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Abstract

Constructing splines whose parametric domain is an arbitrary manifold and effectively
computing such splines in real-world applications are of fundamental importance in solid
and shape modeling, geometric design, graphics, etc. This paper presents a general theoret-
ical and computational framework, in which spline surfaces defined overplanar domains
can be systematically extended to manifold domains with arbitrary topology with or with-
out boundaries. We study the affine structure of domain manifolds in depth and prove that
the existence of manifold splines is equivalent to the existence of a manifold’saffine atlas.
Based on our theoretical breakthrough, we also develop a set of practical algorithms to gen-
eralize triangularB-spline surfaces from planar domains to manifold domains. We choose
triangularB-splines mainly because of its generality and many of its attractive properties.
As a result, our new spline surface defined over any manifold is a piecewise polynomial
surface with high parametric continuity without the need for any patching and/or trim-
ming operations. Through our experiments, we hope to demonstrate that ournovel mani-
fold splines are both powerful and efficient in modeling arbitrarily complicated geometry
and representing continuously-varying physical quantities defined over shapes of arbitrary
topology.
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1 Introduction and Motivation

Real-world volumetric objects are oftentimes of complex geometry and arbitrary
topology. One fundamental goal of solid and physical modeling is to seek accurate
and effective techniques for the compact representation ofsmooth shapes with ap-
plications in both scientific research and industrial practice. Towards this goal, sub-
division surfaces have been extensively investigated during the recent past. Despite
their modeling advantages for arbitrarily complicated geometry and topology, sub-
division surfaces have two drawbacks: (1) accurate surfaceevaluation is frequently
conducted via explicit, recursive subdivision since most subdivision schemes (espe-
cially those interpolatory schemes) do not allow closed-form analytic formulation
for their basis functions; (2) extraordinary points dependon the connectivity of the
control mesh and need special care, as their behaviors and smoothness properties
differ significantly from other regular regions nearby. This paper aims to tackle the
aforementioned technical challenges associated with popular subdivision surfaces
by articulating the new theory for manifold splines and developing novel algorithms
for constructing such splines in practice.

Aside from subdivision surfaces, this research is equally motivated by the rigor-
ous mathematics of spline theory. Spline surfaces have demonstrated their signifi-
cance in shape modeling, finite element analysis, scientificcomputation, visualiza-
tion, manufacturing, etc. Most popular examples include Bézier surfaces, tensor-
productB-spline surfaces, and triangularB-spline surfaces. Essentially, all of them
are piecewise polynomials defined over planar parametric domains for efficient
evaluation. While these spline surfaces are ideal for modeling open surfaces with
curved boundaries, they are cumbersome to represent smoothsurfaces with arbitrar-
ily complex topology. The feasible way is to trim parametricspline surfaces defined
over open planar domains, stitch them along their trimmed edges with care, and en-
force the continuity requirements of certain degree acrosstheir shared boundaries
as shown in [1]. It is challenging to maintain high order continuity across patches
in both theory and practice. Therefore, there is a pressing need to introduce the new
spline concept and develop the new spline theory that define polynomial splines
over arbitrary manifold without trimming and stitching operations.

In essence, constructing splines defined over arbitrary manifolds is of fundamental
significance in geometric design, and interactive graphics. This paper presents a
general theoretical framework that can systematically generalize spline surfaces
with planar domains to manifold domains with arbitrary topology with or without
boundaries. The specificcontributions of this paper include:

• While motivated by the above observations, it also significantly advances the
state-of-the-art of both subdivision surfaces and splinessurfaces.

• This paper gives a theoretical proof for the existence of manifold splines, i.e., it
is equivalent to the existence of the affine structure of the underlying manifold
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serving as a parametric domain.
• Classical characteristic class theory has concluded that noclosed surface admits

an affine atlas except tori, so it provides evidence that the existence of extraordi-
nary points depends only on topology.

• Besides the theoretical advances, this paper also devises a set of practical al-
gorithms that enable the effective modeling of triangularB-spline surfaces over
manifold domains. The resulting surface is a piecewise polynomial surface with
high parametric continuity without any patching or trimming operations.

• Due to the intrinsic topological obstructions associated with domain manifolds,
the manifold triangularB-spline still admits singular points (which can not be
evaluated by the new spline scheme). However, our modeling algorithms are
able to construct the manifold spline based on triangularB-splines with the min-
imum number of singular points. This lower bound results from Riemann surface
theory (e.g., conformal structure).

In this paper, we choose to work on triangularB-splines and their manifold gener-
alization, mainly because triangularB-splines have many important properties:

• TriangularB-spline surfaces are defined over arbitrary planar triangulations, and
they generalize tensor-productB-splines. Unlike tensor-productB-splines, it has
no strict requirements for connectivity of the underlying mesh domain.

• Local support, parametric affine invariance, the completeness of basis functions,
and polynomial reproduction are attractive properties fortriangularB-splines,
and they still hold when generalizing to manifold splines.

• TriangularB-splines exhibit the maximal order of continuity with the lowest pos-
sible degree of their basis functions. For example, they achieve C2 continuity
when using only cubic polynomials. Furthermore, spatially-varying smoothness
requirements and sharp features can easily be achieved via different knot place-
ments in the parametric domain.

With our new results shown in this paper, it is rather straightforward to generalize
other popular splines to their manifold counterparts by adopting our techniques
on triangularB-splines. It may be noted that the new triangularB-splines defined
over arbitrary manifolds may still have special, singular points which must require
separate, additional care (Note that singular points for manifold splines differ from
extraordinary points of subdivision surfaces, where the vertex valence is the only
criterion). The intrinsic reason for the existence of singular points (when using
manifold splines) is due to the topological obstruction of the underlying domain.
In principle, an arbitrary domain can not offer a special atlas such that all transition
functions are affine. In practice, however, by removing a finite number of points,
the domain will then admit the affine atlas and subsequently allow the meaningful
generalization of triangularB-splines to arbitrary manifolds.

After the problem statement and its motivation, the remainder of this paper is or-
ganized as follows. Section 2 briefly reviews the prior work.Section 3 presents the
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necessary mathematical tools for manifold splines. Section 4 documents the theo-
retical foundation of our novel manifold splines. Section 5explains the algorithmic
details for constructing triangularB-splines over arbitrary manifold. Section 6 dis-
cusses the implementation issues and presents our experimental results. Finally, we
conclude the paper and briefly discuss the future research inSection 7.

2 Prior Work

This section briefly surveys some related work in triangularB-splines and surfaces
defined on manifolds.

