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Abstract. We propose a novel technique based on spherical splines for brain
surface representation and analysis. This research is strongly thbpithe fact

that, for brain surfaces, it is both necessary and natural to emplsreplas
their natural domains. We develop an automatic and efficient algorithichwh
transforms a brain surface to a single spherical spline whose maxiralde-
viation from the original data is less than the user-specified tolerancep&eoh

to the discrete mesh-based representation, our spherical spling aftemcise
(low storage requirement) digital form with high continui§”( ! continuity for

a degreen spherical spline). Furthermore, this representation enables the accu-
rate evaluation of differential properties, such as curvature, prihdipaction,

and geodesic, without the need for any numerical approximations, Teatain
shape analysis procedures, such as segmentation, gyri and stitoj trand 3D
shape matching, can be carried out both robustly and accurately. Mdeicto
several experiments in order to demonstrate the efficacy of our agpfor the
guantitative measurement and analysis of brain surfaces.

1 Introduction

The human cortical surface is a highly complex, folded $tmecwith rich geometric,
anatomical, and functional information. The outward fdlclled gyri) and the cortical
grooves (called sulci) encode important anatomical festwhich provide a parcella-
tion of the cortex surface into anatomically distinct areggrface-based modeling is
valuable in brain imaging to help analyze anatomical shapstatistically combine
or compare 3D anatomical models across subjects, and toumapidnal imaging pa-
rameters onto anatomical surfaces. Thus, various novalatelysis tools towards the
quantitative study and better understanding of corticeflases have been developed
in recent years. For example, Avants and Gee [1] develophaimgee to estimate the
shape operator and computes principal directions and tues Cachia et al. present
a mean curvature based primal sketch, which derived fromake space computed
for the mean curvature of the cortical surface [2]. Gu et taidyg the conformal brain
mapping [3] and present an algorithm for 3D shape matchingguaD conformal rep-
resentations [4]. Tao et al. present a method for autonigtiading curves of sulcal
fundi on human cortical surfaces using statistical modgl6]. Thompson et al. present
a technique for brain image warping in [7] and then apply itlétect disease-specific
patterns in [8].
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Recent developments in brain imaging have accelerated diection of high-
resolution data sets for cortical surfaces. Typically,abguired digital models of corti-
cal surfaces are in the form of triangular meshes. It is dbl#rand necessary to reverse-
engineer a spline-based surface from meshes for many nhagiglécations, leading to
many advantages. For example, a continuous spline repatieenfor a cortical sur-
face facilitates the quantitative and accurate study oftetomy of cortical surfaces,
and consequently, provides a means for mapping functiariadadion sites over com-
plicated geometry. In particular, we can precisely complltihe differential quantities
such as geodesics, curvatures, and areas anywhere omksutiaces. In general, these
local and global differential attributes will enable mangdical imaging applications
such as image segmentation/classification, tracking lotaamge in an individual over
time, and surface quality analysis and control.

At present, tensor-produ@-spline and NURBS are widely used for surface rep-
resentation because of their many attractive geometrioguties. Nevertheless, due to
their rectangular structures, they are less suitable effective modeling and shape
analysis of cortical surfaces. In contrast, because obihadgical equivalence between
spheres and brain surfaces, spherical splines appear torledaeal for modeling brain
surfaces, both in theory and in practice, than tensor pitdéisplines and NURBS. In
this paper, we present a general framework to model brafases with spherical tri-
angularB-splines proposed by Pfeifle and Seidel [9]. These splinkases are defined
on an arbitrary spherical triangulation and exhibit no aegacies that frequently arise
when attempting to employ planar parametric splines foretind sphere-like, closed
surfaces. Our specific contributions are as follows:

1. The shape is represented by a single degrspline without any patching and
stitching work. The maximal error deviation from the origiinlata is less than any
user-specified tolerance. The reconstructed surfa@®& tscontinuous everywhere.
The surface approximation procedure is automatic.

2. Based on its analytical representation, we can competdifferential properties,
including normals, curvatures, geodesics, etc, withoatrteed for any numeri-
cal approximations via frequently-used bilinear integtimn and/or local algebraic
surface fitting. Therefore, the shape analysis procedsuves, as segmentation, can
be done robustly and accurately.

