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Abstract—This paper presents a new approach to the physically-based thin-shell simulation of point-sampled geometry via explicit,

global conformal point-surface parameterization and meshless dynamics. The point-based global parameterization is founded upon

the rigorous mathematics of Riemann surface theory and Hodge theory. The parameterization is globally conformal everywhere except

for a minimum number of zero points. Within our parameterization framework, any well-sampled point surface is functionally equivalent

to a manifold, enabling popular and powerful surface-based modeling and physically-based simulation tools to be readily adapted for

point geometry processing and animation. In addition, we propose a meshless surface computational paradigm in which the partial

differential equations (for dynamic physical simulation) can be applied and solved directly over point samples via Moving Least

Squares (MLS) shape functions defined on the global parametric domain without explicit connectivity information. The global conformal

parameterization provides a common domain to facilitate accurate meshless simulation and efficient discontinuity modeling for

complex branching cracks. Through our experiments on thin-shell elastic deformation and fracture simulation, we demonstrate that our

integrative method is very natural, and that it has great potential to further broaden the application scope of point-sampled geometry in

graphics and relevant fields.

Index Terms—Meshless method, physically-based simulation, point-based geometry, surface parameterization, thin-shell.
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1 INTRODUCTION

WITH the ever-increasing data acquisition power, point-
sampled geometry is becoming ubiquitous in gra-

phics and geometric information processing. One key
reason for this new interest in points is that the polygonal
complexity of graphical models has drastically increased in
the last decade. In computer animation and physical
simulation, complex physical effects, such as large deforma-
tion and cracks, pose grand technical challenges in terms of
maintaining the topological consistency of the underlying
meshes. The overhead of managing, processing, and
manipulating very large polygonal-mesh connectivity in-
formation has given rise to the technical issue of the utility
of polygons in many graphical applications, such as fracture
animations, etc. For the simulation of complex physical
phenomena, efficient and consistent surface representations
are necessary to facilitate geometric and topological opera-
tions. For instance, in simulations of failure processes [42],
[43], [44], we need to model the propagation of cracks along
arbitrary and complex paths. This problem, in particular,
becomes a notoriously difficult task using conventional
mesh-based computational techniques such as finite ele-
ment method (FEM), or finite difference method. In essence,
the underlying structure of these methods, which stem from
their reliance on meshes, impedes the flexible modeling and
natural handling of discontinuities that do not coincide with
the original mesh lines. Therefore, the most viable strategy
for dealing with moving discontinuities in these methods is

to remesh in each time step of the integration so that mesh
lines remain coincident with the discontinuities throughout
the simulation. However, this can introduce numerous
difficulties for data management, such as the strong need to
map between meshes in consecutive stages of the simula-
tion, which inevitably results in degradation of both
accuracy and complexity for system implementation. In
addition, model remeshing becomes an unavoidable bur-
den. To overcome the above difficulties associated with
mesh structure in computer animation and simulation, a
recent trend in this area is to utilize meshless methods [32] to
model the physical behavior, which avoid complex remesh-
ing operations and the associated problems of element
cutting and mesh alignment sensitivity common in FEM [4].

In this paper, our task is to streamline the entire digital
simulation and animation process (with specific application
in thin-shell simulation) without any data conversion to
meshes in order to further enhance the utility of point-
sampled geometry and meshless methods and broaden its
access by ordinary graphics users. Toward this goal, we
propose to directly simulate the meshless dynamic behavior
solely defined on global conformal parameterization of
point surfaces.

In sharp contrast to our approach proposed in this paper,
conventional techniques for modeling point-sampled sur-

faces are primarily based on implicit surface methods
(Moving Least Squares [1] or Level Sets [8]) in recent years.
One key motivation for the implicit representation is that
point-sampled geometry has no explicit connectivity infor-
mation. However, unlike popular polygonal meshes in
graphics, the implicit surface representation is essentially a

volumetric embedding. It does not admit a natural, two-
dimensional domain for the effective analysis of point-
sampled surfaces. As a result, simulating physical behavior
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becomes rather difficult, compared with the direct processing
of polygonal meshes. An easy and constructive way is to take
a volumetric approach and to raise the analysis domain to
three-dimensional space, where we perform the physical
simulation in the 3D space enclosed by the surface, such as in
[2]. Although the volumetric handling mechanism is both
natural and intuitive, it is inappropriate to simulate thin-shell
material. In many real-world applications, such as the
deformation of the wings of the gargoyle (Fig. 10), or even
open surfaces like a plate (Fig. 6), surface (thin-shell)
simulation is much better than volumetric one, since one
dimension of the surface body is much smaller than the other
two, and the volumetric simulation may fail if the neighbor-
ing volumetric nodes are arranged in degenerate locations
(such as a plane). To combat the deficiency associated with
the dimensional increase, we resort to thin-shell simulation
based on global parameterization as a more natural and
efficient alternative.