2.1 Triangular B-splines

The theoretical foundation of triangularB-splines lies in the multivariateB-spline,
or simplex spline, introduced by de Boor [2]. It has received much attention since
its inception. Dahmen et al. [3] propose triangularB-splines from the point of view
of blossoming, which offers a general scheme for constructing a collection of mul-
tivariateB-splines (withn−1 continuous derivatives) whose linear span comprises
all polynomials of degree at mostn. Fong and Seidel [4] present the first prototype
implementation of triangularB-splines and show several useful properties, such
as affine invariance, convex hull, locality, and smoothness. Greiner and Seidel [5]
show the practical feasibility of multivariateB-spline algorithms in graphics and
shape design. Pfeifle and Seidel [6] demonstrate the fitting of a triangularB-spline
surface to scattered functional data through the use of least squares and optimiza-
tion techniques. Franssen et al. [7] propose an efficient evaluation algorithm, which
works for triangularB-spline surfaces of arbitrary degree. Neamtu [8] describesa
new paradigm of bivariate simplex splines based on the higher degree Delaunay
configurations. He et al. [9] present an efficient method to fair triangularB-spline
surfaces of arbitrary topology.

2.2 Spherical splines

Traditional B-splines are defined on planar domains. Many researchers have ex-
plored the feasible ways to generalize splines to be defined on sphere and manifolds
with arbitrary topology. We only document a few of them in theinterest of space.

Defining splines over a sphere has been studied during the past decade. Alfeld et
al. [10] present spherical barycentric coordinates which naturally lead to the theory
of Spherical Bernstein-B́ezier polynomials (SBB). They show fitting scattered data
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on sphere-like surfaces with SBB in [11]. Pfeifle and Seidel [12] present scalar
spherical triangular splines and demonstrate the use of these splines for approxi-
mating spherical scattered data. Neamtu [13] constructs a functional space of ho-
mogeneous simplex splines and shows that restricting the homogeneous splines to
a sphere gives rise to the space of spherical simplex splines. He et al. [14] present
rational spherical spline for genus zero shape modeling.

2.3 Surfaces Defined on Manifolds

There are some related work on defining functions on manifold, such as [15, 16,
17, 18, 19]. These methods share similar construction procedures which can be
summarized as follows:

(1) Find an atlas{Ui,φi} to cover the domain manifoldM, with transition func-
tionsφi j = φ j ◦φ−1

i . All transition functions are required to be smooth, espe-
cially, analytical functions are used in [19].

(2) Define functional basis on each chartfi : φi(Ui) → R.
(3) For each pointp∈M, normalize these functions and define the basis functions

Bi as

Bi(p) =
fi(p)

∑ j f j(p)
.

(4) Define the functions asF(p) = ∑i CiBi(p) whereCi are the control points.

It is obvious that, even whenBi is a polynomial on chart(Ui,φi), Bi is not a poly-
nomial on a different overlapping chart(U j ,φ j), because in generalφi j is NOT
algebraic andφi j ◦Bi is not a polynomial.

Our work is completely different from the above work in that:1) The transition
functions of our method must be affine. Therefore, the requirement of our method
is much stronger. That is why topological obstruction playsan important role in our
construction. 2) Our method produces the polynomial or rational polynomials. On
any chart, the basis functions are always polynomials or rationals, and represented
asB-splines or rationalB-splines.

A different approach using the concept of orbifold is introduced in [20]. SupposeS
is the domain manifold with genusg and without boundaries. Then, the universal
covering spacẽScan be embedded in either a sphere, a plane or hyperbolic space.
If the transformation groupH of S̃ maps a fundamental domain to a fundamental
domain, then the spline surface is defined onS̃ with the unique requirement that
the spline is invariant underH. They embed the sphere and the hyperbolic space
in R

3 and define the spline onR3 directly. Our method is fundamentally different.
First, we define the splines on the atlas ofS, not on the universal covering space
S̃. Second, each local parameter is only 2D instead of 3D. Third, our construction
is intrinsic to the surfaceS; namely, we do not need any embedding information.
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Fourth, their method can also be considered as building an atlas, where each chart
is a subset inR3 and the transition functions are non-linear. In contrast, our method
constructs an atlas where each chart is an open set inR

2 and all transition functions
are affine.

In summary, we believe manifold splines have two fundamental criteria:

(1) Manifold: The splines are defined on the domain manifold,namely, the eval-
uation of the splines isindependentof the choice of the chart.

(2) Algebraic: locally, on any chart, the splines should be either polynomials or
rational polynomials.

All previous manifold constructions focus on the first pointbut can not satisfy the
second one. Most spline schemes emphasize the algebraic aspect, but only are de-
fined on planar domains. Our work is the first one that satisfiesboth criteria, and
discovers the intrinsic relation between manifold splinesand affine structures.

3 Theoretical Background

In order to define splines on manifolds, we must fully understand the intrinsic prop-
erties of splines and the special structures inherent to thedomain manifold. This
section presents the relevant theoretical tools.

Essentially, splines have local support, so we shall define spline patches locally on
the manifold and glue the locally-defined spline patches to cover the entire domain
manifold. Furthermore, since splines are invariant under parametric affine transfor-
mations, we seek to glue the patches using affine transition functions. Therefore,
if the domain surface admits an atlas on which all transitionfunctions are affine,
then we can glue the patches coherently. However, the existence of such an atlas is
solely determined by the topology. In principle, we can gluethe patches to cover
the entire surface except a finite number of points, which aresingular points and
can not be evaluated by the global splines on the manifold. These singular points
represent the topological obstruction for the existence ofthe affine atlas.

3.1 Spline Theory and Properties

The most popular spline schemes, such as tensor product Bézier surfaces, tensor
productB-spline surfaces, triangular Bézier surfaces andB-patches, can be unified
as the different variations of polar forms [21, 22, 23]. We shall briefly explain the
concept of polar forms, and then, we concentrate onB-patches and triangularB-
spline surfaces, because of their flexibility and generality.
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3.1.1 Polar Form

In essence, a polar form is a multivariate polynomial that issymmetric and multi-
affine.
Definition 1 (Affine Map). A map f : R

2 → R
n is affine, if and only if it pre-

serves affine combinations, i.e., if and only if f(∑m
i=0αiui) = ∑m

i=0αi f (ui) whenever
∑m

i=0αi = 1.
Definition 2 (Symmetric, Multi-Affine). Let F be an n-variable map. F is sym-
metric if and only

F(u1,u2, · · · ,un) = F(uπ(1),uπ(2), · · · ,uπ(n))

for all permutationsπ ∈ ∑n. The map F is multi-affine if and only if F is affine in
each argument if the others are held fixed.

The well-known blossoming principle indicates that any polynomial is equivalent
to its polar form.
Proposition 3. Polynomials F: R

2 → R
t of degree n, and a symmetric multi-affine

map f : (R2)n → R
t are equivalent. Given a map of either type, unique map of the

other type exists that satisfies the identity F(u) = f (u, · · · ,u
︸ ︷︷ ︸

n

). The map f is called

the multi-affine polar form or blossom of F.

