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Abstract

Constructing splines whose parametric domain is an arbitrary manifold aectiedly
computing such splines in real-world applications are of fundamental imperiarsolid

and shape modeling, geometric design, graphics, etc. This papertsragmmeral theoret-
ical and computational framework, in which spline surfaces defined gamar domains

can be systematically extended to manifold domains with arbitrary topology witlitlor w
out boundaries. We study the affine structure of domain manifolds in depthrave that

the existence of manifold splines is equivalent to the existence of a maniédliie atlas.
Based on our theoretical breakthrough, we also develop a set dicatadgorithms to gen-
eralize triangulaB-spline surfaces from planar domains to manifold domains. We choose
triangularB-splines mainly because of its generality and many of its attractive properties.
As a result, our new spline surface defined over any manifold is a pieegaignomial
surface with high parametric continuity without the need for any patchingoardm-

ming operations. Through our experiments, we hope to demonstrate thabwelrmani-

fold splines are both powerful and efficient in modeling arbitrarily compldaeometry

and representing continuously-varying physical quantities definedstwages of arbitrary
topology.
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1 Introduction and Motivation

Real-world volumetric objects are oftentimes of complexrgetsy and arbitrary
topology. One fundamental goal of solid and physical maagis to seek accurate
and effective techniques for the compact representatiemaioth shapes with ap-
plications in both scientific research and industrial pcactTowards this goal, sub-
division surfaces have been extensively investigatedhduhe recent past. Despite
their modeling advantages for arbitrarily complicatedrgetry and topology, sub-
division surfaces have two drawbacks: (1) accurate sudeakiation is frequently
conducted via explicit, recursive subdivision since mabiivision schemes (espe-
cially those interpolatory schemes) do not allow closedrfanalytic formulation
for their basis functions; (2) extraordinary points dependhe connectivity of the
control mesh and need special care, as their behaviors apokisness properties
differ significantly from other regular regions nearby. 3paper aims to tackle the
aforementioned technical challenges associated withlpppubdivision surfaces
by articulating the new theory for manifold splines and depigg novel algorithms
for constructing such splines in practice.

Aside from subdivision surfaces, this research is equalbyivated by the rigor-
ous mathematics of spline theory. Spline surfaces have detmaded their signifi-
cance in shape modeling, finite element analysis, scieotficputation, visualiza-
tion, manufacturing, etc. Most popular examples inclué@ziBr surfaces, tensor-
productB-spline surfaces, and triangulBsspline surfaces. Essentially, all of them
are piecewise polynomials defined over planar parametnuoailts for efficient
evaluation. While these spline surfaces are ideal for modadpen surfaces with
curved boundaries, they are cumbersome to represent sswdloes with arbitrar-
ily complex topology. The feasible way is to trim paramesytine surfaces defined
over open planar domains, stitch them along their timmeggsavith care, and en-
force the continuity requirements of certain degree actosis shared boundaries
as shown in [1]. It is challenging to maintain high order ¢ouity across patches
in both theory and practice. Therefore, there is a pressaeg to introduce the new
spline concept and develop the new spline theory that defihenpmial splines
over arbitrary manifold without trimming and stitching epgons.

In essence, constructing splines defined over arbitraryfolds is of fundamental
significance in geometric design, and interactive graphitss paper presents a
general theoretical framework that can systematicallyegaize spline surfaces
with planar domains to manifold domains with arbitrary tmgy with or without
boundaries. The specifeontributions of this paper include:

e While motivated by the above observations, it also signitigamdvances the
state-of-the-art of both subdivision surfaces and splneaces.

e This paper gives a theoretical proof for the existence ofifalhsplines, i.e., it
is equivalent to the existence of the affine structure of tideulying manifold



serving as a parametric domain.

e Classical characteristic class theory has concluded thelosed surface admits
an affine atlas except tori, so it provides evidence that xistence of extraordi-
nary points depends only on topology.

¢ Besides the theoretical advances, this paper also deviseisad practical al-
gorithms that enable the effective modeling of triangeaspline surfaces over
manifold domains. The resulting surface is a piecewisenmotyial surface with
high parametric continuity without any patching or trimmioperations.

¢ Due to the intrinsic topological obstructions associatdth womain manifolds,
the manifold triangulaB-spline still admits singular points (which can not be
evaluated by the new spline scheme). However, our modelggyithms are
able to construct the manifold spline based on triangBlaplines with the min-
imum number of singular points. This lower bound resultefi®Riemann surface
theory (e.g., conformal structure).

In this paper, we choose to work on trianguBasplines and their manifold gener-
alization, mainly because triangulBssplines have many important properties:

e TriangularB-spline surfaces are defined over arbitrary planar triaatgars, and
they generalize tensor-produgtsplines. Unlike tensor-produBtsplines, it has
no strict requirements for connectivity of the underlyingsh domain.

e Local support, parametric affine invariance, the completsrof basis functions,
and polynomial reproduction are attractive propertiestf@angularB-splines,
and they still hold when generalizing to manifold splines.

¢ TriangularB-splines exhibit the maximal order of continuity with thevest pos-
sible degree of their basis functions. For example, theyeaelC? continuity
when using only cubic polynomials. Furthermore, spatiallyying smoothness
requirements and sharp features can easily be achievedffeigedt knot place-
ments in the parametric domain.

With our new results shown in this paper, it is rather strd@iward to generalize
other popular splines to their manifold counterparts byptidg our techniques
on triangularB-splines. It may be noted that the new trianguasplines defined
over arbitrary manifolds may still have special, singulaings which must require
separate, additional care (Note that singular points farifolal splines differ from
extraordinary points of subdivision surfaces, where theexevalence is the only
criterion). The intrinsic reason for the existence of siagypoints (when using
manifold splines) is due to the topological obstructiontad tinderlying domain.
In principle, an arbitrary domain can not offer a speciastuch that all transition
functions are affine. In practice, however, by removing adimumber of points,
the domain will then admit the affine atlas and subsequeflidywahe meaningful
generalization of triangulaB-splines to arbitrary manifolds.