The point surface parameterization technique in this
paper is founded upon the rigorous mathematics of
Riemann surface theory and Hodge theory. Parameteriza-
tion is a fundamental and enabling tool for geometric
analysis and synthesis. Most of the current parameteriza-
tion techniques are only applicable to meshes with explicit
connectivity information. These methods require converting
the point cloud to mesh and then parameterizing the mesh.
Intrinsically, the vicinity of points in the point cloud can
provide enough information in order to unambiguously
represent the topological information. The point cloud
equipped with vicinity information is a much more simple
structure compared with a mesh. In this paper, we assume
that the point cloud is uniformly and well sampled, such
that the surface construction is well defined locally within
the neighborhood of the samples. Under such assumption,
it is unnecessary to convert the point cloud to a mesh in
order to explicitly represent the topology via connectivity.
When doing so, general point cloud meshing methods most
likely will lose some samples and decrease the accuracy and
the quality of the geometric surface. A direct parameteriza-
tion method for point clouds will be much simpler and
more efficient without any loss of accuracy.

On the other hand, for physical simulations, typically the
underlying formulations (from mathematical physics) re-
quire the solution of partial differential equations. Nowadays,
meshless methods are becoming a powerful computational
technique, especially for fracture simulations [35], [4]. The
physics can be simulated on scattered sampling nodes using
Moving Least Squares (MLS) approximation methods, which
have been developed extensively in mechanical engineering
and material science. The meshless methods have many
desirable features, such as fast convergence, ease of adaptive
refinement, flexible adjustment of the consistency order, and
continuity of derivatives up to any desirable order, etc. The
surface simulation nodes can be easily generated by applying
quad-tree discretization of the parametric domain, whose
subdivision depth depends on the conformal factor of the
parameterization. The support size of each simulation node is
also proportional to the conformal factor, which guarantees
that their actual support size is consistent in IR3. The quad-tree
structure on the parametric domain can also be utilized to

perform numerical integration via Quadrature, which is
necessary in the meshless Galerkin weak form [33], [46] to
ensure numerical accuracy and computational stability.
Having the global parameterization, the crack branching
problem is alleviated substantially and it is reduced to simple
2D line-intersection operations. Meanwhile, the fracture is
modeled using the transparency criterion [36], and dynamic
upsampling (node insertion) is applied in the vicinity of crack
line to maintain numerical stability. All of the above
operations can be easily performed on the 2D parametric
domain. Essentially, the global conformal parameterization
offers a common domain to facilitate accurate meshless
simulation, and efficient discontinuity modeling for complex
branching cracks.

Contributions. The specific and key contributions of this
paper to the field of computer animation and graphics are:

1. We propose to simulate meshless thin-shell elastic
deformation and crack propagation directly over
point geometry, enabled by the global conformal
parameterization. Compared with other local para-
meterization approaches, the global parameteriza-
tion makes the physical simulation more accurate
and stable.

2. At the geometric front, we systematically articulate a
global conformal parameterization method for
point-sampled surfaces.

2 RELATED WORK

2.1 Physically-Based Animation

Pioneering work in the field of physically-based animation
was originally carried out by Terzopoulos and his cow-
orkers [25]. Thin-shell objects are naturally curved and can
not be modeled using plate formulations [28]. Grinspun
et al. [29] proposed a simple discrete shell model that can be
derived geometrically for triangle meshes. For graphical
modeling and animation of fracture process, most research-
ers rely on mesh-based methods. The works of [40], [41]
simply break connections or springs between adjacent
elements when the force exceeds a user-specified threshold
value. The state of the art in fracture modeling for computer
graphics is the works of [42], [43], which use a pseudo-
principal stress and continuous remeshing. [44] proposed a
virtual node algorithm that allows material to be separated
along arbitrary piecewise-linear paths through a mesh.
Pauly et al. [4] simulated volumetric meshless fracture with
a highly dynamic surface and volume sampling method
that affords complex fracture patterns of interacting and
branching cracks.

2.2 Point-Based Geometry and Meshless Methods

Previous approaches for modeling and simulating point-
sampled surfaces fall into two major categories: implicit and
parametric methods. Alexa et al. [1] proposed to use the
framework of moving least squares (MLS) projection to
approximate a smooth surface defined by a set of points.
Zwicker et al. [6] presented a system called Pointshop 3D
for interactive shape and appearance editing of 3D point-
sampled surfaces. Their patch correspondence is based on
local minimum distortion parameterization. In [7], spherical
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parameterization is proposed to parameterize genus zero
point clouds.

Meshless methods were introduced into the graphics
field by Desbrun and Cani in [26]. Later they applied
Smoothed Particle Hydrodynamics (SPH) to simulate
highly deformable bodies. Müller et al. [2] presented a
method for modeling and animating elastic, plastic, and
melting volumetric objects based on the MLS approxima-
tion of the displacement field. Their volumetric simulation
does not require parameterization of the point-sampled
surface. Most recently, they presented a geometrically
motivated approach in [3] for simulating deformable
point-based objects. Guo and Qin [45] combined meshless
methods with modal analysis framework to provide real-
time deformation of volumetric objects. The most relevant
work to this paper is the approach proposed by Wicke et al.
[5], which uses locally defined fibers to approximate the
differential surface operators of the thin shell functional.

