references therein). In theesisitef the space, we only cite
few of them which are closely related to our work.

Hahmann and Bonneau [12] presented a piecewise quiitgpline surface inter-
polating the vertices of a triangular surface mesh of abjttopological type. They fur-
ther improved the method without imposing any constrainthanfirst derivatives and
thus avoid any unwanted undulations when interpolatiregintar triangulations [13].
NiUrnberger and Zeilfelder presented [14] a local Lagrangerpolation scheme for
Cl-splines of degreg > 3 on arbitrary triangulations. This interpolating splirielgis
optimal approximation order and can be computed with liceanplexity.

2.3 Manifold construction

There are some related work on defining functions over mihitrimm and Hugues
[15] pioneered a generic method to extend B-splines to sesfaf arbitrary topology,
based on the concept of overlapping charts. Cotrina et@pgsed &£ construction on
manifold [16, 17]. Ying and Zorin [18] presented a maniféldsed smooth surface con-
struction method which h&”-continuous with explicit nonsingular parameterizations
Recently, Gu, He and Qin [19] developed a general theotdteaework of manifold
splines in which spline surfaces defined over planar dontinde systematically gen-
eralized to any manifold domain of arbitrary topology (withwithout boundaries).
Manifold spline is completely different from the above nadh in that: 1) The transi-
tion functions of manifold spline must be affine. Therefdhe requirements of mani-
fold spline is much stronger. That is why topological obstian plays an important role
in the construction. 2) Manifold spline produces the potyied or rational polynomi-
als. On any chart, the basis functions are always polynsnoiatational polynomials,
and represented &ssplines or rationaB-splines.

In [19], Gu et al. defined the manifold spline based on tridaug-spline [20]. This
construction requires a complicated data fitting proceduien converting points to
splines. Inspired by [19], we strive to devise a globallyempblatory splines that are
founded upon the original work of [3]. Our method is differé&nom the above methods
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in that: 1) All the existing developments of Powell-Sabidirsgs are defined on the
planar domain; 2) The existing global interpolatory spdimeed patching and stitching
work; 3) All the manifold constructions except the manifalplines do not produce
globally polynomials or rational polynomials. Our work gealizes the planar Powell-
Sabin spline to arbitrary manifold without any patching atitthing work. Also, due to
the nice properties of the normalized Powell-Sabin splng,method can interpolate
both positions and normals.

3 The Globally Interpolatory Spline

This section first reviews the normalized planar Powellisdspline [3] and then
presents all the necessary components for our global sptimeme.

3.1 Powell-Sabin spline on the planar domain

Let Q be a polygonal domain iR? and letA be a conforming triangulation @®, com-
prising triangle;, j = 1,...,N, having vertice®/ := (x;,yi),i = 1,...,Ny. A Powell-
Sabin refinement)ps of A is the refined triangulation, obtained by subdividing each
triangle of A into six sub-triangles as follows. Select an interior pdptin each tri-
anglep; and connect it with the three vertices pof and with the point&Z;,,Z;,,Z;,
wherepj, ,pj,.pj, are the triangles adjacent pp (See Figure 2). We denote I8)(Aps)

(@) (b)

Fig. 2. The Powell-Sabin refinemedt* (b) of a triangulatiom (a).

the space of piecewig®! continuous quadratic polynomials dps. Powell and Sabin
[1] proved that the dimension of the spa8gA,s) equals to 8l, and any element of
S%(Aps) is uniquely determined by its value and its gradient at th¢ices ofA, i.e.,
there exists a unique solutiax,y) € S}(Aps) for the interpolation problem

17} 0 :
So given the function and its derivative values at each xéftethe Bezier ordinates
on the domain sub-triangles are uniquely defined and théntotyt conditions between
sub-triangles are automatically enforced.
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Dierckx [3] showed that each piecewise polynonsia,y) € S}(Aps) has a unique
representation

Ny 3 .
s(x,y) = 21 > ciBl(xy), (xy) € Q (2)
i=1]=1
where the basis functions form a partition of unity, i.e.,
B/(x.y) > 0 3)
n 3 i
Ziz B/ (x,y) = 1forallx,y € Q (4)
i=1]=1

Furthermore, these basis functions have local supppfx, y) vanishes outside the so-
called moleculeV; of vertexVi, which is the union of all trianglegji containingV;.