After the problem statement and its motivation, the remairaf this paper is or-
ganized as follows. Section 2 briefly reviews the prior w@&ction 3 presents the



necessary mathematical tools for manifold splines. Seetidocuments the theo-
retical foundation of our novel manifold splines. Sectioexplains the algorithmic
details for constructing triangul&@-splines over arbitrary manifold. Section 6 dis-
cusses the implementation issues and presents our expéaimesults. Finally, we
conclude the paper and briefly discuss the future researshadtion 7.

2 Prior Work

This section briefly surveys some related work in triangBtaplines and surfaces
defined on manifolds.

2.1 Triangular B-splines

The theoretical foundation of triangulBrsplines lies in the multivariatB-spline,

or simplex spline, introduced by de Boor [2]. It has receivattmattention since

its inception. Dahmen et al. [3] propose triangwasplines from the point of view

of blossoming, which offers a general scheme for constgaicollection of mul-
tivariateB-splines (withn — 1 continuous derivatives) whose linear span comprises
all polynomials of degree at most Fong and Seidel [4] present the first prototype
implementation of triangulaB-splines and show several useful properties, such
as affine invariance, convex hull, locality, and smoothn€ssiner and Seidel [5]
show the practical feasibility of multivariat®-spline algorithms in graphics and
shape design. Pfeifle and Seidel [6] demonstrate the fitfiagtigangularB-spline
surface to scattered functional data through the use of $epmres and optimiza-
tion techniques. Franssen et al. [7] propose an efficietiairan algorithm, which
works for triangulamB-spline surfaces of arbitrary degree. Neamtu [8] describes
new paradigm of bivariate simplex splines based on the higbgree Delaunay
configurations. He et al. [9] present an efficient method totfeangularB-spline
surfaces of arbitrary topology.

2.2 Spherical splines

Traditional B-splines are defined on planar domains. Many researchees érav
plored the feasible ways to generalize splines to be definagploere and manifolds
with arbitrary topology. We only document a few of them in thieerest of space.

Defining splines over a sphere has been studied during thelpeade. Alfeld et
al. [10] present spherical barycentric coordinates whaturally lead to the theory
of Spherical Bernstein-&ier polynomials (SBB). They show fitting scattered data



on sphere-like surfaces with SBB in [11]. Pfeifle and Seid@] [dresent scalar
spherical triangular splines and demonstrate the use eétbplines for approxi-
mating spherical scattered data. Neamtu [13] construatsieibnal space of ho-
mogeneous simplex splines and shows that restricting theogeneous splines to
a sphere gives rise to the space of spherical simplex spliest al. [14] present
rational spherical spline for genus zero shape modeling.

2.3 Surfaces Defined on Manifolds

There are some related work on defining functions on manitidh as [15, 16,
17, 18, 19]. These methods share similar construction proes which can be
summarized as follows:

(1) Find an atlaqU;, @} to cover the domain manifoli, with transition func-
tions@j = ; o(g*l. All transition functions are required to be smooth, espe-
cially, analytical functions are used in [19].

(2) Define functional basis on each chért@(Uj) — R

(3) For each poinp € M, normalize these functions and define the basis functions

B; as (p)
o Ti(p
B'(p)_Zj fi(p)

(4) Define the functions &s(p) = §;CiBj(p) whereC; are the control points.

It is obvious that, even wheB; is a polynomial on chartU;, @), B; is nota poly-
nomial on a different overlapping chaftt;,¢;), because in genergi; is NOT
algebraic andpj o Bj is not a polynomial.

Our work is completely different from the above work in th&j: The transition
functions of our method must be affine. Therefore, the reguént of our method
is much stronger. That is why topological obstruction plagsmportant role in our
construction. 2) Our method produces the polynomial ooreti polynomials. On
any chart, the basis functions are always polynomials avnals, and represented
asB-splines or rationaB-splines.

A different approach using the concept of orbifold is intiodd in [20]. Suppos8

is the domain manifold with genugand without boundaries. Then, the universal
covering spac& can be embedded in either a sphere, a plane or hyperbolie.spac
If the transformation group! of S maps a fundamental domain to a fundamental
domain, then the spline surface is defined®with the unique requirement that
the spline is invariant unddfi. They embed the sphere and the hyperbolic space
in R2 and define the spline dR3 directly. Our method is fundamentally different.
First, we define the splines on the atlasSyihot on the universal covering space
S Second, each local parameter is only 2D instead of 3D. Third construction

is intrinsic to the surfac&, namely, we do not need any embedding information.



Fourth, their method can also be considered as buildinglas, athere each chart
is a subset ifR3 and the transition functions are non-linear. In contrast,method
constructs an atlas where each chart is an open &%tamd all transition functions
are affine.

In summary, we believe manifold splines have two fundamenitria:

(1) Manifold: The splines are defined on the domain manifo&imnely, the eval-
uation of the splines ismdependentof the choice of the chart.

(2) Algebraic: locally, on any chart, the splines should lleex polynomials or
rational polynomials.

All previous manifold constructions focus on the first pdiat can not satisfy the
second one. Most spline schemes emphasize the algebraict dspt only are de-
fined on planar domains. Our work is the first one that sati&itel criteria, and
discovers the intrinsic relation between manifold spliaed affine structures.

3 Theoretical Background

In order to define splines on manifolds, we must fully underdtthe intrinsic prop-
erties of splines and the special structures inherent taldimeain manifold. This
section presents the relevant theoretical tools.

Essentially, splines have local support, so we shall defifirespatches locally on
the manifold and glue the locally-defined spline patcheote@cthe entire domain
manifold. Furthermore, since splines are invariant unaeametric affine transfor-
mations, we seek to glue the patches using affine transitioatibns. Therefore,
if the domain surface admits an atlas on which all transifiorctions are affine,
then we can glue the patches coherently. However, the agistef such an atlas is
solely determined by the topology. In principle, we can glue patches to cover
the entire surface except a finite number of points, whichsargular points and
can not be evaluated by the global splines on the manifoldsé&lsingular points
represent the topological obstruction for the existendbefffine atlas.

3.1 Spline Theory and Properties

The most popular spline schemes, such as tensor prod&mi¢Bsurfaces, tensor
productB-spline surfaces, triangularéier surfaces an@-patches, can be unified
as the different variations of polar forms [21, 22, 23]. Welkhriefly explain the
concept of polar forms, and then, we concentratdBguatches and triangulds-
spline surfaces, because of their flexibility and generalit



3.1.1 Polar Form

In essence, a polar form is a multivariate polynomial thayimmetric and multi-
affine.