2.3 Conformal Parameterization

Several recent advances in surface parameterization [10] have
been based on solving a discrete Laplace system [11], [12],
[13], [14]. Lévy et al. [15] described a technique for finding
conformal mappings by least squares minimization of
conformal energy, and Desbrun et al. [17] formulated a
theoretically equivalent method of discrete conformal para-
meterization. Sheffer and de Sturler [18] gave an angle-based
flattening method for conformal parameterization.

Gu and Yau [19] considered construction of a global
conformal structure for a manifold of arbitrary topology by
finding a basis for holomorphic differential forms, based on
Hodge theory [20]. Ni et al. [22] used the idea of a harmonic
Morse function to extract the topological structure of a
surface. Dong et al. [23] proposed a method for quad-
rilateral remeshing of manifolds using harmonic functions.
The method is theoretically equivalent to using a holo-
morphic differential form as described in [19]. The differ-
ential forms in the latter, however, have at least four fewer
zero points than those in the former.

3 POINT-BASED PARAMETERIZATION

3.1 Theoretic Background

Global conformal parameterizations require some concepts
and knowledge in both topology and Riemann surface. The
algorithms for global conformal parameterizations are
directly inspired by Riemann surface theory [30] and
Hodge theory [20].

Essentially, finding a global conformal parameterization
for point-set surfaces can be intuitively interpreted as the
computation of a pair of smooth vector fields ð!1; !2Þ on the
surface S, such that they satisfy the following criteria:

1. Both !1 and !2 have zero curl.
2. Both !1 and !2 have zero divergence.
3. !1 and !2 are conjugate to each other, namely !2 can

be obtained by rotating !1 about the normal by a
right angle counter-clockwisely everywhere on the
surface. This operation is called Hodge star opera-
tion, denoted as �. Therefore, !2 ¼ �!1.

Note that the above criteria are not independent. Conditions 1
and 3 can induce 2, and conditions 2 and 3 can induce 1.
Vector fields !1; !2 with zero circulation and zero divergence
are called harmonic 1-forms. The pair of conjugate harmonic 1-
forms ð!1; !2Þ is called a holomorphic 1-form. The space of
holomorphic 1-forms is isomorphic to the first cohomology
group H1ðS;RÞ. Each cohomology class has a unique
harmonic 1-form. Therefore, our goal is to find the harmonic
1-forms which compose a basis for H1ðS;RÞ.

From the knowledge of topology, we know that a genus g
closed surface has g handles, and each handle has two
special curves; one goes around the “hole,” the other one
circles the “tube.” We denote such a pair of curves on
handle k as ak; bk; then, ak and bk intersect each other at one
point, and ak; bk do not intersect aj; bj when j 6¼ k. Then, 2g
curves fa1; b1; a2; b2; � � � ; ag; bgg form a canonical homology
basis (see Fig. 1a).

If we cut S along ak to get an open surface ~SS, then ~SS has
two boundaries. We denote them as aþk and a�k . If we define
a harmonic function f : ~SS ! R, such that f ja�

k
¼ 0 and

faþ
k
¼ 1, and f minimizes the harmonic energy,

EðfÞ ¼
Z

~SS

jrfj2;

then the gradient of f ,rf , is a harmonic 1-form on S. In this
way, we can construct 2g harmonic 1-forms, denoted
f!1; !2; � � � ; !2gg (see Fig. 2). They form the basis of the first
cohomology group of S, H1ðS;RÞ. Then, pairs of vector
fields ð!1; �!1Þ; ð!2; �!2Þ; � � � ; ð!2g; �!2gÞ form a basis of all
holomorphic 1-forms.

Given a holomorphic 1-form !, a horizontal trajectory is a
curve onSwhich is mapped to the horizontal curve (iso-�2) on
the parameter plane by integrating the holomorphic 1-form.
A vertical trajectory is a curve on S which is mapped to the
iso-�1 curve on the plane. The intersecting horizontal and
vertical trajectories form the conformal net, which locally has a
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Fig. 1. (a) The canonical homology basis of a two-hole torus

fa1; b1; a2; b2g, which are four closed curves. (b) The two-hole torus is

cut into two patches by the handle separators (red line), which connect

the two zero points (yellow dot).

Fig. 2. The harmonic 1-forms f!1; !2; !3; !4g computed by (1). (a) !1

dual to a1, (b) !2 dual to b1, (c) !3 dual to a2, and (d) !4 dual to b2.



tensor product structure. IfS is a closed Riemann surface with
genus g > 1, the horizontal trajectories through the zero
points of ! partition S into cylinders (Fig. 1b), each of which
can be conformally mapped to a rectangle by integrating !.

After we obtain a holomorphic 1-form ð!1; !2Þ, we map
the surface S to the parametric plane by integration.
Suppose that ð�1; �2Þ are their parametric values. First, we
fix a base vertex v0, for any vertex vk, we select a curve on
the surface � from v0 to vk, then we define the parameter of
vk to be

ð�1ðvkÞ; �2ðvkÞÞ ¼
Z
�

ð!1; !2Þ:

Therefore, locally !1 ¼ r�1, !2 ¼ r�2. Because !1 and !2

are harmonic, the parameter ð�1; �2Þ of vk does not depend
on the choice of �, but depends on the homotopic class of �.
Fig. 3 shows the parametric scalar fields ð�1; �2Þ for the two-
hole torus.