The basis functionﬁ%iJ (x,y) can be obtained by finding three linearly independent
triplets (aij, Bij, ¥j), | = 1,2,3 for each verteX/. Bi' (x,y) is the unique solution of the
interpolation problem with{ f, fxx, fyx) = (&idij, &iBij, &iVij ), wheredy; is the Kro-
necker delta. The tripletsxij, Bij, ¥j ), j = 1,2,3 are determined by the following Dier-
ckx’s algorithm [3, 21]:

1. For each vertey;, find its Powell-Sabin triangle points, which are the imnagely
surrounding Bzier domain points of the vertexand vertex; itself.

2. For each vertex;, find a triangleti (Qi1, Qi2, Qiz) which contains all the Powell-
Sabin triangle points of; from all the triangles in the moleculd;. DenoteQ;; =
(%ij,Yij) the position of vertexy;;.

3. Three linearly independent triplets of real numbeyss i, yij, j = 1,2,3 can be
derived from the Powell-Sabin triangieof a vertexv; as follows:

(ai1, aiz, oi3) = Barycentric coordinate of, with respect td;,
(B Bi2, Biz) = ((Yiz—Yia) /h, (Yiz — Yiz) /h, (Y1 — Yi2) /),
(Vi1, ¥i2, ¥i3) = ((Xiz — Xi2) /N, (Xis — Xi3) /h, (Xi2 — Xi1) /h),
111
whereh = det| X1 Xi2 Xiz |.
Yi1 Yi2 Yis

We then define the control triangles &$Ci1,Ci2, Ciz). Dierckx proved that the
normalized Powell-Sabin spline has a very nice geomettémetation that the control
triangle is tangent to the spline surface [3].

Figure 3 illustrates an example of Powell-Sabin splineastgfover a planar triangu-
lated domain. Note that, their basis functi@{u) vanish outside the molecubd; (see
Figure 3(e-h)). Furthermore, the control poiti€1,Ciz, Ciz) form a control triangle
which is always tangent to the spline surfacs(af) (see Figure 3(d)).

3.2 Generalizing Powell-Sabin spline to arbitrary topoloy

In [19], Gu et al. addressed several key technical issuesaniifold splines in which

spline surfaces defined over planar domains can be systaihagxtended to mani-
fold domains of arbitrary topology. In a nutshell, a mardfepline can be intuitively
interpreted as a set of spline patches that are automgtigiaiéd in a coherent and
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(e) ® () (h)

Fig. 3. Powell-Sabin spline over a planar domain: (a) Domain triangulation; (b)é&purface;
(c) Spline surface, the red curves correspond to the edges in thérdoiaagulation; (d) Spline
surface overlaid by the control triangles (shown in red) which are tarigehe surface; (e) The
molecule of one vertey; (f)-(h) Three basis functions associated with verex

consistent way without any gap, such that all the patchdeatively cover the entire
manifold. The surface evaluation can be easily conductedyuke control points and
corresponding basis functions of any overlapping patchigsout leading to any incon-
sistency. The followings are the necessary theoreticaltse®/hich enable our global
spline scheme based on Powell-Sabin’s approach.

Theorem 1.The sufficient and necessary condition for a manifold M toiadmanifold
spline is that M must be an affine manifold.

This theorem implies that the existence of manifold splisglely depends on the
existence of affine atlas. If the domain manifédds an affine manifold, we will be able
to directly generalize the local spline patches to a gloplhe defined orM. Details
about the affine manifold and affine atlas can be found in theefydix.

Theorem 2.The only closed surface admitting affine atlas is of genus Atheriented
open 2-manifolds admit an affine atlas.

Theorem 2 points out that not all surfaces admit the affiresaflhe topological
obstruction of a global affine atlas is the Euler class. In, fag removing one point
from the closed domain manifold, we can convert it to an affiraaifold.

Theorem 3 (Affine atlas deduced from conformal structure).Given a closed genus
g surface M, and a holomorphic 1-fora. Denote by Z= {zeros ofw} the zero points
of w. Then the size of Z is no more thag— 2, and there exists an affine atlas ory Kl
deduced byo.

Essentially, Theorem 3 indicates that an affine atlas of dfidrM can be deduced
from its conformal structure in a straightforward fashion.