Definition 1 (Affine Map). A map f: R? — R" is affine, if and only if it pre-
serves affine combinations, i.e., if and only(§ |2 aju;) = 3"y i f (uj) whenever
Yol =1,

Definition 2 (Symmetric, Multi-Affine). Let F be an n-variable map. F is sym-
metric if and only

F(ug,uz, - ,Un) = F (Un1),Un2), 5 Urgn))

for all permutationsite 5 ,. The map F is multi-affine if and only if F is affine in
each argument if the others are held fixed.

The well-known blossoming principle indicates that anyypoimial is equivalent

to its polar form.

Proposition 3. Polynomials F: R? — R! of degree n, and a symmetric multi-affine
map f: (R?)" — R' are equivalent. Given a map of either type, unique map of the
other type exists that satisfies the identityuf-= f(u,---,u). The map f is called

n
the multi-affine polar form or blossom of F.

3.1.2 B-patches and Triangular B-splines

TriangularB-spline surfaces can be defined on planar domains with anpitri-
angulations. In particular regions, trianguBssplines areB-patches. For the con-
venience, we introduce notations which are similar to thersg@loyed in [3, 24].
Essentially, we formulat@-patches through the use of a polar form. Pét:=
[th,t},t}] be the triangle “I” of our triangulatiomr of R2. For each vertex! we
assign a list ok+ 1 distinct additional knots

ti={tio.tl 1, .t} @)

The rule proposed in [3] consists of producing a sub’éeWhereB = (Bo, B1,B2)
are three non negative integers, as follows:

. |4l | |l | |l |

VB — {t0,07t071’ e 7t07[307t170’t1,17 . e 7t17B17t270’t2717 . e ’t21B2}.

If we want to define a degrdesimplex splines, we must impose that
Bl :=Bo+Pr+PB2=k

VLI’» is the set of all knots associated with one vertexin



We further definé, := [ty 5 ,t) 5 ,th 5 ] @nd

Xy 1= (tg 0, thgy_1:t10 - > thp_1:thor- s thp, 1) € (R?)IBI. (2)
X3 is the set of knots associated with one control péit;).

If A'B is non-degenerate, it is possible to define the barycerddminates ofi € R?
with respect to this triangle:

2 2
u= i;)‘;&i(u)t;ﬁw and i;)\lﬁ’i(u) =1 (3)

The generalized algorithm computégu) starting from the valuefs(xé), IB| = k.
Those values are called tpelesof F. Let us define

XI|3UV = X1|3 X (M) e (R?)BH+Y

\

and assigrcg(u) = f(XéuV) with |B| = k— v, the algorithm uses thie-affinity of
f stating the recurrence relation:

Ca(u) = f(Xp), Bl =k

cLiu %)\ CYy(u (4)

wheree denotes the canonical basis vector. TRén) = C§(u). If the basis func-
tion for the polef (X3) is denoted a8j(-), then we obtain

— 3 f(X})Bh(u)
B;—k XB P

3.1.3 Triangular B-spline Properties

TriangularB-splines have the following valuable properties which argcal for
geometric and solid modeling:

(1) Local support.The spline surface has local support. In order to evaluae th
imageF (u) of a pointu € A', we only need control poim% (associated with
knot set\/pf on triangled), where triangle) belongs to the 1-ring neighborhood
of trianglel.

(2) Convex hull.The polynomial surface is completely inside the convex btll
the control points.



(3) CompletenessThe B-spline basis is complete, namely, a set of degrd®
spline basis can represent any polynomial with degree ratgrénam via a
linear combination.

(4) Parametric affine invariancelThe choice of parameter is not unique: if one
transforms the parameter affinely and the correspondintgkricontrol points
are transformed accordingly, then the polynomial surfaoeains unchanged
(see Figure 1).

(5) Affine invariancelf the control net is transformed affinely, the polynomial
surface will be consistently transformed affinely.

Note that parametric affine invariance is different fromradfinvariance. The dia-
grams below illustrate the radical difference.

WV e G —— o)

T

F Foo F @oF

(a) Parametric affine invariance (b) Affine invariance

The left one above represents parametric affine invariavizieh refers to the prop-
erty that, under a transformation between parameter daythi@ shape of the poly-
nomial surface remains the same; the right one above imdicHfine invariance,
which refers to the property that under a transformatiorhefdontrol points, the
polynomial surface will change accordingly.

(a) Original triangulaB-spline. (b) Transformed triangul&spline.

Fig. 1. Parametric Affine Invariance: (a) and (b) are two triangBlaplines sharing the
same control net, the two parametric domains differ only by an affine tnanafmn. The
same control nets result in the same polynomial surfaces shown in (apan@pline
model courtesy of M. Franssen.)

The aforementioned properties are extremely importangéometric and solid
modeling applications. For example, the local support alibw designers to ad-
just the surface by moving nearby control points withougetiihg the global shape.
Therefore, it is crucial to preserve these properties wheme&neralize the planar
domainB-splines to manifoldB-splines. We will prove that such a generalization



does exist, and these desirable properties can be pres&hedeneralization com-
pletely depends on the so-called affine structure of the domanifold. The lo-

cal support and parametric affine invariance are cruciatémstructing manifold
splines.

Fig. 2. Manifold: The manifold is covered by a set of chadllg, @), whereg, : Uy — R?.
If two charts(Uq, @) and(Ug, @) overlap, the transition functiogy,g : R? — R? is defined

as@yp = Ps o P .

3.2 Manifold and Geometric Structures

Our manifold splines are defined over manifolds with arlytt@pology with or
without boundaries. An dimensional manifold can be treated as a set of open sets
in R" glued coherently (see Fig 2).

Definition 4 (Manifold). A manifold of dimension n is a connected Hausdorfff
space M for which every point has a neighborhood U that is hanuephic to an
open subset V d@&". Such a homeomorphism

¢o:U—-V

is called a coordinate chart. Aatlasis a family of charts (Uq, @) } for which Uy
constitute an open covering of M.

