Spline Thin-Shell Simulation of Manifold Surfaces
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Abstract. It has been technically challenging to effectively moded amulate
elastic deformation of spline-based, thin-shell objed¢tsamplicated topology.
This is primarily because traditional FEM are typically defil upon planar do-
main, therefore incapable of constructing complicatedoaim spline surfaces
without patching/trimming. Moreover, at lea@t continuity is required for the
convergence of FEM solutions in thin-shell simulation.Histpaper, we develop
a new paradigm which elegantly integrates the thin-sheNFEimulation with
geometric design of arbitrary manifold spline surfacearticular, we system-
atically extend the triangulaB-spline FEM from planar domains to manifold
domains. The deformation is represented as a linear conidoinaf triangular
B-splines over shell surfaces, then the dynamics of thitl-sheulation is com-
puted through the minimization of Kirchhoff-Love energhéeladvantages given
by our paradigm are: FEM simulation of arbitrary manifoldthwaiut meshing
and data conversion, and the integrated approach for geordesign and dy-
namic simulation/analysis. Our system also provides a-efrdetail sculpting
tool to manipulate the overall shapes of thin-shell suddoe effective design.
The proposed framework has been evaluated on a set of sptidelsnof various
topologies, and the results demonstrate its efficacy inipsysased modeling,
interactive shape design and finite-element simulation.

1 Introduction

Flexible plates and shells are the fundamental geometdctstres found in many fields
of applied engineering nowadays. Since physics-basedotétiof great popularity for
geometric modeling and simulation in CAD/CAM, the simutattiof thin-shell objects
is frequently required in modern engineering design pecactdowever, the modeling
and simulation of thin-shells have traditionally been tiegleas two different stages due
to the lack of a common representation scheme. An interrteedi&ta conversion pro-
cess is often employed to couple the modeling and simulatiohit may deteriorate
both accuracy and robustness of the whole system. Therefotenified representation
would be ideal to overcome such difficulties.

In theory, FEM can provide an approximate solution to thebfmm of thin-shell de-
formation, but it still remains as a challenging problem doiéwo obstacles: Tradi-
tional finite-element is exclusively defined on planar dam#ius incapable of describe
smooth surfaces and accompanying vector fields of complexfadds and topologies



without patching/trimming; Thin-shell finite-element mibg at leas€! continuous to
ensure the convergence of the solution according to KirffHtave theory. However,
traditional finite-elements, endowed with purely localypaimial shape functions, usu-
ally suffer from the difficulties in enforcing the desir€d continuity across the element
boundaries.

A number of different approaches have been attempted to abthé aforementioned
obstacles in thin-shell simulation. Due to the inherenfiifties in C* interpolation,
alternative methods have been proposed to compromigg'thentinuity requirement,
such as degenerated solid elements, reduced-integratimadtp methods, and many
others[1, 2]. Most recently, Ciralkt al. [3] used the shape functions induced by subdi-
vision rules for thin-shell finite-element simulation. [Pée their modeling advantages,
the subdivision surfaces do not allow close-form analygictheir basis functions, and
have more unnecessary extraordinary points dependingeorotimectivity of the con-
trol mesh (instead of the intrinsic topology of the manifoléinother noteworthy FEM
presented in [4] uses Element-Free Galerkin (EFG) metha&intolate and analyze
Kirchhoff shells and plates. However, it requires extragff to combine the model ge-
ometry with the simulation process via data conversionelmagal, all these approaches
fail to provide an effective way to handle thin-shell sudaavith sophisticated topol-

0ogy.

In this paper we articulate a novel framework that naturediyples the modeling and
simulation processes for aribitrary thin-shell surfacsline surfaces are prevalent in
commercial modeling systems because of their unique adgastin shape modeling,
manufacturing and visualization. With the recent develeptof manifold spline the-
ory [5], which enables the flexible construction of splingsrany manifold of arbitrary
topologies, we particularly introduce a novel thin-shelité-element based on triangu-
lar B-spline [6] defined over manifold domain. The advantagesunfoethod over the
previous state-of-the-art thin-shell simulation inclué@st, the shell objects of arbi-
trary topology can be easily modeled by manifold triangiasplines, with a mini-
mum number of singular points intrinsic to the topologidalistures of the manifolds;
Second, th&€* continuity requirement can be easily achieved for triangBtsplines;
Finally, our spline-based primitive naturally integrageometric modeling with physi-
cal simulation by avoiding unnecessary data conversiomasghing procedure, which
can lead to faster product design and development cycle.

2 Spline Representation of Manifold Surfaces

In [5], Gu, He and Qin systematically build the theoretiafivork of manifold spline,
which locally is a traditional spline, but globally definedlthe manifold. First, the man-
ifold is covered by a special atlas, such that the transftioations are affine. Then, the
knots are defined on the manifold and the evaluation of palanfis carried out on
the charts. Although on different charts, the knots areedifiit, the evaluation value is
consistent and independent of the choice of charts. Fumitwer, the existence of such



(a) domain (b) spline (c) control points

Fig. 1. A genus-3 manifold triangulaB-spline. (a) domain manifold with 742 triangles. (b) cubic
manifold triangulaB-spline surface. (c) spline overlaid with control points

atlas depends on the domain topology. This new paradignmesrifaditional subdivi-
sion surfaces and splines.