In order to improve the uniformity of the parameteriza-
tions, we need to introduce some boundaries to the surface.
In the smooth case, because the parameterization is
conformal, the metric of the surface can be written as
ds2 ¼ �2ð�1; �2Þðd�2

1 þ d�2
2Þ, where ð�1; �2Þ are the parameters,

� measures the area distortion and is called the conformal
factor. Different conformal parameterizations will severely
affect the uniformity of �. In general, we need to introduce
boundaries to the tips of long tubes of the surface, such as
the bunny’s ear (Fig. 4). More detailed discussion can be
found in [24].

Suppose the surface is of genus g and has b boundaries,
then its doubling is closed, and with 2gþ ðb� 1Þ genus.
Therefore, the doubled surface has the cohomology group
of 2ð2gþ ðb� 1ÞÞ dimension. Because the doubled surface is
symmetric, the original surface has the cohomology group
of 2gþ ðb� 1Þ dimension.

3.2 Algorithmic Overview

When computing the basis of the cohomology group, the
conventional method [19] uses an algebraic topological
approach, which depends on the combinatorial structure of
the mesh. All connectivity information, boundary relation
between faces, edges, and vertices have to be explicitly
specified by the data structure. But, for the point cloud case,
there is no such connectivity information. In contrast, it is easy
to define functions on point clouds and compute their
gradients. Since the topology of the surface is indicated by
the singularities of Morse functions, we use Morse functions

to compute the cohomology. If the surface has boundaries, the

conventional method doubles the surface to make a sym-

metric closed surface. However, it is impossible to perform

double covering for point clouds, since the point cloud can

only represent a surface embedded in IR3 and should be self-

intersection free. In our point-based parameterization, we

directly solve the diffusion equations corresponding to b� 1

boundaries to get the b� 1 harmonic 1-forms.
The algorithm flow to find the holomorphic 1-form basis

can be summarized as follows:

1. Locate all boundaries of the surface S, and add them
to a loop set �. Since we only need b� 1 boundaries,
we remove one boundary loop from �.

2. Compute the homology basis using fair Morse
function [31], [22], then add all the loops to �.

3. For each loop � from �, if � =2 @S, we cut the surface
S open along � to get another surface ~SS, and � is split
up to two loops �þ, ��. Otherwise, we set �þ ¼ � and
set �� to be empty.

4. Compute a harmonic function f : ~SS ! R, such that

�f ¼ 0;
f j�þ ¼ 1;

fj� ¼ 0; � 2 @ ~SS; � 6¼ �þ;
ð1Þ

where � is the Laplace-Beltrami operator on ~SS. Note

that the harmonic function f equals 1 along �þ and

zero for all other boundary loops of ~SS, including ��.
5. Compute the gradient of f on ~SS, and translate rf to

S. At each point on S, rotate rf about the normal a
right angle to obtain another vector field �rf ; then,
the pair of vector fields on S, ðrf; �rfÞ is a
holomorphic 1-form corresponding to � .

6. Find all holomorphic 1-forms corresponding to all
loops in �. These 2gþ ðb� 1Þ holomorphic 1-forms
compose a basis for all the holomorphic 1-forms on S.

Once we obtain the holomorphic 1-forms, we can find the

map from the surface to the plane by integration. Because the

topology of the surface is different from that of the plane, the

map cannot be one to one everywhere. It can be shown that

the number of singularities where the mapping is two to one

is no more than the Euler number. The algorithm to

parameterize a surface using a holomorphic 1-form is

summarized as follows:

1. Choose a holomorphic 1-form, denoted as ! ¼
ð!1; !2Þ, where !1 and !2 are vector fields. Locate
their zero points.

378 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 12, NO. 3, MAY/JUNE 2006

Fig. 3. (a) and (b) The parametric scalar fields (shown as isobars) in �1

and �2 directions, respectively, (c) the two-hole torus being separated

into two patches by the handle separator, and (d) the global conformal

parameterization visualized with a checkerboard texture.

Fig. 4. The global conformal parameterization of the bunny model.



2. Trace the integral curve of !1 through the zero
points. Those curves segment the surface to several
components, each component is a cylinder or a disk.

3. If a component is a cylinder, arbitrarily choose one
point and trace the integral curve of !2 to slice it
open to a disk.

4. Integrate ð!1; !2Þ on each component and then map
it to a rectangle.

The bunny model shown in Fig. 4 is a genus-0 surface.
The user manually selects 3 points (2 at the ear tips, 1 at the
bottom) as the opened boundary. We can compute two
holomorphic 1-forms by repeating from step (3) to (5). After
linear combination, we can get a desired holomorphic 1-
form ð!1; !2Þ. The integrated ð�1; �2Þ parameter value is
shown in Fig. 4a and Fig. 4b. Fig. 5 shows the parameter-
ization of the genus-1 rocker arm model.

3.3 Implementation

This section explains the implementation details of the
above algorithms. We need to approximate the differential
operators, such as the gradient, Laplace operator, the
integration, and the Hodge star operator over point-set
surfaces. The implementation in this paper is based on the
assumption that all the input point clouds are locally
uniformly-sampled surfaces, and the surface reconstruction
is well defined within a neighborhood of the samples. For
more theoretical results on the sampling conditions, please
refer to [9].