3. By analyzing the extrema of the derivative of principahvaiures with respect to
the curvature directions, we can automatically detect threand sulci curves to
achieve quantitatively accurate results.

4. With the analytical formulation of conformal factor anéam curvature, we com-
pare the 3D shapes using conformal representation rokarstiaccurately.

2 Surface approximation using spherical triangular B-splines

In this section, we briefly review the definition of spherig@ngularB-splines and then
introduce the algorithm for automatic conversion of theibbsurface into a spherical
triangularB-spline.
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2.1 Spherical triangular B-spline

Denote byS? = {x|x € R3,||x|| = 1} a unit sphere ifR>. Let pointst; € S?, i € N, be
given and define a spherical triangulation

T = {A(I) = [tig, tiy, ti,] : | = (io,i1,i2) € 1 € N3},

where every triangle is oriented counter-clockwise (orcklise). Next, with every
vertext; of T we associate a cloud of knots, ..., tin such thattj o = tj. For every
spherical trianglé = [t tj,, ti,] € T,

1. all the triangleé(é = [tig po» tiy.pytin,p,] With B = (Bo,B1,B2) and|B| = Bo+ B+
B2 < nare non-degenerate.
2. the seQ, = interior (N <nXg) Must be non-empty.

Then the spherical triangul&-spline basis functiorN['g, IB| = n, is defined by means
of spherical simplex splined(ulVg) as N(u[Vg) = |det(Xy)|M(u[Vg) whereV; =

{tio_’o, s tio Boo lin,00 - -+ Lig By Lin,05 - - - 7ti2-,l32}'
A degreen spherical triangulaB-spline surfacé- overT is then defined as

_ |
F(u) = l; ‘Blzzncl,BN(UWp)v 1)

wherec, g € RR3 are the control points.
The spherical triangulaB-spline has many useful properties, including:

— Piecewise polynomialF(u) is a degreen piecewise polynomial defined on the
sphere.

— Locality: The movement of a single control poigtg only influences the surface
on the triangld and on the triangles directly surroundihg

— Smoothnesdf the knots of each se\Yé are in “spherical” general position (i.e.,

no three knots ir\/['3 lie on the same great circle), théifu) is C"~! continuous
everywhere.

i
(@) Aspline patch(bNooo () N11o (d)Nzoz  (8)Nozo () Nozz (@) Noo2

Fig. 1. Six basis functions of a quadratic spherical spline patch.

Figure 1(a) shows a quadratic spherical spline patch de@ingth, t1,t,}. We asso-
ciate two sub-knots j, j = 1,2 with each vertex;. The six basis functions are shown
in Figure 1(b)-(g). Since no three knots are co-circulagrgwasis function i€* ev-
erywhere.
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2.2 Surface reconstruction algorithm

The goal of surface reconstruction is to obtain a continuepsesentation of a surface
described by a cloud of points or a mesh. The problem candilpise stated as follows:
given a seP = {p;}", of pointsp; € R3, find a smooth spherical splirfe: S — R3
that approximatep.

A general framework for surface reconstruction is to mizieré linear combination
of interpolation and fairness functionals, i.e.,

MINE = Egist + AEfair - (2)
The first part is
m
Edgist = 3 [IF(ui) — pi|?
2

whereu; € S?is parameter fop;, i = 1,...,m. The second paH;sg in (2) is a smooth-
ing term. A frequently used example is the thin plate eneEgyy = [fs2(F2,+ 2F2, +
F2,)dudv Both parts are quadratic functions of the unknown conteih{s. For exam-
ple, the approximation function&s; has the following form:

1
Egist = EXTQXJrCTXJr f,

wherex = (...,¢ g,...)T,

Q= - 25PN p(UINy () .. |,

C= ("'7_2.§lpiNé(Ui)’.“)T7

andf =37, pi2

The fairness functionaksy; is also a quadratic function in the unknown control
points, and can be written in a similar fashion. Howeverdm@putation of the fairness
functional is usually time-consuming since it requiresititegration over a product of
two splines. Similar to [10], we do not use the traditionatrfass functional, which
requires integration of products of spherical splinestead, we employ a set of linear
constraints on the control points.