Transition function plays a vital role in the theory of maidf splines.
Definition 5 (Transition function). Suppos€(Ua, @)} and {(Ug, @3)} are two
overlapping charts on a manifold M,d1Ug # 0, the chart transition is

Qo - Pa(Ua NUg) — @a(Ug NUR)

Transition functions satisfy the cocycle condition (seg )

Pup © Py = Gay, VX € Ugg MUpy

Atlas can be classified by transition functions.

10
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Fig. 3. Cocycle condition for transition functions.

Table 1
General geometric structures.
Structure | X G Surfaces
Topology | R? Homeomorphisms Surfaces of arbitrary topology
Differential | R? Diffeomorphisms Surfaces of arbitrary topology
Spherical | S? Rotation Closed, genus zero surfaces
Euclidean | E? Rigid motion Closed, genus one surfaces
Hyperbolic | H? Mobius Transformation High genus surfaces
Affine R? Affine transformation Zero Euler class surfaces
Conformal | C Holomorphic functions | Oriented surfaces of arbitrary topology
Projective | RP? | Projective Transformation Oriented surfaces of arbitrary topology

Definition 6 (Geometric Structure). Suppose M is a manifold, X is a topological
space, G is a transformation group on X(@, X) atlasis an atlas{ (Uq, @y )}, such
that

(1) Local coordinates are in X,

Qg - Ug — X.

(2) Transition functions are in group G,

(PO(BEG.

Two(G, X) atlas are equivalent, if their union is still@, X) atlas. Each equivalent
class of(G, X) atlas is a(G, X) structure.

Genus zero closed surfaces have spherical structure. Geeusurfaces have Eu-
clidean structure. Surfaces with high genus have hyperistiucture. Surfaces
have general geometric structures, such as conformaltsteyqrojective struc-
ture. Table 3.2 illustrates the common geometric strusture

11
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(a) Spherical structure (b) Euclidean structure

Fig. 4. Geometric structures. (a) Spherical structdris:the unit spherg?, G is the rotation
group; (b) Euclidean structur¥: is the Euclidean planR?, G is the translation group; (c)
Hyperbolic structureX is the hyperbolic spadé?, G is the Mobius transformation group.

3.3 Affine Structure

An affine manifold is a manifold with special transition fuions.
Definition 7. A 2 dimensional manifold M with an atla§Uq, @)}, if all chart
transition functions

Gop = 0Pt @ (Ua[Up) — @s(Ua[Up)
are affine, then the atlas is called an affine atlas, M is calladaffine manifold.

Two affine atlases arequivalentf their union is still an affine atlas. All the equiv-
alent affine atlases form affine structureof the manifold.

For closed surfaces, only genus-one surfaces have affunetgtes (see Figure 2),
but all surfaces with boundaries have affine structurest,Nieorder to construct
affine atlas for general surfaces in practice, we need odtiapretical tools which
are induced from theonformal structuref the domain manifold.

3.4 Conformal Structure

Similar to affine structure, conformal structure is also @minsic structure of the
surface. A conformal atlas is an atlas such that all tramsftinctions are conformal
(analytic). Two conformal atlases are compatible if theiion is still a conformal
atlas. All compatible conformal atlases form conformalsture. All surfaces have
conformal structure and are called Riemann surfaces [25]fddmal structure is
closely related to affine structure. In particular, an afatias can be computed by
using special differential complex forms defined on the oomfl atlas.

3.4.1 Riemann Surface

The Riemann surface is a surface with a conformal atlas, shathatl transition
functions are analytic.

12



Definition 8 (Analytic Function). A function f: C — C, (x,y) — (u,V) is analytic,
if it satisfies the following Riemann-Cauchy equation

ou_ovou_ ov
ox ody'dy  ox

Definition 9 (Riemann Surface). A Riemann surface M is Z2manifold with an
atlas 2 = {(Ua, @) }, such that all transition functiong,g : C — C are analytic.
All compatible affine atlas forms a conformal structure of M.

Analytic functions areconformal which intuitively meansangle preservinglt is
well known that all oriented metric 2 manifolds are Riemanriates and have a
unique conformal structure, such that on each cbartp,, the first fundamental
form can be represented ds* = A(u,v)(dw? + dv?). Gu and Yau [26, 27] intro-
duce practical algorithms to compute this conformal strrecbn general triangular
meshes.

3.4.2 Holomorphic 1-form

In order to find an affine atlas, we need special differentiaits defined on the
conformal structure.

Definition 10 (Holomorphic 1-form). Given a Riemann surface M with a confor-
mal structurea, a holomorphic 1-fornw is a complex differential form, such that
on each local chartU, ) € 4,

w= f(z)dz (5)

where f(z) is an analytic function, z u+iv is the local parameter in the complex
form.

Genus zero surface has no holomorphic 1-forms. The holdmorp-forms of
closed genug surface form ag complex dimensional linear space, denoted as
Q(M). A conformal atlas can be constructed by using a basi$(M). This is the
method derived in [26, 27]. Considering its geometric induit a holomorphic 1-
form can be visualized as two vector fielas= (wy, wy), such that the curlex of
wx andwy equals zero. Furthermore, one can rotat@bout the normal by a right
angle to arrive atoy,

Ox wx=0,0xwy=0,0y =nx wx.

By integrating a holomorphic 1-form, an affine atlas can béyeasnstructed. Fig-
ure 11(a), 8(a) illustrate holomorphic 1-forms on surfaddee texture coordinates
are obtained by integrating the 1-form on the surface (ségffi2 the details).

13



3.4.3 Singular Points

According to Poicag-Hopf theorem, any vector field on a surface with nonzero Eu-
ler number must have singularities where the vector fielets.zZSuch singularities

of w= (wy, wy) are calledzero points

Definition 11 (Zero Point). Given a Riemann surface M with a conformal struc-
ture 4, a holomorphic one-formw, w = f(z)dz, where {z) is an analytic function
and z= u+iv is the local parameter. If at point p,(f) equals zero, p is a zero
point of w.

In fact, it can be proven that zero points do not depend on lib&e of the local
chart at all. For a Riemann surfabé with genusg, a holomorphic 1-formw has
29— 2 zero points in principle. Zero points are singular poims dur manifold
splines (to be constructed later). Figures 8(a) demomstthe zero points (singular
points) on the 1-form. The centers of regions with octageaglae zero points.

Fig. 5. All oriented metric surfaces are Riemann surfaces which admibwuoaf structure.