3.1.2 B-patches and Triangular B-splines

TriangularB-spline surfaces can be defined on planar domains with arbitrary tri-
angulations. In particular regions, triangularB-splines areB-patches. For the con-
venience, we introduce notations which are similar to thoseemployed in [3, 24].
Essentially, we formulateB-patches through the use of a polar form. Let∆I :=
[tI

0, t
I
1, t

I
2] be the triangle “I” of our triangulationT of R

2. For each vertextI
i we

assign a list ofk+1 distinct additional knots

tI
i := {tI

i,0, t
I
i,1, . . . , t

I
i,k}. (1)

The rule proposed in [3] consists of producing a subsetV I
β , whereβ = (β0,β1,β2)

are three non negative integers, as follows:

V I
β := {tI

0,0, t
I
0,1, . . . , t

I
0,β0

, tI
1,0, t

I
1,1, . . . , t

I
1,β1

, tI
2,0, t

I
2,1, . . . , t

I
2,β2

}.

If we want to define a degreek simplex splines, we must impose that

|β| := β0 +β1 +β2 = k.

V I
β is the set of all knots associated with one vertex inT .
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We further define∆I
β := [tI

0,β0
, tI

1,β1
, tI

2,β2
] and

XI
β := (tI

0,0, . . . , t
I
0,β0−1, t

I
1,0, . . . , t

I
1,β1−1, t

I
2,0, . . . , t

I
2,β2−1) ∈ (R2)|β|. (2)

XI
β is the set of knots associated with one control pointf (XI

β).

If ∆I
β is non-degenerate, it is possible to define the barycentric coordinates ofu∈R

2

with respect to this triangle:

u =
2

∑
i=0

λI
β,i(u)tI

i,βi
, and

2

∑
i=0

λI
β,i(u) = 1. (3)

The generalized algorithm computesF(u) starting from the valuesf (XI
β), |β| = k.

Those values are called thepolesof F . Let us define

XI
βuv := XI

β × (u,u, . . . ,u
︸ ︷︷ ︸

v

) ∈ (R2)|β|+v

and assignCv
β(u) := f (XI

βuv) with |β| = k− v, the algorithm uses thek-affinity of
f stating the recurrence relation:

C0
β(u) := f (XI

β), |β| = k

Cv+1
β (u) :=

2

∑
i=0

λI
β,i(u)Cv

β+ei(u), (4)

whereei denotes the canonical basis vector. ThenF(u) = Ck
0(u). If the basis func-

tion for the polef (XI
β) is denoted asBI

β(·), then we obtain

F(u) = ∑
|β|=k

f (XI
β)B

I
β(u).

3.1.3 Triangular B-spline Properties

TriangularB-splines have the following valuable properties which are critical for
geometric and solid modeling:

(1) Local support.The spline surface has local support. In order to evaluate the
imageF(u) of a pointu ∈ ∆I , we only need control pointscJ

β (associated with

knot setVJ
β on triangleJ), where triangleJ belongs to the 1-ring neighborhood

of triangleI .
(2) Convex hull.The polynomial surface is completely inside the convex hullof

the control points.
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(3) Completeness.The B-spline basis is complete, namely, a set of degreen B-
spline basis can represent any polynomial with degree no greater thann via a
linear combination.

(4) Parametric affine invariance.The choice of parameter is not unique: if one
transforms the parameter affinely and the corresponding knots of control points
are transformed accordingly, then the polynomial surface remains unchanged
(see Figure 1).

(5) Affine invariance.If the control net is transformed affinely, the polynomial
surface will be consistently transformed affinely.

Note that parametric affine invariance is different from affine invariance. The dia-
grams below illustrate the radical difference.

u,V I
β φ(u),φ(V I

β)

F F ◦φ

-
φ

? ?

-

φ

cI
β φ(cI

β)

F φ◦F

-
φ

? ?

-

φ

(a) Parametric affine invariance (b) Affine invariance

The left one above represents parametric affine invariance,which refers to the prop-
erty that, under a transformation between parameter domains, the shape of the poly-
nomial surface remains the same; the right one above indicates affine invariance,
which refers to the property that under a transformation of the control points, the
polynomial surface will change accordingly.

(a) Original triangularB-spline. (b) Transformed triangularB-spline.

Fig. 1. Parametric Affine Invariance: (a) and (b) are two triangularB-splines sharing the
same control net, the two parametric domains differ only by an affine transformation. The
same control nets result in the same polynomial surfaces shown in (a) and (b). (Spline
model courtesy of M. Franssen.)

The aforementioned properties are extremely important forgeometric and solid
modeling applications. For example, the local support willallow designers to ad-
just the surface by moving nearby control points without affecting the global shape.
Therefore, it is crucial to preserve these properties when we generalize the planar
domainB-splines to manifoldB-splines. We will prove that such a generalization
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does exist, and these desirable properties can be preserved. The generalization com-
pletely depends on the so-called affine structure of the domain manifold. The lo-
cal support and parametric affine invariance are crucial forconstructing manifold
splines.

Uα Uβ

φα φβ

φαβ = φβ ◦φ−1
α

φα(Uα) φβ(Uβ)

Fig. 2. Manifold: The manifold is covered by a set of charts(Uα,φα), whereφα : Uα → R
2.

If two charts(Uα,φα) and(Uβ,φβ) overlap, the transition functionφαβ : R
2 →R

2 is defined
asφαβ = φβ ◦φ−1

α .

3.2 Manifold and Geometric Structures

Our manifold splines are defined over manifolds with arbitrary topology with or
without boundaries. Ann dimensional manifold can be treated as a set of open sets
in R

n glued coherently (see Fig 2).
Definition 4 (Manifold). A manifold of dimension n is a connected Hausdorfff
space M for which every point has a neighborhood U that is homeomorphic to an
open subset V ofRn. Such a homeomorphism

φ : U →V

is called a coordinate chart. Anatlasis a family of charts{(Uα,φα)} for which Uα
constitute an open covering of M.

Transition function plays a vital role in the theory of manifold splines.
Definition 5 (Transition function). Suppose{(Uα,φα)} and {(Uβ,φβ)} are two
overlapping charts on a manifold M, Uα ∩Uβ 6= /0, the chart transition is

φαβ : φα(Uα ∩Uβ) → φβ(Uα ∩Uβ)

Transition functions satisfy the cocycle condition (see Fig 3):

φαβ ◦φβγ = φαγ,∀x∈Uαβ ∩Uβγ

Atlas can be classified by transition functions.
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φαβ

φβγφαγ

α β

γ

Uαβ

Uαγ

Uβα

Uβγ

UγαUγβ

Fig. 3. Cocycle condition for transition functions.

Table 1
General geometric structures.