Let [tog,,t1,] be an edge of the spherical triangulation. Derlote(to, t1,t2) and
J = (to,t1,t3) its two adjacent triangles. L& =5 5, c,,BN(u|Vé) be the polynomial
on trianglel and similarly forF’. Let f' and fY be the polar forms of' andF’,
respectively. Then, we require

6p= (X)), YB.IBl =n.a <t 3)

where 0<r <n-— lis anintegerr(= 2 andn > 5 in our implementation) which controls
the fairness of the spline surface. Equation (3) is a lingaagon of the control points.
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We refer the readers to [11, 12, 10] for the detailed inforamagbout the polar form
and fairing triangulaB-spline surfaces.
Therefore, the above optimization problem can be statedlkasvs:

min %XTQX—I—CTX—I— f (4)
subjectto Ax =D,

which is a typical constrained convex quadratic prograngnproblem, and can be
solved by the interior-point based method efficiently.

Algorithm 1: automatic conversion brain surfaceto spherical spline

Input: brain surface M with m pointsip; }" ;, degree n, maximal fitting toleranee
number of triangles N in the initial spherical domain.

Output: a degree n spherical triangular B-splifewhich approximates M.

1. Calculate the spherical conformal parameterization of MhgsGu et al. method
[3]. Denote by hkt M — S? this conformal map, i.e.,(p;) = u; € S2.

2. Decimate M to a simplified mes¥ with N triangles. MapV to the sphere. Con-
struct an initial spherical triangular B-spline of degreelbased on the spherical
triangulation ofM.

. Solve Equation (4) by considering control points as freealaes.

4. Check the maximal fitting error for each spherical triandle If it violates the
criterion, i.e., maxep, ||F(ui) — pi|| > €, subdivide the triangléy, using 1-to-4
scheme and then split the neighboring triangles to avoidrikions.

5. If the maximal fitting error on each triangle satisfies therusecified fitting toler-
ancee, exit; Otherwise, go to step 3.

w

3 Brain Surface Analysis

By converting dense meshes/point clouds to spherical epliwe achieve a compact
and highly continuous representation. More importantlyhave the analytical form of
the underlying shape. Thus, we can compute the normalsattwes, geodesics, areas,
etc., anywhere on the surface. These differential pragmdie crucial in the brain image
analysis. In this section we demonstrate the efficacy ofyaira the brain surface using
spherical splines.

3.1 Segmentation by the mean curvature

The computation of curvature is essential in shape analsignentation and registra-
tion. There are many techniques to estimate the curvatugotygonal meshes, e.g.,
[13-18]. These methods use either discrete differentiatatprs or local polynomial

fitting to approximate the curvature tensor. Therefore, @btmation results closely
rely on the connectivity and quality of the input meshes.



6 Ying He et al.

Fig. 2. lllustration of surface reconstruction using spherical splines. The ispttriangular mesh

M with 131K triangles (a). We first compute its conformal spherical parametenzatiown in

(b). Then we simplify the mesh to 280 triangles (shown in (c)) and map itecsinere as the
initial spherical domain (shown in (d)). From (e) to (g), we fit the mé&lusing a degree 5
spherical spline with 280, 1048 and 2086 spherical triangles. Themeat-square error (r.m.s.)
are 0328%, 00951%, 00196% of the diagonal of the input mesh, respectively. (h) shows the
back view of the reconstructed spline. (i) and (k) show the closeup afrigamal mesh. (j) and

() show the closeup of the reconstructed spline. Note that the high cont{@ityontinuous) of

our spline surface.

In our framework, we convert the brain surface into a singleesical spline of high
continuity. Thus, the Gaussian curvatufeand mean curvaturel can be computed
analytically and efficiently without resorting to any nuricat approximations.

Curvature features such as zero contours and maxima and teesurface match-
ing and object recognition. After computing the curvatuatues, we can easily locate
the curvature zero contours, which are helpful for segmentiie brain surface into
regions (the gyri and the sulci).