3.3 Algorithmic details

Given a triangle mesiM of arbitrary topological type, we want to find a manifold
Powell-Sabin spline which interpolates the verticedodnd their normals. Our spline
surface construction algorithm consists of two conseeugteps: (1) compute the global
conformal parameterization; and (2) construct the glopkhs.
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Compute global conformal parameterization and affine atlas As mentioned
above, the domain manifoltl admits a manifold spline if and only if it has affine
atlas, which can be deduced from the conformal structuid dfrectly. Thus, in order
to construct our global spline, we shall first compute thef@anal structures of the
domain manifoldM. A conformal atlas is an atlas such that all transition fiong are
analytic. Two conformal atlases are compatible if theirounis still a conformal atlas.
All compatible conformal atlases form conformal structutés known that all surfaces
have conformal structure and are called Riemann surfadesalgorithm to compute
global conformal parameterization and affine atlas is devi:

1. Compute the holomorphic 1-form of M using Gu-Yau'’s algorithm [22].

2. Remove the zero poinof w and the adjacent faces.

3. Construct an open covering fist/Z. For each verte¥;, take the union of all faces
within its molecule as an open set, denotedby

4. Testif the union of any twbj's is a topological disk by checking the Euler number.
If not, subdivideU;.

5. Pick one vertex; € U;, for any vertexp € U;, define@(p) = fp’? w.

6. Compute coordinate transition functions = [}’ .

(© (d)

Fig. 4. Interpolation of a genus-2 model. (a) The two-hole bottle model with 2Kioes; (b)
Global conformal parameterization; (c) Spline surface; (d) Comtiaxhgles.

Global spline construction. Note that the evaluation of Powell-Sabin spline over any
planar region relies on the computation of Barycentric dowates of the parameter with
respect to the domain triangles. If we change the paramgtan bffine transformation,
the evaluation is invariant and the final shape of the splimiase will not be changed.
Figure 5 highlights the transition from local patches toglwbal spline. The algorithm
to construct the global spline is as follows:

1. Prepare the underlying parameteric domain (For any wartec M, denote by
(Ui, @) its parametric chart which contains the molecul&/gt

2. Compute the three linear independent tripléts;, B, vj), j = 1,2,3. Build the
basis functions using the above Dierckx’s algorithm.
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Fig. 5. Constructing local spline patches: The parametric dordiis a triangular mesh of ar-
bitrary topology as shown on the left. The polynomial spline surfateshown on the right.
Two overlapping spline patches are magnified and highlighted in the middlea€h parameter
chart(Uj, @), (Uj, ), the surface is a locally defined planar Powell-Sabin spline patch. For the
overlapping part, its two planar domains differ only by an affine tramsédionq; .

3. Assign the control point&Cis, Ci2, Ciz) which satisfy
3
Vi= 3 aiCj; (5)
=1

and
(Ci1—Ci2)x(Cia—Cis) _ T
| (Cir—Ci2) x (Cir—Cia) || i = (%, 1, N2) ©

One can prove that the control triandl€;1, Ciz, Ci3) is tangent to the spline surfase
atVi,i.e.,

7))

(@(VD)) =V, @
su(@ (Vi) xs(@ (Vi) _ (8)
I'su(@(Vi)) xsu(@(Vi)) l

The detailed proof is in the Appendix.

Variational shape design.In the Powell-Sabin spline scheme, each vertex of the
domain triangulation is associated with three control t®iim the above spline con-
struction step, we require the control points satisfying&itpn (5) and (6). Therefore,
there are still three degrees of freedom remaining. We carnhese free variables for
variational shape design. For example, we can fair theeplimface by minimizing the
following energy functional subject to the interpolaticonstraints:

min a//M(sﬁ+si)dudv+B//M(sﬁu+zsﬁv+sév)dudv ©)

3
subjecttoV; = Y a;jjCj
A

(Ci1—Ciz,nj) =0
(Cip — Ciz,nj) =0, for each verte¥; € M,
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where(,) is the inner product) andv are parameters on the local charts. The objective
function is the standard thin-plate energy with membran@sewhich can be written
as a quadratic form of control points. Therefore, the ab@igrzation problem can be
solved efficiently using the Lagrange multiplier method.

Handling the singular points. In [19], Gu et al. showed the manifold splines must
have singular points if the domain manifold is closed andantuirus. The number of
singular points is no more thamg2 2 for a genugy domain manifoldV. The singular
pointsZ can be automatically detected from the conformal struatfitd by checking
the winding number. Then the moleculebfs removed fromM. No spline patches are
defined on the molecule & Therefore, there exist holes in the spline surface. Fdreac
hole, we compute a minimal surface spanning the hole suctittbatisfies the given
boundary condition.