Structure X G Surfaces

Topology R
2 Homeomorphisms Surfaces of arbitrary topology

Differential R
2 Diffeomorphisms Surfaces of arbitrary topology

Spherical S
2 Rotation Closed, genus zero surfaces

Euclidean E
2 Rigid motion Closed, genus one surfaces

Hyperbolic H
2 Möbius Transformation High genus surfaces

Affine R
2 Affine transformation Zero Euler class surfaces

Conformal C Holomorphic functions Oriented surfaces of arbitrary topology

Projective RP
2 Projective Transformation Oriented surfaces of arbitrary topology

Definition 6 (Geometric Structure). Suppose M is a manifold, X is a topological
space, G is a transformation group on X, a(G,X) atlasis an atlas{(Uα,φα)}, such
that

(1) Local coordinates are in X,

φα : Uα → X.

(2) Transition functions are in group G,

φαβ ∈ G.

Two(G,X) atlas are equivalent, if their union is still a(G,X) atlas. Each equivalent
class of(G,X) atlas is a(G,X) structure.

Genus zero closed surfaces have spherical structure. Genusone surfaces have Eu-
clidean structure. Surfaces with high genus have hyperbolic structure. Surfaces
have general geometric structures, such as conformal structure, projective struc-
ture. Table 3.2 illustrates the common geometric structures.
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(a) Spherical structure (b) Euclidean structure (c) Hyperbolic structure

Fig. 4. Geometric structures. (a) Spherical structure:X is the unit sphereS2, G is the rotation
group; (b) Euclidean structure:X is the Euclidean planeR2, G is the translation group; (c)
Hyperbolic structure:X is the hyperbolic spaceH2, G is the Möbius transformation group.

3.3 Affine Structure

An affine manifold is a manifold with special transition functions.
Definition 7. A 2 dimensional manifold M with an atlas{(Uα,φα)}, if all chart
transition functions

φαβ := φβ ◦φ−1
α : φα(Uα

⋂

Uβ) → φβ(Uα
⋂

Uβ)

are affine, then the atlas is called an affine atlas, M is calledan affine manifold.

Two affine atlases areequivalentif their union is still an affine atlas. All the equiv-
alent affine atlases form anaffine structureof the manifold.

For closed surfaces, only genus-one surfaces have affine structures (see Figure 2),
but all surfaces with boundaries have affine structures. Next, in order to construct
affine atlas for general surfaces in practice, we need certain theoretical tools which
are induced from theconformal structureof the domain manifold.

3.4 Conformal Structure

Similar to affine structure, conformal structure is also an intrinsic structure of the
surface. A conformal atlas is an atlas such that all transition functions are conformal
(analytic). Two conformal atlases are compatible if their union is still a conformal
atlas. All compatible conformal atlases form conformal structure. All surfaces have
conformal structure and are called Riemann surfaces [25]. Conformal structure is
closely related to affine structure. In particular, an affineatlas can be computed by
using special differential complex forms defined on the conformal atlas.

3.4.1 Riemann Surface

The Riemann surface is a surface with a conformal atlas, such that all transition
functions are analytic.
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Definition 8 (Analytic Function). A function f: C→C,(x,y)→ (u,v) is analytic,
if it satisfies the following Riemann-Cauchy equation

∂u
∂x

=
∂v
∂y

,
∂u
∂y

= −
∂v
∂x

Definition 9 (Riemann Surface). A Riemann surface M is a2-manifold with an
atlasA = {(Uα,φα)}, such that all transition functionsφαβ : C → C are analytic.
All compatible affine atlas forms a conformal structure of M.

Analytic functions areconformal, which intuitively meansangle preserving. It is
well known that all oriented metric 2 manifolds are Riemann surfaces and have a
unique conformal structure, such that on each chartUα,φα, the first fundamental
form can be represented asds2 = λ(u,v)(du2 + dv2). Gu and Yau [26, 27] intro-
duce practical algorithms to compute this conformal structure on general triangular
meshes.

3.4.2 Holomorphic 1-form

In order to find an affine atlas, we need special differential forms defined on the
conformal structure.
Definition 10 (Holomorphic 1-form). Given a Riemann surface M with a confor-
mal structureA , a holomorphic 1-formω is a complex differential form, such that
on each local chart(U,φ) ∈ A ,

ω = f (z)dz, (5)

where f(z) is an analytic function, z= u+ iv is the local parameter in the complex
form.

Genus zero surface has no holomorphic 1-forms. The holomorphic 1-forms of
closed genusg surface form ag complex dimensional linear space, denoted as
Ω(M). A conformal atlas can be constructed by using a basis ofΩ(M). This is the
method derived in [26, 27]. Considering its geometric intuition, a holomorphic 1-
form can be visualized as two vector fieldsω = (ωx,ωy), such that the curlex of
ωx andωy equals zero. Furthermore, one can rotateωx about the normal by a right
angle to arrive atωy,

∇×ωx = 0,∇×ωy = 0,ωy = n×ωx.

By integrating a holomorphic 1-form, an affine atlas can be easily constructed. Fig-
ure 11(a), 8(a) illustrate holomorphic 1-forms on surfaces. The texture coordinates
are obtained by integrating the 1-form on the surface (see [27] for the details).
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3.4.3 Singular Points

According to Poicaŕe-Hopf theorem, any vector field on a surface with nonzero Eu-
ler number must have singularities where the vector field is zero. Such singularities
of ω = (ωx,ωy) are calledzero points,
Definition 11 (Zero Point). Given a Riemann surface M with a conformal struc-
tureA , a holomorphic one-formω, ω = f (z)dz, where f(z) is an analytic function
and z= u+ iv is the local parameter. If at point p, f(z) equals zero, p is a zero
point ofω.

In fact, it can be proven that zero points do not depend on the choice of the local
chart at all. For a Riemann surfaceM with genusg, a holomorphic 1-formω has
2g− 2 zero points in principle. Zero points are singular points for our manifold
splines (to be constructed later). Figures 8(a) demonstrates the zero points (singular
points) on the 1-form. The centers of regions with octagons are the zero points.

Fig. 5. All oriented metric surfaces are Riemann surfaces which admit conformal structure.

4 Manifold Spline Theory

In this section, we will systematically define manifold splines using our theoreti-
cal results on affine structure and triangularB-splines and show their existence is
equivalent to that of affine structure. We first discuss the existence of affine struc-
ture for general manifolds, and then we compute the affine structure through the
use of conformal structure for any manifold. For the consistency of our manifold
spline theory, we shall utilize the parametric affine invariance and polynomial re-
production properties of general spline schemes (triangular B-splines in particular
for this paper).