3.2 Tracingthesulci and gyri lines

The major sulci and gyri on the cortical surface have distiigometric properties and
are conserved between individuals, making them usefulntemkis for morphometric
comparisons. From computer vision’s point of view, theskeisand gyri are closely
related to the ridge-valley lines, which are curves on aamgrfalong which the surface
bends sharply. The ridge-valley lines are powerful shaernigors that provides us
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with important information about the shapes of objects.réfuee, robust extraction of
ridge-valley structures is important for brain image asiy

In [19], Belyaev et al. present a mathematical descriptisuoh surface creases by
the extrema of the principal curvatures along their cumealines. For a spherical spline
surfaceF(u,v), denote bykmax(U,Vv) andkmin(u,v) the maximal and minimal principal
curvatureskmax > Kmin. Let tmax(U,v) andtmin(u,v) be the corresponding principal di-
rections. Consider the derivatives of the principal curvas along their corresponding
directionsemax(U, V) = 0Kmax/0tmax and emin(U,V) = 0kmin/dtmin. The extrema of the
principal curvatures along their curvature directionsgiven by the zero-crossings of
emax andemin, and the ridges and valleys are characterized by

€max = 0, 0€max/Otmax < 0, Kmax > |kmin|> (fidges), (5)
€min = 0, 0€min/0tmin > 0, Kmin < —|Kmax, (valleys. (6)

Note that if we change the surface orientation, then theeddgrn into the ravines and
vice versa.

Similar to [20], we measure the strength of a ridge line byitibegral ofk,ax along
the line, i.e.,[ kmaxds The ridges whose strength are less than the user-spetifesht
old are ignored.

Algorithm 2: automatic tracing the sulci and gyri lines
Input: a spherical spliné-, N resolution of the output meskires
Output: a set of ridge (gyri) curves and a set of valley (Juicirves.

1. Evaluate the splin€ and get the mesh Montaining N triangles.

2. For each vertex € Mg, compute gaxand enin. Mark v as feature point if it satisfies
Equation (5) and (6).

3. For each edgévi, V) € Mg, let h(vj) € S? and hvj) € S? be the spherical parame-
ters of vertew; andv; respectively. If gn(v;))e(h(vj)) < O, perform the 1-D search
on the edge to get the vertéx (vi,v;) such that én(V)) = 0. Mark ¥ as feature
point.

4. Trace the feature points to get feature curves.

5. Compute the strength F [ kmaxds of each feature curve. Output the curve T

)\thres-

The output of Algorithm 2 usually contains large number d€sand gyri. Some-
times, the doctors are interested only in part of them. Fargte, seven major sulci
are used in [6]. Our system allows the user to interactivelgat the desired sulci from
the output of Algorithm 2. We also provide the functionalityautomatically connect
two user-specified sulci.

3.3 3D Shape comparison using conformal representation

In [4], Gu and Vemuri present a systematic method for 3D sleapgparison using con-
formal representations. By stereographic projection,uthie sphere (except the north
pole) can be mapped to tfie,v) plane, the mapping can be represented as

(vaa Z) - (U,V) : (U,V) = Xay)'

13
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(d)

Fig. 3. Computing the curvature on the cortical surface: (a) Mean curvafy€;lose-up of the
principal directions; (c) The zero contour of the mean curvatureS@mentation of gyri and
sulci by the sign of mean curvature.

The metric (first fundamental form) of the sphere is represbas

4 — 4(diP +dV)

(1+u2+v2)2
Any closed genus zero surfazean be mapped to the unit sphere by a diffeomorphism
@: = — S. Therefore(u,v) is also a local parameter coordinate systerl,afuch that
the metric ofz can be represented as

dg2 = A(u,v)d,A(u,v) € RY.

It can be demonstrated thapreserves the angles; namely, any two intersecting curves
on Z will be mapped to two curves of such that the intersecting angle is preserved.
These kinds of mappings are calleashformalmaps, and (u,v) is called theconformal
factor. There are infinite conformal maps frafto . Assumeg : = — S2,i = 0,1 are

two conformal maps, then their differengeo o : & — S is aMobiustransformation.

In (u,v) coordinates, it has the form

az+b

— 7= i b,c,de C,ad—bc=1
cz+d’z u+iv,ab,c,de C,a c
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Gu and Vemuri demonstrated thatcan be determined by the conformal factor
A(u,v) and its mean curvatur (u,v) uniquely up to rigid motion ifR3. Therefore,
(A,H) under the conformal parameterizatitunv) is the conformal representationf
the surface.