Approximating the gradient. Suppose we choose one
point p in the point cloud S, and we set its neighborhood
NðpÞ as all the points inside a small sphere jr� pj < �; we
denote a neighbor point as q. Given a function f : S ! R,
the gradient rfðpÞ is approximated by minimizing the
following energy:

EðrfðpÞÞ ¼
X
q

jfðqÞ � fðpÞ � rfðpÞ � ðq � pÞj2:

The gradients are approximated in the tangent plane of p,
i.e., n � rf ¼ 0. It can be also solved using the Moving Least
Squares method [1], by associating each neighboring point
with a distance-based weighting function.

Approximating the Laplacian. We use the scale-dependent
umbrella operator [16] to approximate the Laplacian:

�fðpÞ ¼
X

qi2NðpÞ
"p;qiðfðqiÞ � fðpÞÞ;

where the weights "p;qi ¼ 1
kqi�pk =

P
qj2NðpÞ

1
kqj�pk are in inverse

proportion to their distances. We have also tried other

Laplacian approximation methods, such as the approaches

using the shape-preserving weights [13], or mean value

weights [14]. In our experiments, we found no significant

visual difference between the more complicated Laplacian

approximation schemes and the simpler reciprocal distance

scheme. Therefore, we choose this simplest formulation in

our implementation.
Any function defined on S can be deformed to be a

harmonic function using the following flow method in
[22], [12],

@f

@t
¼ ��f:

In addition, harmonic functions have the minimal number
of extrema.

Locating extremal points. At the extremal point p, the
gradientrfðpÞ is extremely close to zero. We first estimate the
gradient, then find the cluster of points with relatively small
gradient lengths and compute the center of gravity of each
cluster. We pick the point on S which is closest to it as the
extremal point. For a genus g closed surface, there are
generally 2gextrema other than the maximap1 and minimap0.

Tracing integral curves. Tracing the integral curve along
rf is straightforward. At the current point p with gradient
rfðpÞ, we add a new traced point in the direction of rfðpÞ
on its tangent plane at a controllable distance to p. Then, we
can project the traced point to the original point-sampled
surface by the MLS projection operator [1].

Computing homology basis using fair Morse function.
In order to compute the homology basis, we use a method
based on Morse theory. Essentially, we define a function on
the surface, and then we make the function as smooth as
possible to reduce the number of extremal points. The
integral curve along the gradient of the function gives the
homology basis. Details can be found in [31], [22]. Since we
use least squares to fit a gradient vector for each point
considering all neighboring information, it is more accurate
than purely using piecewise linear approximation on a
mesh. If we can estimate the gradient accurately, we can
find critical points and trace homology bases robustly.

Approximating the Hodge star operation. The Hodge
star operator on a vector field is simply to rotate the vector
about the normal 90� at every point on the surface,

� rfðpÞ ¼ nðpÞ � rfðpÞ:

Approximating integration. In order to parameterize a
surface patch � � S, we integrate a holomorphic 1-form
! ¼ ð!1; !2Þ. Since the integration process is path indepen-
dent theoretically, we can design it as follows: First, we fix a
base point p 2 �; for any point q 2 �, we choose a sequence
of points from p to q as the path r, r ¼ fp0; p1; p2; � � � ; png,
where p0 ¼ p, pn ¼ q, then

ð�1; �2Þ ¼
Xn
i¼1

ð!1ðpi�1Þ � ðpi � pi�1Þ; !2ðpi�1Þ � ðpi � pi�1ÞÞ:

4 MESHLESS THIN-SHELL SIMULATION

For any point-sampled surface, if we assume that one
dimension (i.e., the thickness), of the surface body is
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Fig. 5. The global conformal parameterization of the rocker arm model.



significantly smaller than the other two dimensions, we can
consider the point-sampled surface as a thin-shell. In the
Kirchhoff-Love thin shell framework, the deformation of
the surface body is fully described by the deformation of the
middle surface represented by point-samples. Let ’ denote
the position of a point on the middle surface of the shell,
and let a3 be the unit director vector which is normal to the
shell surface. Given the global parameterization of the
point-sampled surfaces, we can describe the positions of
any material point in the reference (denoted �rr) and
deformed (denoted r) configurations of the shell by:

�rrð�1; �2; �3Þ ¼ �’’ð�1; �2Þ þ �3�aa3ð�1; �2Þ; ð2Þ

rð�1; �2; �3Þ ¼ ’ð�1; �2Þ þ �3a3ð�1; �2Þ; ð3Þ

where �1 and �2 are parameters of the point-sampled
middle surface, and �3 (� h

2 � �3 � h
2 ) is in the thickness

direction.
The precise form of the membrane and bending strain

and stress matrices are given in [28]. We use the Euler-
Lagrange equations for our elastic deformation:

d

dt

@T ð _uuÞ
@ _uu

� �
þ � _uuþ @V ðuÞ

@u
¼ Fext; ð4Þ

where the kinetic energy T and elastic potential energy V
are functions of _uu and u, respectively. The term � _uu is the
generalized damping force, and Fext is a generalized force
arising from users’ applied forces, or external body forces,
such as gravity. The kinetic energy of the moving body can
be expressed as:

T ¼ 1

2

Z
�

h�ðxÞ _uu � _uud� ¼ 1

2

X
I;J

MIJ _uuI � _uuJ ; ð5Þ

where �ðxÞ is the mass density of the body, and
MIJ ¼

R
� h�ðxÞ	IðxÞ	JðxÞd�. The elastic potential energy

V is given by the formula:

V ¼
Z

�

½ Eh
1� 
2

�T ~HH�þ Eh3

12ð1� 
2Þ�
T ~HH�	d�; ð6Þ

where � and � are the membrane and bending strains,
respectively, ~HH is the standard constitutive matrix, the
constantE is Young’s modulus, and the coefficient 
 is Poisson’s
ratio. More specific derivations can be found in [28].

We utilize the meshless methods to discretize the kinetic

energy T and the elastic potential energy V . The advantages

of the meshless methods may be summarized as follows:

1. they can easily handle very large deformations, since
the connectivity among nodes is generated as part of
the computation and can change over time;

2. moving discontinuities such as cracks can be
naturally facilitated, since no new mesh needs to
be constructed as in finite element methods, and the
computational cost of remeshing at each time step
can be avoided;

3. accuracy can be controlled more easily, since in areas
where more refinement is needed, nodes can be
added quite flexibly;

4. data management overhead can be minimized
during simulation.

4.1 Moving Least Squares Shape Functions

In this paper, the shape functions are constructed by using the

MLS technique [33] or, alternatively, on the basis of

reproducibility conditions (note that both approaches can

arrive at the same expressions for the shape functions). The

MLS method can provide continuous and smooth field

approximation throughout the analysis domain with any

desirable order of consistency. We associate each node I with

a positive weight function wI of compact support. The

support of the weight function wI defines the domain of

influence of the node: �I ¼ fx 2 IR2 : wIðxÞ ¼ wðx;xIÞ > 0g,
where wðx;xIÞ is the weight function associated with node I

evaluated at the parametric position x ¼ ð�1; �2Þ. The approx-

imation of the field function f at x is only affected by those

nodes whose weights are nonzero at x. We call the set of such

nodes the active set AðxÞ. In the thin-shell simulation, if we

consider the displacement field as a function of both space

and time uðx; tÞ, the approximation in the parametric domain

� can be written as:

uðx; tÞ 
 uhðx; tÞ ¼
X
I2AðxÞ

	IðxÞuIðtÞ; ð7Þ

where 	IðxÞ is called the shape function of the MLS

approximation, and uIðtÞ is the nodal displacement value.

To obtain consistency of any desirable order of approxima-

tion, it is necessary to have a complete basis. For a complete

polynomial basis of order n, pðxÞ ¼ ½1 x . . . xn	T , the shape

function can be derived as:

	IðxÞ ¼ wIðxÞpT ðxÞA�1ðxÞpðxIÞ; ð8Þ

where AðxÞ is called the moment matrix. Due to the page

limitation, we refer the readers to [33] for more detailed

derivation.
In the thin-shell simulation, positional constraints can be

achieved by adding constraint forces as Lagrange multi-

pliers [38]. Fig. 7 shows the meshless shell deformation on

the bunny models of different stiffness material by user’s

applied forces. The user enforces certain positional con-

straints on the bottom of the bunny (small pink balls), and

applied two constant forces (blue arrows) at the end of the

two ears.
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Fig. 6. Point-based thin-shell before (a) and after (b) deformations, with

the simulation nodes scattered on the parameter plane (c). The shape

function associated with one of the nodes is shown in (d).



4.2 Sampling on the Parametric Domain

One important advantage of meshless methods is the
flexibility of the sampling pattern. In the thin-shell simula-
tion, it would be more desirable to have an initial sampling
scheme such that the sampling nodes are uniformly dis-
tributed on the manifold surface (Fig. 8a). Similar to the idea
of using an octree structure to facilitate the volumetric
sampling of the volumetric space [37], we utilize a quad-tree
structure on the parametric domain. The subdivision depth of
the quad-tree is dependent on the conformal factor �.
Suppose the size of the quad-tree cell is l. If �l is larger than
a threshold (i.e., the surface patch corresponding to the cell is
still large enough), we keep subdividing the cell into four
child-cells. We place the sampling nodes based on the quad-
tree discretization of the parametric plane. Since the
conformal factors in u and v directions are equivalent, we
can choose a simple “symmetric” supporting region (such as
squares, or disks) for each simulation nodes. In our
implementation, we use a square-shaped supporting region
to ease numerical integrations. For a node i residing in quad-
tree cellQi, its supporting region is a square of size 
 � sizeðQiÞ
centered around node i. We require the quad-tree to be a one-
level adjusted quad-tree, where the level difference of all
terminal cells and their edge neighbors is no more than one.
This restriction can guarantee the automatic satisfaction of the
patch covering condition in order to make the moment matrix
invertible. It has been proved in [37] that by choosing a
suitable size for 
, the validity of the supporting region can be
guaranteed a priori. For example, for a linear basis
pðxÞT ¼ ½1; �1; �2	, any point in the domain will be covered
by at least three patches if we choose 
 to be 3. The supporting
region construction based on terminal quad-tree cells can
provide the structure needed to perform efficient neighbor-
ing search and patch intersection tests. The quad-tree cells can
be also utilized as integration cells to perform numerical
integration for (5) and (6). Note that using � to control the
subdivision depth of the quad-tree is just an approximating
approach to achieve uniform distribution of the nodes. In
some other applications (such as adaptive simulation), it may
be desirable to place more simulation nodes in areas where
more simulation details are needed, in which cases new
control coefficients (such as material properties, etc.) can be
introduced to control the subdivision depth.