4.1 Definition and Concept

A manifold spline is geometrically constructed by gluing spline patches in a co-
herent way, such that the patches cover the entire manifold.The knots and control
points are also defined consistently across the patches and the surface evaluation
is independent of the choice of chart. First of all, we define the local spline patch.
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After that, we define a global manifold spline which can be decomposed into a
collection of local spline patches.
Definition 12 (Spline Surface Patch).A degree k spline surface patch is a triple
S= (U,C,F), where U⊂ R

2 is a planar simply-connected parametric domain.
F : U → R

3 is a piecewise polynomial surface and C is the set of control points,
C := {cI

β,X
I
β ∈ (R2)|β|, |β| = k}. F can be evaluated from C by polar form.

Definition 13 (Manifold Spline). A manifold spline of degree k is a triple(M,C,F),
where M is the domain manifold with an atlasA = {(Uα,φα)}. F is a map F: M →
R

3 representing the entire spline surface. C is the control points set, each control
point cI

β is associated with a set of knots XI
β which are defined on the domain man-

ifold M directly,
C := {cI

β,X
I
β ∈ M|β|

, |β| = k}

such that

(1) For each chart(Uα,φα), the restriction of F on Uα is denoted as Fα = F ◦φ−1
α ,

a subset of control points Cα can be selected from C, such that(φα(Uα),Cα,Fα)
form a spline patch of degree k, where Cα := {cI

β,φα(XI
β) ∈ (R2)|β|, |β| = k}.

(2) The evaluation of F is independent of the choice of the local chart, namely, if
Uα intersects Uβ, then Fα = Fβ◦φαβ, whereφαβ is the chart transition function.

The technical essence of the above definition is to replace a planar domain by the
atlas of the domain manifold, and the surface evaluation of the spline patches is
independent of the choice of charts (see Figure 6). After theformal definition, we
use one simple example to further illustrate the concept of our manifold splines (see
Figure 7).

One Dimensional Example.Here the domain manifold is a unit circleS1. There
aren distinct pointst0, t1, · · · , tn−1 distributed on the circle in a counterclockwise
way. All the summation and subtraction on indices are modular n. The intervals
between points are arbitrary. The control net is a planar n-gon, the control points
are denoted asc0,c1, · · · ,cn−1 also in a counterclockwise way, and the knots forci

areti−2, ti−1, ti, ti+1, ti+2.

The affine atlas ofS1 is constructed in the following way: the arc segmentUi =
(ti−2−ε, ti−1, ti, ti+1, ti+2+ε),ε∈R

+ is mapped to an interval inR1 by φi : S1→R
1,

such that

φi(ti) = a,φi(t) = a+b
∫ t

ti
ds,a∈ R ,b∈ R

+
. (6)

wherea, b are arbitrarily chosen. The union of all local charts(Ui,φi) form an
affine atlasA = {(Ui ,φi)}. Note that by choosing differenta, b, there might be
infinite local charts inA .

The control net corresponding to local chart(Ui ,φi) is the line segmentsCi =
{ci−2,ci−1,ci,ci+1,ci+2}. The piecewise polynomial curve is formed byn pieces
of polynomials, thei-th pieceFi : [ti, ti+1]→R

2 is evaluated on(Ui,φi) with control
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M

Z

F

φα(Uα) φβ(Uβ)

Cα,Fα Cβ,Fβ

Uα
Uβ

φα φβ

φα,β = φβ ◦φ−1
α

Fig. 6. Key elements of manifold splines: The parametric domainM is a triangular mesh
with arbitrary topology as shown at the bottom. The polynomial spline surfaceF is shown
at the top. Two overlapping spline patches(φα(Uα),Cα,Fα) and(φβ(Uβ),Cβ,Fβ) are mag-
nified and highlighted in the middle. On each parameter chart(Uα,φα),(Uβ,φβ), the surface
is a triangularB-spline surface. For the overlapping part, its two planar domains differ only
by an affine transformationφαβ. The zero point neighbor isZ.

polygonCi using cubicB-spline.

Then we define the cubicB-spline curve on the unit circle consistently. It isC2

continuous everywhere. TheB-spline patches are{φi(Ui),Ci,Fi}.

The above example can be trivially extended to construct a two-dimensional surface
in a similar way. The key step is to find an affine atlas for the domain manifold. The
next section will discuss the existence of such an atlas for general 2-manifolds in
detail.

4.2 Equivalence to Affine Atlas

The central issue of constructing manifold splines is that the atlas must satisfy
some special properties in order to meet all the requirements for the evaluation
independence of chart selection. We will show that for a local spline patch, the
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t0t1t2

t3

tn−1

c0
c1c2

c3

cn−1

(a)

Ui

ti−2ti−1 ti ti+1 ti+2

ci−2
ci−1 ci ci+1ci+2

(b)

Ui+1

ti+3ti−1 ti ti+1ti+2

ci+3

ci−1
ci ci+1

ci+2

(c)

Fig. 7. Manifold splines onS1: (a) The domain manifold is a unit circleS1 with n distinct
knotst0, . . . , tn−1; (b) Thei-th spline patchUi = (ti−2−ε, . . . , ti+2+ε); (c) Thei+1-th spline
patchUi+1 = (ti−1− ε, . . . , ti+3 + ε).

only admissible parameterizations differ by an affine transformation. This requires
that all the chart transition functions are affine.

4.2.1 Admissible Parameterizations

From the evaluation process in (4), it is obvious that the only information used
there are barycentric coordinates (3) of the parameter withrespect to the knots of
the control points. If we change the parameter by an affine transformation, the eval-
uation is invariant and the final shape of the spline surface will not be modified. On
the other hand, an affine transformation is the only parametric transformation that
will keep the consistency between the spline surface and itsparameters. In other
words, affine transformations are the only admissible parametric transformations
for a spline patch. Note that we present four major theorems as our theoretical re-
sults in this section. However, in the interest of technicalflow, we defer their proof
to the appendix at the end of this paper.

Theorem 1. The sufficient and necessary condition for a manifold M to admit man-
ifold spline is that M is an affine manifold.

This theorem indicates that the existence of manifold splines depends on the exis-
tence of affine atlas. If the domain manifoldM is an affine manifold, we can easily
generalize the planar triangularB-spline surfaces to be defined onM directly. We
use the same symbols for manifold spline as in Section 3.1.2.The major differences
are as follows:

(1) The knots associated with each vertextI
i in (1) are defined on the manifold

directly.
(2) The knots associated with each poleXI

β in (2) are defined onM directly.

(3) The barycentric coordinatesλI
β,i used in the evaluation process (3) are defined

on any chart ofA . BecauseA is affine, the value of the barycentric coordinates
is independent of the choice of the chart.
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4.3 Existence

From the previous discussion, it is clear that in order to define a manifold spline,
an affine atlas of the domain manifold must be found first. According to character-
istic class theory [28], general closed 2-manifolds do not have an affine atlas. On
the other hand, all open surfaces admit an affine atlas. In order to define manifold
splines, the domain manifold has to be modified to admit an atlas by removing a fi-
nite number of points. This offers a theoretical evidence tothe existence of singular
points due to the topological obstruction.