) ® () (h)

Fig. 6. Manipulation of manifold Powell-Sabin spline: The input is a triangular mdstvith
normal information as shown in (a). We construct a manifold PowellfSgilineSto interpolate
both the positions and normals f (shown in (b)). We insert a new vertein the original mesh
and assign a normal to(shown in (c)). The corresponding spline is shown in (d). We can also
change the normal but fix the positions, the spline and control triangéeshewn in (e) and

(f), respectively. We can even fix the vertices positions and their risrme change the size of
the control triangles without violating the interpolation property. In (h), wiamge the control
triangle of the top-most vertex and get a new surface shown in (g). tNatehe new spline still
interpolates the positions and normals.

3.4 Properties

The proposed globally interpolatory spline (based on Ple@abin spline over the pla-
nar domain) exhibits the following features:

1. Piecewise polynomiallhe global spline surface is a quadratic piecewise polyno-
mial defined on the manifol which has arbitrary triangulation. It is globally
Cl-continuous and very efficient to evaluate.
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2. Local supportlt has local support since the basis functid@jgu) vanish outside
the molecule ofs.

3. Tangent plane control/Interpolation/Local shape modifima. The control triangle
(Cio, Ci1,Ci2) is tangent to the spline surfaset V;. Thus, by manipulating the
control triangle, the spline surface can interpolate baiitions and normals. Fur-
thermore, besides interpolation of the positions and ntantle control triangle
still has three degrees of freedom which can be used for kiegbe modification
and variational shape design.

4. Convex hullThe polynomial surface is inside the convex hull of the colntoints.

5. Local adaptive refinemengince there is no restriction on the triangulationvbf
the spline surface can be locally refined by knot insertiog,, énserting a new
vertex inside the existing triangle, or splitting any edge.

6. Minimal number of singular pointsThe number of singular points depends only
on the topology of the manifol¥, i.e., no more than@— 2 singular points for a
genusy domain manifold.

4 Results

We have implemented a prototype system on a 3GHz Pentium IWIHCLGB RAM.
Figure 6 illustrates the various properties of manifold BtwBabin spline which is
useful in computer aided geometric design. We perform exqats on several models
of various topological types, i.e., a genus-0 face (Figyre&genus-1 rockerarm (Fig-
ure 8), a genus-2 bottle (Figure 4), and a genus-6 Happy Bugkgure 1). The overall
computational procedure requires about 80 minutes for our test models.

>4
2333332

roe
1404

@) (b) ()

Fig. 7. Example of a genus-0 open surface: (a) The face model with 4K esrti®) Global
conformal parameterization; (c) The globally interpolatory spline.

5 Conclusion

In this paper, our goal is to seek a global spline solutiobwhithallow us to interpolate
all vertices and their normals using one-piece spline sprtion without any cutting



Globally Interpolatory Spline 11

(@) (b)

Fig. 8. Example of a genus-1 surface: (a) The rockerarm model with 1GKces; (b) Global
conformal parameterization; (c) The globally interpolatory spline.

and stitching operations. Founded upon the Powell-Sallinespve have developed a
new globally interpolatory spline which is truly one-pigicemulation without gener-
ating any seams when crossing triangular edges on its damesh. The interpolation
property is valuable for the reverse engineering task thateffectively convert point-
cloud raw data to the compact spline formulation. Our gliyhakerpolatory spline is
also relevant to surface modeling, variational design,iatetactive editing.
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Appendix: Proof of the Interpolation Property

We prove that our global spline (based on Powell-Sabin gplinterpolates the domain
manifoldM and its normals, i.e., for a vert& € M, s(@(V;)) = Vi andn(@(V;)) =n;
whereq : U; — R? maps the molecule &f; to the planar domain.

The basis functions of verticég, have local support, i.e., they vanish outside the
molecule ofg (V). Therefore,

Ny 3 ) 3 . 3
S(@(Vi)) = ZlcijBi‘(cq(Vi)) = ZlcijBiJ((n(Vi)) = 2 Cudty =Vi
1=1]= 1= =

The last equation results from the fact tiogt, j = 1,2,3 are also the Barycentric co-
ordinate ofV; with respect to(Ci1, Ciz, Ciz). Similarly, the normah(¢(V;)) can be
calculated as

3 3
n(@a(Vi)) Osu(@(Vi)) xs(@a(Vi)) = (Zlcijﬁij) X (ZlCij ¥i)
i= =
= A(Ci1 x Ci2+Cj2 x Ciz+ Ciz x Ci1)
= A(Ci1—Ci2) x (Ci1 —Cj3) O n;,

whereA = Bi1i> — Bia¥i1 = BisWir — BiaVis = BizVis — Bisyi2. Therefore, the control tri-
angle(Cii, Ciz, Ci3) is tangent to the surfaceat vertexV;.