The geometric intuition of the definition of manifold splifethat first we replace a
planar domain by the atlas of the domain manifold, and thetihalconstituent spline

patches naturally span across each other without any gapc@ihtral issue of con-

structing manifold splines is that the atlas must satismeaagpecial properties in order
to meet all the requirements for the evaluation indepenglefichart selection.

In [5], Gu et al. show that for a local spline patch, the onlynégkible parameterizations
differ by an affine transformation. This requires that adl thart transition functions are
affine. Furthermore, they show that given a domain manifblof genusy, a manifold
triangularB-spline can be constructed with no more th2m— 2| extraordinary points.

The manifold triangulaB-spline can be written as follows:

F(U)ZZ; o gN(@(U)|Vg), ueM @
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wherec; g € RR3 are the control points. Given a paramaiez M, the evaluation can be
carried out on arbitrary charts covering

Manifold triangularB-splines have many valuable properties which are criticabe-
ometric and solid modeling. For examples, manifold tridagB-splines are piecewise
polynomial defined on the manifold domain of arbitrary tgatation. Therefore, the
computation of various differential properties, such asmads, curvatures, principal
directions, are robust and efficient. The splines have Isgpport, i.e., the movement
of a single control point; g only influences the surface on the trianglend on the tri-
angles directly surroundinlg The manifold triangulaB-splines are completely inside
the convex hull of the control points. The degremanifold triangulaB-splines are of
C"1-continuous if there are no degenerate knots. Furtherrbgiatentionally placing
knots along the edges of the domain triangulation, we carefrgithrp features easily.
The manifold spline of genug(> 1) has 3 — 2 singular points. See Figure 1 for an
example of genus-3 manifold trianguBsspline.



3 Spline Thin-shell Simulation

3.1 Elastic Thin-shell Mechanics

The mechanical response of a spline surface with an attatihegdess property can
be computed with the classical Kirchhoff-Love shell thednythe interest of smooth
technical flow, let us briefly review the derivation of thihedl equations. Detailed pre-
sentation of classical shell theories can be found elsemimemechanical engineering
literatures.

Thin-shell is a particular form of three-dimensional soltiose thickness is signif-
icantly small as compared with the other two dimensions. X@8,6,) denote the
middle surface of the thin shell, whefg and 6, are the parametric coordinates of the
surface. The generic configuration of the shell can be desgias

h h
S={x € R¥|x=X(61,6) + 65X 3(61,6), —5< 6 < E}’

whereX 3 is a unit director vector normal to the middle surface of thellsboth in the
reference and deformed configuration under the Kirchhoffdhypothesis. The inter-
nal energy of the shell depends on the differential quastidf the middle surface, such
as the metric and curvature tensor. Assuming linearizedrkatics, the displacement
field of the middle surface is introduced a&9;, 6,) = X(61,62) — X°(91, 6,), where
the superscript “0” is used to denote the measurement inetleeence configuration.
Thus, the linearized membrane and bending strain tensdvearpressed as:

1
&)= 5(X3-uj+X5-up), )

pij = —uij- X5+ (3 Hua- (XFx XG) +uz- (Xq % XF))]. (3)

whered = [X 1 x X |, X 3=J71(X 1 x X 2), and|X 3| = 1. Here, the subscripts take the
values of 1 and 2, and a comma denotes partial differentialiote that, the derivation
of the membrane and strain is independent of the introductfahe kirchhoff-Love
hypothesis.

Under the assumption of linearity of elasticity, the strairergy density is defined as
follows:
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in which, the first term is the membrane strain energy dewsitythe second one is the
bending strain energy density. Thus, the overall poteatiargy is as follow:

E(U) = | W()dQ + Eoe = Ein + Esc.

whereE;j is the internal elastic energy ambgy; is the potential of the applied forces.
Following the principle of minimum potential energy, we @@t the stable equilibrium



configurations of the thin-shell. The Euler-Lagrange eigmat corresponding to the
minimum principle may be expressed in the weak form as:

(DEint(u),v) + (DEex (u),v) =0 (5)

wherev is the trial displacement field.

3.2 Spline Element Discretization

Following the construction of manifold triangulBfsplines given in (1), we can extract
the basis functions and write them by:

9'(e(v) = 5 N(@V)Vz) veM (6)
<(1,B)=

in which & : N x N® — N associates each local simplex-spline with an unique global
shape functions it contributes t@, is the conformal mapping, angl(v) denotes the
point in the planar domain, mapped from a manifold peintve will use these expres-
sion in the following discussion, and represe() by x if necessary.