A classical result from characteristic class theory claimsthat the only closed sur-
face admitting affine atlas is of genus one.

Theorem 2 (Benźecri). Let S be a closed two dimensional affine manifold, then
χ(S) = 0.

This result is first proven by Benzécri [29]. Shortly after his proof, J. Milnor pre-
sented a much more broader result using vector bundle theories [30]. In this frame-
work, the topological obstruction of a global affine atlas isthe Euler class. In fact,
by removing one point from the closed domain manifold, we canconvert it to an
affine manifold.

Theorem 3 (Open Surfaces are Affine Manifold).Let M be an orientable open
2-manifold, then M is affine manifold.

4.4 Spline Construction

The existence theorem gives rise to the possibility of generalizing triangularB-
splines to manifold domains. Next, we shall present an explicit way to construct
affine atlas by utilizing the holomorphic 1-forms ofM.

Given a holomorphic 1-formω on a surfaceM, assume its zero point set isZ; then,
an affine atlasA for M \Z can be constructed straightforwardly.

Theorem 4 (Affine Atlas Induced from Conformal Structure). Given a closed
genus g surface M, and a holomorphic 1-formω, the zero set ofω is Z, then the
size of Z is no more than2g−2 and there exists an affine atlas on M\Z deduced
by ω.
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4.5 Singular Points

Traditional subdivision surfaces, such as Catmull-Clark [31], Doo-Sabin [32], and
Loop subdivision [33] surfaces can be considered special cases of manifold splines.
The existence of extraordinary points in all subdivision schemes results from their
intrinsic topological obstructions. No matter how the domain manifold is remeshed,
the extraordinary points can not be entirely removed unlessthe domain manifold is
a torus. Similarly, we can define triangularB-splines on any triangular mesh. If the
Euler number of the domain mesh is nonzero, there must be singular points.

Corollary 1 (Existence of Singular Points).The manifold splines must have sin-
gular points if the domain manifold is closed and not a torus.

In addition, based on the above discussion, we conclude thatthe minimal number
of extraordinary points is one for all kinds of closed 2-manifolds.

Corollary 2 (Minimal Number of Singular Points). Given a closed domain 2-
manifold, if its Euler number is not zero, a manifold spline can be constructed such
that the spline has only one singular point.

The theoretic results in this section naturally guide us to design practical algorithms
to compute affine atlases for arbitrary triangular meshes and subsequently define
manifold splines on them.

5 Manifold Spline Algorithm

This section presents a set of practical algorithms for constructing manifold splines
based on triangularB-spline scheme. It is straightforward to define manifold NURBS
using similar algorithms.

5.1 Algorithm Overview

The major procedures can be summarized as the following maincontrol flow,

Algorithm: Construction of manifold splines

(1) Compute a holomorphic 1-form basis for the domain meshM (Section 5.2).
(2) Select one holomorphic 1-form which optimizes a specified criteria, such as

uniformity (see [34]).
(3) Locate zero points of the 1-form (Section 5.3). Remove zero-point neighbor-

hoods, denote the union of zero-point neighborhoods asZ.
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(4) Compute the affine atlas forM \Z (Section 5.4).
(5) Assign knots for each control point (Section 5.5).
(6) Evaluate the spline surface (Section 5.6).

5.2 Holomorphic 1-form

The algorithm for computing the holomorphic 1-form for a triangular mesh is as
follows:

Algorithm: Compute Holomorphic One Form

(1) Compute the first homology group basis of the domain manifold M, H1(M,Z).
(2) Compute the first cohomology group basis of the domain manifold M, H1(M,R).
(3) Compute harmonic 1-form basis fromH1(M,R) using heat flow method.
(4) For each harmonic 1-form basisωx, locally rotate by a right angle about the

normal to getωy (Hodge star operator), pair(ωx,ωy) to form a holomorphic
1-form basis.

The computation process is equivalent to solving an elliptic partial differential
equation on the surface using finite element method. The details for computing
holomorphic 1-form are thoroughly explained in [26, 27].

5.3 Locating Singular Points

If the resolution of a mesh is high enough, the holomorphic 1-form is accurate
enough to locate the zero points automatically.

Using the holomorphic 1-form, the neighborhood of the zero point will be mapped
to a planar region. The behavior of the map is similar to the map z→ z2,z∈ C in
the neighborhood of the origin. More rigorously, a circle around the zero point will
be mapped to a curve which passes around the origin at least twice. (The winding
number of the image curve about the origin is no less than 2.)

The following algorithm aims to locate zero points:

Algorithm: Locate Zero Points

(1) Given a vertexv∈M, a holomorphic 1-formω, find all the vertices connecting
to vertexv sorted counterclock-wisely, denoted asw0,w1, · · · ,wn−1.

(2) Mapwi to the plane usingω, φ(wi) =
∫ wi

v ω.
(3) The pointsφ(w0),φ(w1),· · · ,φ(wn−1) form a planar polygon and the pointφ(v)
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is inside this polygon. Compute the summation of the angles

n−1

∑
i=0

∠φ(wi)φ(v)φ(wi+1),

wherewn = w0. If this summation is 2π, thenv is a regular point; if summation
is no less than 4π, thenv is a zero point.

5.4 Constructing Affine Atlas

An affine atlas can be constructed in the following way.

Algorithm: Construct Affine Atlas

(1) Locate zero points ofω, denote the zero pointsZ.
(2) Remove zero points and the faces attaching to them.
(3) Construct an open covering forM \Z. For each vertex, take the union of all

faces within its k-ring neighbor as an open setU .
(4) Test if the union of any twoUα, Uβ is a topological disk by checking the Euler

number ofUα
⋃

Uβ. If not, subdivideUα.
(5) Pick one vertexpα ∈Uα, for any vertexp∈Uα, defineφα(p) =

∫ p
pα

ω.

(6) Compute coordinate transition functions,φαβ =
∫ pβ

pα ω.

5.5 Assigning Knots

The connectivity of the control net can be easily determinedby the uniform subdi-
vision of the domain mesh. For example, if the desired splinesurface is quadratic,
each face onM will be subdivided to four faces on the control net. Therefore, each
face on the control mesh is covered by one face onM. Each control point will then
associate with a group of knots. The knots are defined in the following way.

Algorithm: Assign Knots

(1) Given a control pointc∈C and a facef attached toc. Supposef is covered
by F ∈ M. Choose one local chart(Uα,φα) coveringF , and assign knotsXF

β
to c in this local chart.