4 Manifold Spline Theory

In this section, we will systematically define manifold sigié using our theoreti-
cal results on affine structure and trianguBasplines and show their existence is
equivalent to that of affine structure. We first discuss thsterce of affine struc-
ture for general manifolds, and then we compute the affinectre through the
use of conformal structure for any manifold. For the comesisy of our manifold
spline theory, we shall utilize the parametric affine ingade and polynomial re-
production properties of general spline schemes (triardgisplines in particular
for this paper).

4.1 Definition and Concept

A manifold spline is geometrically constructed by gluindirs@ patches in a co-
herent way, such that the patches cover the entire manifblel knots and control
points are also defined consistently across the patcheshargltface evaluation
is independent of the choice of chart. First of all, we deflmelbcal spline patch.

14



After that, we define a global manifold spline which can beaseposed into a
collection of local spline patches.

Definition 12 (Spline Surface Patch).A degree k spline surface patch is a triple
S= (U,C,F), where UcC R? is a planar simply-connected parametric domain.
F :U — R3is a piecewise polynomial surface and C is the set of controitpp
C = {cp, X3 € (R?)IPI,|B| = k}. F can be evaluated from C by polar form.
Definition 13 (Manifold Spline). A manifold spline of degree k is a trip{#,C, F),
where M is the domain manifold with an atlas= {(Uq,@q)}. Fisamap F- M —

RR3 representing the entire spline surface. C is the controhpmoset, each control
pointc'B Is associated with a set of knoté Yhich are defined on the domain man-
ifold M directly,

Ci={ch, X € M, B =k}
such that

(1) For each char{Uq, @), the restriction of F on | is denoted asg= F o g 1,
a subset of control pointsy@an be selected from C, such thieg (Uq ), Cqy, Fa)
form a spline patch of degree k, wherg & {cj, ¢u(Xy) € (R?)Pl, B = k}.

(2) The evaluation of F is independent of the choice of thallokart, namely, if
Uq intersects |, then i = Fg o @y, Wheregyg is the chart transition function.

The technical essence of the above definition is to repladareapdomain by the
atlas of the domain manifold, and the surface evaluatiorhefspline patches is
independent of the choice of charts (see Figure 6). Aftefahmal definition, we
use one simple example to further illustrate the concepuipfmnifold splines (see
Figure 7).

One Dimensional Example Here the domain manifold is a unit circ&. There
aren distinct pointsto,ts,--- ,tn_1 distributed on the circle in a counterclockwise
way. All the summation and subtraction on indices are maduld he intervals
between points are arbitrary. The control net is a plananm-the control points
are denoted as,c1,---,Cy_1 also in a counterclockwise way, and the knotsdor
areti_o,ti_1,ti,tiy1,ti40.

The affine atlas o' is constructed in the following way: the arc segméhnt=
(ti_2—&,ti_1,t,t 1.t 24+€),€ € RT is mapped to an interval iR by ¢ : St — R?,
such that

t
cg(ti):a,cg(t):aer/ dsac®,bcR". (6)
ti

wherea, b are arbitrarily chosen. The union of all local chaft, @) form an
affine atlasa = {(U;j,@)}. Note that by choosing differera, b, there might be
infinite local charts im .

The control net corresponding to local chéd;, @) is the line segment€; =

{Ci—2,Ci_1,Ci,Ci+1,Cit+2}. The piecewise polynomial curve is formed hypieces
of polynomials, thé-th pieceF, : [tj,ti, 1] — R? is evaluated oriU;, @) with control
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Fig. 6. Key elements of manifold splines: The parametric donviis a triangular mesh
with arbitrary topology as shown at the bottom. The polynomial spline suFaseshown

at the top. Two overlapping spline patch@s (Uqa),Ca, Fa) and (@s(Ug),Cg, Fg) are mag-
nified and highlighted in the middle. On each parameter ¢hhriqy),(Ug, @), the surface

is a triangulaB-spline surface. For the overlapping part, its two planar domains diffgr on
by an affine transformatiog,g. The zero point neighbor i8.

polygonC; using cubidB-spline.

Then we define the cubiB-spline curve on the unit circle consistently. 1tG8
continuous everywhere. Thspline patches arggp (U;),Ci,F}.

The above example can be trivially extended to construcbadimensional surface
in a similar way. The key step is to find an affine atlas for theadim manifold. The

next section will discuss the existence of such an atlasdoegal 2-manifolds in
detail.

4.2 Equivalence to Affine Atlas

The central issue of constructing manifold splines is that atlas must satisfy
some special properties in order to meet all the requiresnfemtthe evaluation
independence of chart selection. We will show that for allegdine patch, the
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Fig. 7. Manifold splines or$': (a) The domain manifold is a unit circE* with n distinct
knotsto, . ..,th—1; (b) Thei-th spline patchJ; = (t_2—¢,...,ti;2+€); (c) Thei+ 1-th spline
patchU;1 = (ti_1—¢,...,ti;3+¢€).

only admissible parameterizations differ by an affine tfarmsation. This requires
that all the chart transition functions are affine.

4.2.1 Admissible Parameterizations

From the evaluation process in (4), it is obvious that they emlormation used

there are barycentric coordinates (3) of the parameter nepect to the knots of
the control points. If we change the parameter by an affimsfoamation, the eval-
uation is invariant and the final shape of the spline surfatienat be modified. On

the other hand, an affine transformation is the only paraowetnsformation that
will keep the consistency between the spline surface angartameters. In other
words, affine transformations are the only admissible patamtransformations
for a spline patch. Note that we present four major theoresrsua theoretical re-
sults in this section. However, in the interest of technilcal, we defer their proof
to the appendix at the end of this paper.

Theorem 1. The sufficient and necessary condition for a manifold M toiadran-
ifold spline is that M is an affine manifold.

This theorem indicates that the existence of manifold sglidepends on the exis-
tence of affine atlas. If the domain manifdltlis an affine manifold, we can easily
generalize the planar triangulBrspline surfaces to be defined dhdirectly. We
use the same symbols for manifold spline as in Section 3Th&major differences
are as follows:

(1) The knots associated with each vert{efm (1) are defined on the manifold
directly.

(2) The knots associated with each p?&{'zein (2) are defined oM directly.