Thus, we can easily extend the membrane and bending strsartefrom planar para-
metric domain to manifold domain and write them in the form:

L
e(p(v)) = 3 M'(p(v))u, (7)
=1
L
p(e(v)) =3 B'(pv)u ®)
=1

whereB' are the membrane and bending strain matrices {and = 1,...,L} are the
nodal displacement vectors.

Substituting equations (7) and (8) into (5) yields the linequations developed from
the manifold domain as:

KU=F 9)

whereK is the stiffness matrixJ is the collection of nodal displacemeit ---u]T,
andF is the nodal force vectoK is a block matrix which can be conveniently assem-
bled by filling in the following 3x 3 matrices:
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with the constitutive matrid made of contravariant metric tensors, the definition of
which is available in [3]. The construction Bfwill be discussed later.



3.3 Implementation Details

Numerical Integration: The thin-shell FEM simulation needs to compute the Kirch-
hoff energy of the deformed shell surfaces. However, thtuatian of the integrations
over arbitrary manifold surfaces has been a challenginblene, which is usually awk-
wardly handled by piecewise parameterizations. With tlubdall conformal mapping
coupled with triangulaB-splines theory, we can conduct the integration on an equiv-
alent planar domain instead, and use any established neahitiegration techniques.

In our system, the shell elements are selected as the emofthe tessellation, from
which the triangular spline is constructed. Then we redylsubdivide each element
into small congruent triangles, and compute the integnatising triangle Gaussian
quadratures.

Boundary Condition Handling: To facilitate the process of intuitive geometric design,
we include point-based constraints as the input for our-shiell simulation system.
The users are allowed to pick up a group of points on the spliméaces, i.eP® =
{p9, P9, ..., P}, and assign them with desired positions after the defoomatie.P =
{p1,P2,---,Pn}, wheren denotes the total number of the point constraints. Thigline
constraints thus defined can be grouped in a matrix format as:

Po+Cu=P

whereC is an extremely sparse matrix that stores the basis funetiires at corre-
sponding constraint poin°. To combine the constraints with the Equation (9), we
solve foru in the Null-space o€, such that:

u=Nu’+u°

whereCN = 0 andCu® = P— P°. We use gaussian-jordan-elimination-like approach[7]
to construciN, and solve fou® by either singular value decomposition (SVD) or QR
decomposition method. Due to the extreme sparsity and defikiency ofC, such
method is computationally viable to handle point-basedwgdc constraints.

Level-of-Detail (LOD) Smulation: The shell objects with affluent surface details re-
quires massive number of degrees of freedom (DOF) for ategeometric modeling.
However, the triangulaB-splines models having large number of control points ate no
suitable for interactive geometric design. Thus, we inocae a level-of-detail (LOD)
strategy to accommodate thin-shell deformation of sojglaittd models. Any thin-shell
surfaces¥” can be decomposed to a smooth spline-based susfaaed a scalar func-
tion d describing the additional displacements, i.e.:

S(x) = So(x) +d(x) -n(x)

wheren is the normal vector 0%y. Practically,Sy can be estimated by fitting the orig-
inal surface using manifold triangul8spline with relatively small number of control
points [8]. Then the magnitudes of the fitting errors along iormal directions will
be further modeled as a spline-based functiamth more degree of freedoms. For the
LOD simulation of a complicated thin-shell model, our sysi@lows users to sculpt on



the base surface®, then the previously recorded details will be automatycafiplied
to give the final design results. Figure.2 gives two exampfegeometric design with
LOD thin-shell simulation.

4 Results

Our system is implemented on a Microsoft Windows XP PC wittellfPentium 1V

3.0GHz CPU, 1.0GB RAM, and an nVidia GeForce Fx 5600 Ultra G®# have run
a variety of examples to verify and test the efficacy and perémce of our method.
These examples includes a female face, the stanford butmrysand a kitty. Both the
face and the bunny are LOD-modeled. And both the torus an#ittyemodels have
non-trivial genus.
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Fig. 2. LOD thin-shell simulation (a)(e) the original surfacestwieature details. (b)(f) the base
surfaces with geometric constraints. (c)(g) the base sesfafter thin-shell deformation. (d)(h)
the original surface after LOD thin-shell deformation.

5 Conclusion

In this paper, we propose a novel paradigm that successmtiylates the elastic de-
formation of thin-shell objects. We also provide users withOD sculpting tool for es-
thetical geometric design. The experiment results showodestrate that the proposed
thin-shell FEM method has the following advantages overtithditional ones. It can
easily achieve th€?® continuity requirement, and represent arbitrary thinlishefaces
using splines with minimum number of singular points. Odirepbased primitive nat-
urally integrates geometric modeling with physical sintigiain the entire CAD/CAM
process, thus unnecessary data conversion and meshiregpreds total avoided. For
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Fig. 3. (a)(b) 6 points constraints applied on the torus surfagéd)torus shell after deformation.
(e)(f) the front and side view of the kitty with points cortits. (g)(h) the front and side view of
the deformed kitty shell.

future work, we will extend current framework to handlingda thin-shell deformation
by considering non-linear elastic energy, and solve theilsition problem in temporal
dimension for animation applications.
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