(2) Record the chart idα, the knotsXF
β for c.
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5.6 Surface Evaluation

As explained above, the evaluation process is independent of the choice of the chart.
The chart can be chosen arbitrarily, and all associated knots must then be converted
to the selected chart.

Algorithm: Spline Evaluation

(1) Choose a faceF onM, choose a coordinate chart(Uα,φα) coveringF .
(2) Locate all control points associate withF .
(3) If the knots of a control pointc is define on coordinate chartβ, then convert

the knots to chart(Uα,φα) using transition functionφβα.
(4) Evaluate the polynomial surface using the evaluation algorithm for B-spline

surface with planar domain on(Uα,φα).

6 Implementation and Experimental Results

In our implementation, we consider domain manifolds represented as triangular
meshesM. We usevk to denote the vertices ofM, [vi,v j ] denote the oriented edge
from vi to v j , [vi,v j ,vk] to denote an oriented face ofM.

6.1 Data Structure

The primary data structures in our prototype system for constructing manifold
splines aredomain mesh M, control net C, affine atlasA , andholomorphic 1-form
ω.

Domain Mesh M. The domain mesh in general is a triangular mesh, represented
by a half-edge data structure. Each face is covered by several coordinate charts.

Control Net C. The control net is also a triangular mesh, represented by half edge
data structure. The connectivity of the control net is deduced from that of the do-
main mesh by uniform subdivision and the degree of the manifold spline. Each face
on the control net corresponds to one covering face in the domain mesh.

Atlas A . The atlas is set of charts and all the transition functions among them. The
transition functions are translations on the plane; if theα-th chart and theβ-th chart
intersect, there is a transition functionφαβ, represented as a translation vector inR

2.
Each chart is a set of adjacent faces, which form a topological disk. We ensure that
the union of two intersecting charts is still a topological disk. The local coordinates
are not recorded, but computed in real-time by integrating holomorphic 1-formω.
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Table 2
Spline configurations:g, genus; n, degree; Nb, # of boundaries; Ns, # of singular points;
Nt , # of domain triangles; Nc, # of control points.

object Figure g Nb Ns n Nt Nc

Bunny Fig 9 0 3 1 3 293 1348

Knot Fig 11, row 1 1 0 0 3 400 1800

Rockerarm Fig 11, row 2 1 0 0 3 2125 9676

Two-hole torus Fig 8 2 0 2 3 502 2270

Sculpture Fig 11, row 3& 4 3 0 4 3 1458 6583

Holomorphic 1-Form ω. A holomorphic 1-form is represented by a map from
the oriented edge (half-edge) set ofM to R

2, ω : E → R
2, such that for any face

[v0,v1,v2],
ω[v0,v1]+ω[v1,v2]+ω[v2,v0] = 0.

(a) (b) (c) (d) (e) (f)

Fig. 8. Construction of manifold spline: (a) Holomorphic 1-formω, the octagonal region
indicates a singular point; (b) Domain manifoldM; (c) Singular point removalM \Z; (d)
Manifold splineF ; (e) Spline surfaceF covered by control netC; (f) The regions of singular
points are filled.

6.2 Experimental Results

Our prototype system is implemented in C++ on Windows platform. We build
a complete system for computing topological structure, conformal structure, and
affine structure. The system is based on a half-edge data structure, and uses the
finite element method to solve elliptic partial differential equations on surfaces.
The system includes traditional mesh processing functionalities, such as mesh sim-
plification, subdivision, smoothing, and progressive meshalgorithms. But the main
functionalities of the system are computing the homology group, cohomology group,
harmonic 1-forms, holomorphic 1-forms, global conformal parameterizations, man-
ifold spline construction, and surface evaluation.

Table 6.2 summarizes our experiment results. Figure 8 illustrates the process of our
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manifold spline by constructing a manifold spline on a genus2 surface. Figure 11
shows several examples of manifold splines of various topological type. The results
prove both the theoretic rigor and feasibility in practice.

7 Conclusion

We have proved in this paper that defining triangularB-splines over arbitrary man-
ifolds is equivalent to the existence of an affine atlas of theunderlying manifold.
In addition, we have articulated a systematic way to construct an affine atlas for
general manifolds and developed a suite of algorithms that enable the definition
and computation of triangularB-splines over any manifold domain (consisting of
general meshes). Our theoretical and algorithmic contribution to the field of solid
and physical modeling is a general framework that extends spline surfaces with
planar domains to manifold splines, which are piecewise polynomials defined over
arbitrary manifold. Because of the intrinsic topological obstruction for any man-
ifold, singular points are unavoidable. We utilize the concept and computational
techniques of Riemann surface theory (especially the holomorphic 1-forms) to
obtain the affine atlas and minimize the number of singular points for our mani-
fold splines simultaneously. The prototype software and experimental results have
demonstrated the great potential of our manifold splines inshape modeling, geo-
metric design, graphics, and engineering applications.

At present, we are planning to pursue several directions as future work. First, the
behavior of singular points is not yet known. We shall seek new mathematical tools
for the rigorous analysis of singular points. Second, we shall investigate other new
spline schemes and explore their manifold generalizations.
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Ehresmann (1958-1960), (7), 1959.

[30] J.W. Milnor. On the existence of a connection with curvature zero. Comm.
Math. Helv., 32:215–223, 1958.

[31] E. Catmull and J. Clark. Recursively generatedB-spline surfaces on arbitrary
topological meshes.Computer-Aided Design, 10(6):350–355, 1978.

[32] D. Doo and M. Sabin. Behaviour of recursive division surfaces near extraor-
dinary points.Computer-Aided Design, 10(6):356–360, 1978.

[33] C. Loop. Smooth subdivision surfaces based on triangles. Master’s thesis,
University of Utah, Dept. of Mathematics, 1987.

[34] Miao Jin, Yalin Wang, Shing-Tung Yau, and Xianfeng Gu. Optimal global
conformal surface parameterization. InProceedings of IEEE Visualization,
pages 267–274, 2004.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 9. Genus zero manifold spline: (a) & (b) show the topological modification by intro-
ducing 3 boundaries marked as red curves. The genus of the double covered surface is two.
(c) shows the holomorphic 1-formω. By projecting the holomorphic 1-form of the double
covered mesh to the original surface, there is only one singular point, which is on the top
of the bunny head. (d) shows the domain manifoldM; (e)&(f) show the front view of poly-
nomial surfaceF and control netC; (g)&(h) show the back view of polynomial surfaceF
and control netC.

Appendix

We present the detailed proof of our major theoretic resultsin the Appendix.
Lemma 1.1. Assume there are two spline surface patches of Ck continuity, k> 0,

S= (U,C,F) andS̃= (Ũ ,C̃, F̃).