In order to compare shapg andXy, it is sufficient to measure the distance between
their conformal representations. Suppdse Hi) and (A2, Hy) are the conformal rep-
resentations of; and>, respectively; the distance between them is formulated as

E(zl,zz):irTmf/SZ(Al—Aon)er(Hl_Hzor)zdsreMobius Group  (7)

In [4], the conformal factor is approximated using a pieaaninear function, and mean
curvature is approximated by the discrete Laplace-Befiparator. The approximation
is brute force and inaccurate.

In our current implementation, we represent the brain segausingC* smooth
splines with the user specified tolerance. Since we useispheonformal parametriza-
tion to construct the spherical spline, the computatiomefdonformal factor and mean
curvature are direct and without any approximation.

Fig. 4. Automatic tracing the sulci and gyri: (a) Sulci (cyan curves) on the lmaiface; (b) Sulci
(green curves) on the spherical domain; (c) Gyri (cyan curvaghe brain surface; (d) Sulci
(green curves) on the spherical domain. The number of detectadasdlgyri are 412 and 528,
respectively.

Fig. 5. lllustration of seven major sulci of the left brain hemisphere of two diffébrain surfaces.
Only few user interactions are needed to specify the desired sulci.



10 Ying He et al.
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(a) Brain surface A (b) Brain sﬁrface B (c) Displacement field

Fig. 6. 3D shape comparison using conformal representation. (a) anddi)te/o brain surfaces.
The displacement field is color-encoded as shown in (c).

4 Experimental results

We have implemented a prototype system on a 3GHz Pentium IWIHCLGB RAM.
We perform experiments on two brain surfaces (shown in Eidfa) and (b)) which
are obtained from 3D 256 256x 124 T1 weighted SPGR (spoiled gradient) MRI im-
ages, by using an active surface algorithm that deformsaagtilated mesh onto the
brain surface [21]. In order to compare the fitting qualifi@sdifferent test cases, we
uniformly scale the data into a unit cube.

Table 1. Statistics of the surface approximation algorithm. Mesh dizg:# of verticesM;, #
of faces; Spline configuratiom, degree of spherical splinds;, # of domain triangled)., # of
control pointsy.m.s., root mean square errdr,, maximal error.

[Subject My | Mf [n] N\ [ Ne [ rms | Lo |
A 165,538131,0725|2,08626,07710.0196%0.155%
B [65,538131,0725|2,01225,1520.0201%0.176%

We first convert these brain images into spherical triarrgBispline representation
by Algorithm 1. In order to compute the ridge and valley csraecurately, we need
to compute the fourth order derivative of the spline surfadeerefore, in our exper-
iments, we use degree 5 spherical splines whichC4reontinuous everywhere. The
fitting procedure takes about 30 to 40 minutes for each test gdagure 2 illustrates the
pipeline of our surface reconstruction algorithm on teseca. Table 1 shows the input
mesh size, spline configuration and fitting quality. Comgacethe discrete mesh rep-
resentation, our spherical spline based representatiares low storage requirements
and can achieve high accuracy (e.g., root-mean-squane<d2%) as well as high
continuity C?).

Figure 3 shows the computation of mean curvature, prinalpaktions, and the
zero-crossing of the mean curvature of the reconstruciaid burface A.

Figure 4 shows the detected sulci and gyri on the reconstlugtain surface A
and its spherical domain. The number of detected sulci aihgks for are 412 and
528 respectively. The time for tracing feature curves is than 1 minute for both test
cases. Figure 5 shows seven major sulci of the left brain spmere of two different
brain surfaces. These sulci are selected by the users wittvery few interactions.
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Figure 6 shows the results of 3D shape comparison using noafoepresentation.
The conformal facto(u,v) and mean curvaturél (u,v) are computed analytically
using spherical splines.

5 Conclusion

In this paper, we propose a spherical spline based framefootkrain surface analy-
sis. We present automatic algorithm to convert a brain metsha spherical triangular
B-spline whose maximal error deviation from the originaladat less than the user-
specified tolerance. With the analytical representatich@brain model, we can easily
compute various differential properties, such as confbfatdor, mean curvature, prin-
cipal directions, geodesics, etc, accurately and rohuBylwtudying the extrema of the
principal curvatures with respect to the curvature dimwtj we present an automatic al-
gorithm to trace the gyri and sulci. Furthermore, we canestite 3D shape comparison
using conformal representation directly without resaytio any numerical approxima-
tion. Experimental results show the efficacy of using spla¢splines in brain image
analysis.
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