(3) The barycentric (:oordinata%‘i used in the evaluation process (3) are defined
on any chart ofa. Because is affine, the value of the barycentric coordinates
is independent of the choice of the chart.
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4.3 Existence

From the previous discussion, it is clear that in order torge&i manifold spline,

an affine atlas of the domain manifold must be found first. Aditw to character-

istic class theory [28], general closed 2-manifolds do raatehan affine atlas. On
the other hand, all open surfaces admit an affine atlas. ker doddefine manifold

splines, the domain manifold has to be modified to admit asdty removing a fi-

nite number of points. This offers a theoretical evidenaléoexistence of singular
points due to the topological obstruction.

A classical result from characteristic class theory claiha the only closed sur-
face admitting affine atlas is of genus one.

Theorem 2 (Benzcri). Let S be a closed two dimensional affine manifold, then
X(S) =0.

This result is first proven by Begeri [29]. Shortly after his proof, J. Milnor pre-
sented a much more broader result using vector bundle #s@0]. In this frame-
work, the topological obstruction of a global affine atlathis Euler class. In fact,
by removing one point from the closed domain manifold, we camvert it to an
affine manifold.

Theorem 3 (Open Surfaces are Affine Manifold).Let M be an orientable open
2-manifold, then M is affine manifold.

4.4 Spline Construction

The existence theorem gives rise to the possibility of gaieng triangularB-
splines to manifold domains. Next, we shall present an expliay to construct
affine atlas by utilizing the holomorphic 1-forms M.

Given a holomorphic 1-formo on a surfacéV, assume its zero point setdsthen,
an affine atlas for M\ Z can be constructed straightforwardly.

Theorem 4 (Affine Atlas Induced from Conformal Structure). Given a closed
genus g surface M, and a holomorphic 1-foemthe zero set o is Z, then the
size of Z is no more thaPg — 2 and there exists an affine atlas on\M deduced
by w.
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4.5 Singular Points

Traditional subdivision surfaces, such as Catmull-Clari,[Bbo-Sabin [32], and
Loop subdivision [33] surfaces can be considered specsalscaf manifold splines.
The existence of extraordinary points in all subdivisiohesoes results from their
intrinsic topological obstructions. No matter how the damraanifold is remeshed,
the extraordinary points can not be entirely removed urtlesslomain manifold is
a torus. Similarly, we can define trianguBdsplines on any triangular mesh. If the
Euler number of the domain mesh is nonzero, there must balaingoints.

Corollary 1 (Existence of Singular Points). The manifold splines must have sin-
gular points if the domain manifold is closed and not a torus.

In addition, based on the above discussion, we concludahibahinimal number
of extraordinary points is one for all kinds of closed 2-nfialuis.

Corollary 2 (Minimal Number of Singular Points). Given a closed domain 2-
manifold, if its Euler number is not zero, a manifold splime de constructed such
that the spline has only one singular point.

The theoretic results in this section naturally guide ussigh practical algorithms
to compute affine atlases for arbitrary triangular meshessasequently define
manifold splines on them.

5 Manifold Spline Algorithm

This section presents a set of practical algorithms forttaosng manifold splines
based on trianguld-spline scheme. Itis straightforward to define manifold NURBS
using similar algorithms.

5.1 Algorithm Overview

The major procedures can be summarized as the following awentrol flow,
Algorithm: Construction of manifold splines

(1) Compute a holomorphic 1-form basis for the domain mdgSection 5.2).

(2) Select one holomorphic 1-form which optimizes a speti@igteria, such as
uniformity (see [34]).

(3) Locate zero points of the 1-form (Section 5.3). Remove-p&int neighbor-
hoods, denote the union of zero-point neighborhoods as
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(4) Compute the affine atlas ftM \ Z (Section 5.4).
(5) Assign knots for each control point (Section 5.5).
(6) Evaluate the spline surface (Section 5.6).

5.2 Holomorphic 1-form

The algorithm for computing the holomorphic 1-form for aatrgular mesh is as
follows:

Algorithm: Compute Holomorphic One Form

(1) Compute the first homology group basis of the domain m&hig Hy (M, Z).

(2) Compute the first cohomology group basis of the domain folil, H1 (M, R).

(3) Compute harmonic 1-form basis frdft (M, R) using heat flow method.

(4) For each harmonic 1-form basis, locally rotate by a right angle about the
normal to getw, (Hodge star operator), paity, wy) to form a holomorphic
1-form basis.

The computation process is equivalent to solving an etliptartial differential
equation on the surface using finite element method. Thalslétet computing
holomorphic 1-form are thoroughly explained in [26, 27].

5.3 Locating Singular Points

If the resolution of a mesh is high enough, the holomorphforin is accurate
enough to locate the zero points automatically.

Using the holomorphic 1-form, the neighborhood of the zemmpwill be mapped
to a planar region. The behavior of the map is similar to the ma z2,z€ C in
the neighborhood of the origin. More rigorously, a circleward the zero point will
be mapped to a curve which passes around the origin at le@mst fWhe winding
number of the image curve about the origin is no less than 2.)

The following algorithm aims to locate zero points:
Algorithm: Locate Zero Points

(1) Given avertex € M, a holomorphic 1-fornw, find all the vertices connecting
to vertexv sorted counterclock-wisely, denotedvaswy, - - - ,Wn_1.
Wi

(2) Mapw; to the plane using, @(w;) = [, w.
(3) The pointsp(wp),®(wy),: - -,@(Wn—1) form a planar polygon and the poiptv)
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is inside this polygon. Compute the summation of the angles

n—1
Z) ZQ(W) PV)P(Wi 1),

wherew, = wp. If this summation is &, thenv is a regular point; if summation
is no less than#d, thenv is a zero point.

5.4 Constructing Affine Atlas

An affine atlas can be constructed in the following way.
Algorithm: Construct Affine Atlas

(1) Locate zero points ab, denote the zero poin&

(2) Remove zero points and the faces attaching to them.

(3) Construct an open covering f \ Z. For each vertex, take the union of all
faces within its k-ring neighbor as an open Jet

(4) Testif the union of any twblg, Ug is a topological disk by checking the Euler
number ofUq JUg. If not, subdivideUg.

(5) Pick one vertexpy € Ug, for any vertexp € Uq, definegy(p) = fg; w.