In the parameterization stage, the seams between
different parametric patches are represented by additional
point set curves. They are generated by tracing integral
curves (Section 3.3). These additional point set curves are

only used in the parameterization step, i.e., they are not
added to the original point set surface after the parameter-
ization. In the simulation stage, the parametric seams are
maintained in a table indicating the connection correspon-
dence of different parametric patches. The simulation nodes
are not duplicated on the patch boundaries. The support of
the shape function associated with each simulation node is
not restricted to the parametric patch where it resides. In
fact, the support can be extended to another parametric
patch if the node is close to the boundary of its patch (see
Fig. 8c). So, the behavior of the nodes across the boundaries
is consistent with nonboundary nodes without any un-
natural artifacts.

4.3 Modeling Cracks

Typically, there are two aspects of crack simulations that are
of interest: 1) The physical model undergoing the crack
evolution. We use the simplified condition of maximal
principle stress [42], [44] to decide both where and how the
material cracks. If the maximum eigenvalue of the stress
exceeds a threshold, a crack line (with cracking speed
proportional to the maximum eigenvalue of the stress)
should be generated. Similar to [44], secondary fractures on
the cracking surface can be given higher thresholds to help
reduce spurious branching in practice. 2) The representa-
tion of the evolving geometry. For thin-shell crack simula-
tion, the evolving geometry can be simply represented as
line segments on the 2D parametric domain.

When a crack is generated in a body, the dependent
variables (e.g., the displacements, etc.), must be discontin-
uous across the crack. Furthermore, the support of the nodes
affected by the discontinuities need to be modified accord-
ingly to incorporate the proper behavior of the shape
functions and its derivatives. The simplest way to introduce
discontinuities into meshless approximations is to use the
visibility criterion [32]. However, it would cause undesirable
discontinuities of the shape functions within the domain.
Similar to the approach of [4], we use the transparency
criterion proposed in [36] to allow partial interaction of nodes
in the vicinity of the crack front. Note that all these operations
can be easily performed on the 2D parametric domain.

We need to perform dynamic up-sampling (node inser-
tion) during the crack simulation, in order to maintain
numerical stability even for an initially adequately sampled
model. New simulation nodes need to be inserted in the
vicinity of crack lines. We take the same criterion as [4] to
determine under-sampling at each node based on transpar-
ency weights. If the transparency weights become too small
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Fig. 7. (a) Deformation of the bunny with Young’s modulus = 5� 107.

(b) Young’s modulus = 1� 107.

Fig. 8. (a) Uniform sampling nodes on the surface. (b) The four

parametric planes. (c) The supporting regions of two simulation nodes

are shown in pink and green; their overlapping region is shown in yellow.



due to a nearby crack line, we subdivide the quad-tree cell
associated with the simulation node into 4 child nodes (see
Fig. 9b).

4.4 Global Conformal Parameterization versus
Local Parameterization

For point-based surfaces, although it seems to be possible to
perform the meshless simulation based on local parameter-
izations, such as [39], [5], the numerical accuracy and
stability would be hard to enforce.

In [39], the neighboring points are projected onto the
local tangent plane and local triangulations are utilized to
assemble the FEM matrices. However, using the local
tangent plane as local parameterization domain will
decrease the simulation accuracy especially for high
curvature areas, since the surface metric may not be
preserved accurately on the tangent plane and it would
not be valid to choose simple and commonly-used support-
ing region (such as squares or disks) for the simulation
nodes. Although it is possible to choose other local
parameterizations instead of local tangent planes, enforcing
consistencies among neighboring local parameterizations
would become computationally intractable. For example, it
would be very difficult to perform the integration for the
mass and stiffness matrices under the meshless setting,
since the integration domain � in (5) and (6) is not unique
or consistent in each local parameterization domain. So, in
[34], they have to resort to a subdivision mesh as a
background mesh for numerical integration.

Wicke et al. [5] proposed to use locally defined fibers to
approximate the differential surface operators of the thin
shell functional. Their fracture was modeled by cutting
fibers between simulation nodes. However, the continuity
and consistency requirements are extremely hard to
guarantee in their approach, especially in the situation of
complex branching cracks. In this paper, we use the MLS
approximant which can easily satisfy any consistency order

and continuity requirement. The fracture is modeled using
the transparency criterion, and dynamic upsampling (node
insertion) in the vicinity of a crack line is applied to
maintain numerical stability. All these operations can be
made easy by providing a global conformal parameteriza-
tion of the original point-sampled surfaces, since they all
operate on the 2D parametric domain and crack branching
becomes simple 2D line-intersection operation.