The parametric transformation

φ : U → Ũ

is invertible. Suppose S, S̃ share the same knot configuration, namely, the triangu-
lation T̃ is induced fromT by φ, and the knots̃t I

i, j are induced from tIi, j by φ

t̃ I
i, j = φ(t I

i, j), (7)

the control points with corresponding knots coincidecI
β = c̃I

β, then

(1) if φ is affine, then F= F̃ ◦φ holds for arbitrary control nets.
(2) if F = F̃ ◦φ holds for arbitrary control nets, thenφ is affine.
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In other words, the following diagram commutes for arbitrary control nets

U ⊂ R
2 Ũ ⊂ R

2

F(U) ⊂ R
3 F̃(Ũ) ⊂ R

3

-
φ

?

F

?

F̃

-

id

(8)

if and only ifφ is affine.

Proof. The sufficient condition part is obvious, because the evaluation of the splines
only involves barycentric coordinates. Affine transformations preserve the barycen-
tric coordinates; therefore the diagram is commutative.

The proof for the necessary condition requires the completeness of the spline scheme
3. We set all control points ofC to be zero except the one corresponding to knots
XI

β. Correspondingly, we set all control points ofC̃ to be zero except one corre-

sponding to knots̃XI
β. Then we get the basis functionsF(u) = NI

β(u), F̃ = ÑI
β(ũ),

by F = F̃ ◦φ, we get
NI

β(u) = ÑI
β(ũ).

Therefore, all basis functions ofS equal the corresponding basis functions ofS̃.
Supposeu = (u1,u2), thenu1 is a polynomial of(u1,u2). By completeness of the
spline scheme,u1 can be represented as the linear combination ofNI

β(u), therefore

it can be represented as the linear combination ofÑI
β(ũ). As a result,u1 andu2 can

be represented as piecewise polynomials ofũ of Ck continuity. BecauseSandS̃are
symmetric,ũ are also piecewise polynomials ofu of Ck continuity. Therefore,u
andũ can linearly represent each other piecewisely withCk continuity. So, because
the parameter transitionφ is piecewise linear andCk continuous,φ must be a global
linear map over all pieces. In other words,φ is affine.

Theorem 1. The sufficient and necessary condition for a manifold M to admit man-
ifold spline is that M is an affine manifold.

Proof. Consider two intersecting local charts(Uα,φα) and(Uβ,φβ), where the man-
ifold spline F restricted on them areFα and Fβ, respectively. We select a sub-
set of control pointsC whose knots are contained inUα

⋂
Uβ. The spline patches

(φα(Uα
⋂

Uβ),C,Fα) and (φβ(Uα
⋂

Uβ),C,Fβ) satisfy the condition in Lemma 1,
therefore, the chart transition functionφαβ must be affine.

Theorem 2 (Benźecri). Let S be a closed two dimensional affine manifold, then
χ(S) = 0.

The proof for this classical result can be found in Benzécri’s work [29, 35]. Milnor
used vector bundle theories to prove it in [30, 36].
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Fig. 10. Open surfaces are affine manifolds: An genus 2 surfaceM with one boundary in
(a) is isomorphic to an octagon with a hole in (b), then the octagon is immersed inR

2 as the
ribbon figure in (c). The colored disks indicate the open setsUα of M. There is another open
setU , which coversM \

⋃
Uα. U andUα are mapped toR2 as shown in (d). All transitions

are rotation and translation. This illustrates the affine atlas for the open surface ofM.
Theorem 3 (Open Surfaces are Affine Manifold).Let M be an orientable open
2-manifold, then M is an affine manifold.

Proof. Figure 10 illustrates the proof by constructing an affine atlas for the open
surfaceM in (a). One boundary may be a closed curve or a single point as shown in
(a) by a dark spot. We deform (a) continuously to generate (b)by gradually enlarg-
ing the hole. (b) is homeomorphic to the ribbon figure in (c), which is immersed in
R

2. Then we cut each annulus of (c) to get a fundamental domain asshown in (d).

The colored disksUα are open sets ofM, another open setU can be defined to cover
M \

⋃
Uα. (d) shows the wayU andUα’s are mapped toR2. It is obvious that all

chart transition functions are combinations of translations and rotations.

For surfaces with multiple boundaries, we can fill all of the boundaries with disks
except one, and the proof is similar.

Theorem 4 (Affine Atlas Induced from Conformal Structure). Given a closed
genus g surface M, a holomorphic 1-formω. The zero set ofω is Z, then the size of
Z is no more than2g−2 and there exists an affine atlas on M\Z deduced byω.

Uα Uβ

p

q

pα pβ

Proof. The existence and the number of zero pointsZ of the holomorphic 1-form
ω can be proved using Riemann-Roch theorem [25] or Poicaré-Hopf theorem. Be-
causeω = ωx + iωy is holomorphic,ωx is a harmonic 1-form. Since we treatωx as
a vector field, the singularities can only have negative indices, and the summation
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of their indices equals the Euler number 2−2g. Hence, the geometric number of
zero points is no more than 2g−2.

Suppose an open covering ofM \Z is a collection of open sets{U0,U1, · · · ,}. We
require that if two open setsUα,Uβ intersect each other,Uα

⋂
Uβ 6= φ, then their

unionUα
⋃

Uβ is a topological disk (see Figure 7). If this requirement cannot be
satisfied, we can subdivide the open sets until the requirement is met. Then we
select one point in eachUα, denoted aspα ∈ Uα, for any pointp∈ Uα, we define
the coordinate ofp as

φα(p) =
∫ p

pα
ω,

where the path frompα to p is arbitrarily chosen. Then we claimA = {(Uα,φα)}
is an affine atlas forM \Z.

We want to show for anyp∈Uα
⋂

Uβ, φβ(p) = φα(p)+const, namely, the coordi-
nate transition functionφαβ : R

2 → R
2 is a translation. Supposep,q∈Uα

⋂
Uβ as

shown in the above figure,

(φβ(p)−φα(p))− (φβ(q)−φα(q)) =
∫ p

pβ

ω−
∫ p

pα
ω−

∫ q

pβ

ω+
∫ q

pα
ω, (9)

BecauseUα
⋃

Uβ is a topological disk, the closed curver = pβ → p→ pα → q→ pβ
is homotopic to zero. Because the curlex of bothωx andωy are zeros, the above
integration is zero,

∮

r ω = 0. Thereforeφβ(p)− φα(p) ≡ const for arbitrary p ∈
Uα

⋂
Uβ, the transition functionφαβ is a translation.
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(a) (b) (c) (d) (e)

Fig. 11. Manifold spline examples: (a) Holomorphic 1-formω which induces the affine
atlasA ; (b) Parametric domain manifoldM with singular pointsZ marked; (c) Polynomial
splineF defined on the manifoldM in (a); (d) The red curves on splineF correspond to the
edges in the domain manifoldM; (e) SplineF covered by control netC.
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