(6) Compute coordinate transition functiopgg = piﬂ w.

5.5 Assigning Knots

The connectivity of the control net can be easily determimgthe uniform subdi-

vision of the domain mesh. For example, if the desired s@iméace is quadratic,
each face oM will be subdivided to four faces on the control net. Theref@ach

face on the control mesh is covered by one facdlofach control point will then
associate with a group of knots. The knots are defined in thaimg way.

Algorithm: Assign Knots
(1) Given a control point € C and a facef attached ta. Supposef is covered
by F € M. Choose one local chaft)y, ¢y) coveringF, and assign knot}iﬁF

to cin this local chart.
(2) Record the chartid, the knot@(g for c.
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5.6 Surface Evaluation

As explained above, the evaluation process is independtre ohoice of the chart.
The chart can be chosen arbitrarily, and all associatedsknast then be converted
to the selected chart.

Algorithm: Spline Evaluation

(1) Choose a facE onM, choose a coordinate chdty, @y) coveringF.

(2) Locate all control points associate wkh

(3) If the knots of a control point is define on coordinate chgst then convert
the knots to chartUq, @) using transition functiogg .

(4) Evaluate the polynomial surface using the evaluatigorhm for B-spline
surface with planar domain diy, @ ).

6 Implementation and Experimental Results

In our implementation, we consider domain manifolds regmésd as triangular
meshedVl. We usev, to denote the vertices &, |vi,vj] denote the oriented edge
fromv; tovj, [vi,Vj, %] to denote an oriented face bf.

6.1 Data Structure

The primary data structures in our prototype system for ttaosng manifold
splines arelomain mesh Mcontrol net C affine atlasz, andholomorphic 1-form
w.

Domain Mesh M. The domain mesh in general is a triangular mesh, represented
by a half-edge data structure. Each face is covered by demalinate charts.

Control Net C. The control net is also a triangular mesh, represented lfyetge
data structure. The connectivity of the control net is deduitom that of the do-
main mesh by uniform subdivision and the degree of the mihsjaline. Each face
on the control net corresponds to one covering face in theadomesh.

Atlas 4. The atlas is set of charts and all the transition functionsragithem. The
transition functions are translations on the plane; ifdkil chart and th@-th chart
intersect, there is a transition functiggg, represented as a translation vectdRfn
Each chart is a set of adjacent faces, which form a topolbdisk. We ensure that
the union of two intersecting charts is still a topologiciskd The local coordinates
are not recorded, but computed in real-time by integratwigrmorphic 1-formow.
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Table 2
Spline configurationsy, genus; n, degree; )\N# of boundaries; N # of singular points;
N;, # of domain triangles; N # of control points.

object Figure g No [Ns| N | N Nc
Bunny Fig 9 0| 3| 13| 293 | 1348
Knot Figll,rowl |1| O | O | 3| 400 | 1800
Rockerarm Figll,row2 | 1| O | O | 3| 2125| 9676
Two-hole torus Fig 8 2| 0| 2 |3]| 502 | 2270
Sculpture Figll,row3&4| 3| 0 | 4 | 3| 1458| 6583

Holomorphic 1-Form w. A holomorphic 1-form is represented by a map from
the oriented edge (half-edge) setMfto R?, w: E — R?, such that for any face
[Vo, V1, V2],

(U[Vo,Vl] + (JL)[V]_,VQ] -+ UJ[Vz,Vo] =0.

(e) (f)

Fig. 8. Construction of manifold spline: (a) Holomorphic 1-fotnthe octagonal region
indicates a singular point; (b) Domain manifditt (c) Singular point removail \ Z; (d)
Manifold splineF; (e) Spline surfacé covered by control net; (f) The regions of singular
points are filled.

6.2 Experimental Results

Our prototype system is implemented in C++ on Windows platfovWe build
a complete system for computing topological structure fawonal structure, and
affine structure. The system is based on a half-edge datetistey and uses the
finite element method to solve elliptic partial differehtegjuations on surfaces.
The system includes traditional mesh processing fundiites such as mesh sim-
plification, subdivision, smoothing, and progressive magbrithms. But the main
functionalities of the system are computing the homologygr cohomology group,
harmonic 1-forms, holomorphic 1-forms, global conformaigmeterizations, man-
ifold spline construction, and surface evaluation.

Table 6.2 summarizes our experiment results. Figure 8rlitess the process of our
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manifold spline by constructing a manifold spline on a gedssirface. Figure 11
shows several examples of manifold splines of various twpoél type. The results
prove both the theoretic rigor and feasibility in practice.

7 Conclusion

We have proved in this paper that defining triang@asplines over arbitrary man-
ifolds is equivalent to the existence of an affine atlas ofuhderlying manifold.
In addition, we have articulated a systematic way to constan affine atlas for
general manifolds and developed a suite of algorithms thable the definition
and computation of trianguld-splines over any manifold domain (consisting of
general meshes). Our theoretical and algorithmic cortdhuo the field of solid
and physical modeling is a general framework that extentieespurfaces with
planar domains to manifold splines, which are piecewisgmmhials defined over
arbitrary manifold. Because of the intrinsic topologicaktshction for any man-
ifold, singular points are unavoidable. We utilize the cgptcand computational
techniques of Riemann surface theory (especially the halphio 1-forms) to
obtain the affine atlas and minimize the number of singulantgdor our mani-
fold splines simultaneously. The prototype software angeexental results have
demonstrated the great potential of our manifold splineshispoe modeling, geo-
metric design, graphics, and engineering applications.

At present, we are planning to pursue several directionsitasef work. First, the
behavior of singular points is not yet known. We shall seek mathematical tools
for the rigorous analysis of singular points. Second, wdl ghaestigate other new
spline schemes and explore their manifold generalizations
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Fig. 9. Genus zero manifold spline: (a) & (b) show the topological modifinatipintro-
ducing 3 boundaries marked as red curves. The genus of the dowBledsurface is two.
(c) shows the holomorphic 1-form. By projecting the holomorphic 1-form of the double
covered mesh to the original surface, there is only one singular pointhwugan the top
of the bunny head. (d) shows the domain manifdid(e)&(f) show the front view of poly-
nomial surfacé= and control ne€C; (g)&(h) show the back view of polynomial surfae
and control neC.