5 EXPERIMENTAL RESULTS

Our system is implemented on a Microsoft Windows XP PC
with dual Intel Xeon 2.0GHz CPUs, 1.5GB RAM, and an
nVidia GeForce Fx 5200 Ultra GPU. The entire point-based
rendering pipeline is built upon Pointshop 3D [6]. Table 1
shows the statistics and performance data of our experiments.

The computational consumption in the parameterization
stage consists of the timing of the entire algorithmic flow
specified in Section 3.2 and Section 3.3, such as finding all
the boundaries, solving fair Morse functions to get the
homology basis, solving Laplacian equations for the
harmonic functions, performing integrations, etc. They also
include all the system response time (e.g., CPU computa-
tion, memory access, etc.). Note that for high genus models,
we solve 2gþ ðb� 1Þ Laplacian equations corresponding to
different homology bases. Similar to [13], we use the Bi-
CGSTAB iterative method to solve the sparse linear
systems. The global conformal parameterization time for
most of the models we experimented with takes around two
minutes. The largest model in our experiments is the
Iphigenie model (200,219 points, Fig. 12), which can be
parameterized in 15 minutes. The global parameterization
of the point-sampled surfaces are computed offline, while
the mesh-free simulation takes the parameterization results
as input.

In the simulation stage, we use the implicit time

integration method, which has been demonstrated to be

very stable. The initial numbers of nodes in the examples of

gargoyle, bunny, and Iphigenie simulations are only around

500. The elastic deformation of the gargoyle (Fig. 10) and

bunny (Fig. 7) is simulated in real-time. When deforming

the wings of the gargoyle model, the user specified several

positional constraints at the head and bottom of the model,

and applied forces to bend the wings. Note that the forces

are not constant over the deformation. In fact, the user

dynamically changes the force magnitude and direction,

since the more bending effect the wings achieve, the larger

forces the user needs to apply. The computational load at
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Fig. 9. (a) The quad-tree structure on the parametric plane for placing

simulation nodes. (b) The dynamic resampling near the crack line (blue

curve).

TABLE 1
Model Statistics and Performance Data



each time step of the crack propagation is much higher than

pure elastic deformation. We need to perform transparency

tests for the integration points, surface points, and simula-

tion nodes in the neighborhood of new crack lines. And,

new simulation nodes need to be generated if necessary. We

have to update the mass and stiffness matrices at each time

step to accomodate these changes. Fig. 11 shows an example

of tearing the bunny model. The user sets a positional

constraint at one ear tip of the bunny, while applying the

force at another ear tip to tear the whole bunny open. Fig. 12

shows the global conformal parameterization and explosion

simulation1 of the Iphigenie model. The crack simulations

of the bunny and Iphigenie can be performed at around

1.2 sec/frame, while the overall simulations take around

10 minutes to complete.

6 CONCLUSION

We have presented a meshless thin-shell simulation frame-

work solely based on global conformal parameterization of

the point-sampled surfaces. The parameterization is

founded upon Riemann surface theory and Hodge theory.

The point cloud is a valid geometric representation of

surfaces. Therefore, the conformal structure of surfaces can

be derived from this simple representation. This paper is

the first attempt to tackle this fundamental problem. The

structure of the linear solution space of all global conformal

parameterizations on point samples is uniquely determined

by the manifold geometry and independent of the con-

nectivity of the surface points. The vicinity information of

these point samples provides enough information to

unambiguously represent the intrinsic global topological

information. The global parameterization is a fundamental

process for the meshless thin-shell simulation, especially for

the fracture simulations. Both the parameterization and

dynamic simulation processes are only built upon point-

samples without any connectivity information. Because of

the structural simplicity of the underlying representation,

our new algorithms are efficient and easy to implement.

There are many avenues for near-future work. First, we

only assume that the point surface is sufficiently and

regularly sampled. The sampling issue associated with

point geometry is far from trivial, and it requires tremen-

dous new research efforts in the near future to do a

complete justice to their quantitative influences on the

parameterization quality. Second, our global parameteriza-

tion work is expected to pave the way for our ongoing

research and future projects in point-based graphics.

Looking beyond thin-shell simulations and our own

research, the point-surface global parameterization frame-

work developed in this paper can readily facilitate other

research initiatives in many graphics applications, such as

shape registration/analysis, segmentation, cut-and-paste,

morphing, attribute transfer, texture synthesis, spline sur-

face fitting, etc. It has a great potential to maximize the

utility of point-sampled surfaces, while simultaneously

retaining their structural simplicity. With the growing

demand on effectively processing topologically complicated

point geometries in 3D, our techniques are poised to

contribute to the state-of-the-art of graphics and interactive

techniques.
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Fig. 10. (a), (b), and (c) The global conformal parameterization of the gargoyle model. (d) User’s applied forces and specified position constraints.

(e) The deformation of the gargoyle’s wings (different parametric patches are shown in different colors). (f) The stress distribution after deformation.

Fig. 11. Tearing the bunny model by the user’s applied force. The lower

right figure shows the crack lines in the parametric domain.

1. This experiment is only for the purpose of scientific simulation/
animation, with no offense to any religious or culture significance of
Iphigenie.
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