Appendix

We present the detailed proof of our major theoretic resaltse Appendix.
Lemma 1.1. Assume there are two spline surface patches‘afa@tinuity, k> 0,

S=(U,C,F)andS= (U,C,F).
The parametric transformation

p:U—U

is invertible. Suppose, S share the same knot configuration, namely, the triangu-
lation 7 is induced fromr by ¢, and the knot§ ; are induced from(t; by ¢

& | = ot i) (7)
the control points with corresponding knots coinct:ge: 6;3, then

(1) if @is affine, then F= F o ¢ holds for arbitrary control nets.
(2) if F = F o@holds for arbitrary control nets, theqis affine.
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In other words, the following diagram commutes for arbitrapntrol nets

U C R? U cR?

T

(8)

3 = 1] 3
FU)CR® —— FU)CR

if and only if@is affine.

Proof. The sufficient condition partis obvious, because the etalnaf the splines
only involves barycentric coordinates. Affine transforioas preserve the barycen-
tric coordinates; therefore the diagram is commutative.

The proof for the necessary condition requires the compésteof the spline scheme
3. We set all control points df to be zero except the one corresponding to knots
X['3. Correspondingly, we set all control points ©fto be zero except one corre-

sponding to knots(. Then we get the basis functiofigu) = Ny(u), F = Ny(0),
by F =F o, we get 3

Ng(u) = N (@0).
Therefore, all basis functions & equal the corresponding basis functionsSof
Supposel = (ug,Uz), thenuy is a polynomial of(us,up). By completeness of the
spline schemay; can be represented as the linear combinatidné(@ﬂ), therefore
it can be represented as the linear combinatiolﬁg}éﬂ). As a resulty; anduy can

be represented as piecewise polynomialé of CX continuity. Becaus&andSare
symmetric,{i are also piecewise polynomials ofof CK continuity. Thereforeu
anddi can linearly represent each other piecewisely @itftontinuity. So, because
the parameter transitiapis piecewise linear an@* continuousgp must be a global
linear map over all pieces. In other wordsis affine. O

Theorem 1. The sufficient and necessary condition for a manifold M toiaidran-
ifold spline is that M is an affine manifold.

Proof. Consider two intersecting local cha(tdy, @) and(Ug, @3 ), where the man-

ifold spline F restricted on them argy and Fg, respectively. We select a sub-
set of control point€ whose knots are contained iy (\Ug. The spline patches
(9 (UaNUg),C,Fq) and (gs(UaNUg),C,Fp) satisfy the condition in Lemma 1,
therefore, the chart transition functiggg must be affine. O

Theorem 2 (Benzcri). Let S be a closed two dimensional affine manifold, then
X(S) =0.

The proof for this classical result can be found in BeerZs work [29, 35]. Milnor
used vector bundle theories to prove it in [30, 36].
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Fig. 10. Open surfaces are affine manifolds: An genus 2 suifaegth one boundary in
(a) is isomorphic to an octagon with a hole in (b), then the octagon is immer&&disithe
ribbon figure in (c). The colored disks indicate the openldgtsf M. There is another open
setU, which coversM \ |JUq. U andUy are mapped t&R? as shown in (d). All transitions
are rotation and translation. This illustrates the affine atlas for the opeacsuwfM.
Theorem 3 (Open Surfaces are Affine Manifold).Let M be an orientable open
2-manifold, then M is an affine manifold.

Proof. Figure 10 illustrates the proof by constructing an affineasatbr the open
surfaceM in (a). One boundary may be a closed curve or a single poiritasrsin
(a) by a dark spot. We deform (a) continuously to generatbylgradually enlarg-
ing the hole. (b) is homeomorphic to the ribbon figure in (d)jak is immersed in
R2. Then we cut each annulus of (c) to get a fundamental domashasn in (d).

The colored diskEy are open sets dfl, another open sét can be defined to cover
M\ UUq. (d) shows the way) andU,’s are mapped t@®?. It is obvious that all
chart transition functions are combinations of transkaiand rotations.

For surfaces with multiple boundaries, we can fill all of treibdaries with disks
except one, and the proof is similar. O

Theorem 4 (Affine Atlas Induced from Conformal Structure). Given a closed
genus g surface M, a holomorphic 1-foumThe zero set abis Z, then the size of
Z is no more thar2g — 2 and there exists an affine atlas on\M deduced by.

Proof. The existence and the number of zero poihisf the holomorphic 1-form
w can be proved using Riemann-Roch theorem [25] or Peitlpf theorem. Be-
causew = wy +iwy is holomorphicwy is a harmonic 1-form. Since we trea as

a vector field, the singularities can only have negativedesli and the summation
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of their indices equals the Euler number2g. Hence, the geometric number of
zero points is no more tharg2- 2.

Suppose an open covering ldf\ Z is a collection of open setdJy,Uq,---,}. We
require that if two open setdy,Ug intersect each othedy (\Ug # @, then their
unionUq JUg is a topological disk (see Figure 7). If this requirement nahbe
satisfied, we can subdivide the open sets until the requimemenet. Then we
select one point in eadby, denoted apy € Uy, for any pointp € Ug, we define

the coordinate op as -

®(p)= [ o,
Pa

where the path fronpy to p is arbitrarily chosen. Then we claim = {(Uq, @)}
is an affine atlas foM \ Z.

We want to show for any € Uq N Ug, @3(P) = @ (p) +const namely, the coordi-

nate transition functiogy,g : R* — R? is a translation. Supposeq € UgUg as
shown in the above figure,

q

(%(p)—cpa(p))—(cps(m—cpa(q))=/p:w—/ppw—/pzw+ w, (9

Pa

BecauséJy |JUg is a topological disk, the closed curve- pg — p— pa — q— pg
is homotopic to zero. Because the curlex of bathandw, are zeros, the above
integration is zerog, w = 0. Thereforeg(p) — @ (p) = constfor arbitrary p €
U N Up, the transition functiom,g is a translation. O
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Fig. 11. Manifold spline examples: (a) Holomorphic 1-fotowhich induces the affine
atlas4 ; (b) Parametric domain manifold with singular pointsZ marked; (c) Polynomial
splineF defined on the manifol¥ in (a); (d) The red curves on splifrecorrespond to the
edges in the domain manifoM; (e) SplineF covered by control net.
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