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Abstract

Triangular B-splines are powerful and flexible in modeling a broader class of geometric objects defined over

arbitrary, non-rectangular domains. Despite their great potential and advantages in theory, practical techniques and com-
putational tools with triangular B-splines are less-developed. This is mainly because users have to handle a large number
of irregularly distributed control points over arbitrary triangulation. In this paper, an automatic and efficient method is
proposed to generate visually pleasing, high-quality triangular B-splines of arbitrary topology. The experimental results on
several real datasets show that triangular B-splines are powerful and effective in both theory and practice.

Keywords

1 Introduction and Motivation

Triangular B-splines, introduced by Dahmen et al.[l],
are emerging as a novel and powerful tool for shape
modeling and interactive graphics, because they can
represent, without any degeneracy, complex geomet-
ric surfaces defined on open and irregular paramet-
ric domains. Using triangular B-splines, or triangular
NURBS (the rational generalization of triangular B-
splines), users can represent shapes over triangulated
planar domains with lower-degree piecewise polynomials
(rather than frequently-used tensor-product surface con-
struction over regular domains) that nonetheless main-
tain higher-order continuity across the boundary of their
piecewise patchwork. Prior results have proved that any
piecewise polynomial surface over a planar triangulation
can be accurately represented in triangular B-splines!!.
Triangular B-splines are even more powerful when being
extended and generalized to spherical domain(??! and
manifold of arbitrary topologyl*. Therefore, triangular
B-splines can potentially serve as a geometric standard
for product data representation and model conversion
in shape design and geometric processing.

Despite their aforementioned geometric advantages
and modeling potential over popular tensor-product
splines, triangular B-splines have not been widely used
in research community and CAD industry. This is
mainly because 1) users must deal with a large num-
ber of irregularly-distributed control points and their
companion knots to make certain non-intuitive decisions
on their placements; 2) triangular B-splines have the
so-called knot lines, where the surface curvature distri-
bution along the curved triangular boundaries (corre-
sponding to the edges in the domain triangulation) is
much worse than other regions. There exist no effective
approaches to controlling the overall curvature distri-

triangular B-splines, arbitrary topology, fairing algorithm

bution and improving the shape quality via automatic
control-point adjustment.

To overcome these shortcomings of triangular B-
splines, this paper develops an automatic algorithm to
generate visually pleasing triangular B-splines without
the need of any tedious manual operation on control
points. Moreover, unlike the existing, classical fairing al-
gorithms, which usually involve the expensive computa-
tion of physics-based fair functionals (such as membrane
or thin-plate energy), our method solves a simple least
square with linear constraints. Therefore, our approach
is both fast and robust. Furthermore, our approach
works for planar, spherical, and manifold triangular B-
splines without any theoretical difficulties. Fig.1 shows
an example generated using our automatic shape-fairing
algorithm. The input is a C* spherical triangular B-
spline (shown in Fig.1(b)) with 682 domain triangles
(shown in Fig.1(a)). Pay attention to the spline surface
marked with red curves which correspond to the edges
of spherical triangulation (shown in Fig.1(c)), and the
mean curvature plot (shown in Fig.1(d)), the spline sur-
face have high curvature concentrations along the image
of edges of the underlying domain triangulation. After
automatic fairing, the overall shape only undergoes a
small variation (in fact, the shape deviation from the
original one is minimized), but the curvature distribu-
tion improves significantly (shown in Figs.1(e-g)).

The remainder of this paper is organized as follows.
Section 2 reviews the related work on simplex splines
and triangular B-splines. Section 3 documents the the-
oretical background for planar, spherical, and manifold
triangular B-splines. Section 4 presents the algorithm to
construct smooth triangular B-splines. Section 5 shows
our experimental results. Finally, we conclude the paper
in Section 6.

*A preliminary version of this paper appeared in Proc. Pacific Graphics 2005, Macau.
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Fig.1. Fairing a spherical triangular B-spline. (a) shows the spherical domain with 682 triangles. (b-d) show a degree 5 (0 continuous)

spherical spline and its mean curvature plot. Note that the spline surface has high curvature concentration along the image of edges of

the spherical triangles. (e—g) show the spline generated by our automatic fairing method. The computational time is 8 seconds on a

3GHz Pentium IV PC. Compared to the surface in (b), the shape of the smooth spline (e) does not change too much, but the curvature

distribution improves significantly. The red curves in (c) and (f) correspond to the edges in the spherical triangulation.

2 Previous Work

The theoretical foundation of triangular B-splines
lies in the multivariate B-spline, or simplex spline, in-
troduced by de Boor!® in 1976. Based on the blossom
or polar form!®! and B-patch!”!, Dahmen et al.!] pro-
posed a general spline scheme in s-dimensional space,
which constructs a collection of multivariate B-splines
whose linear span comprises all polynomials of degree
no more than n. The bivariate case is called triangular
B-spline or DMS spline. Due to its elegant construction
and many attractive properties for geometric modeling,
triangular B-spline has received much attention since its
inception. Fong and Seidell® presented the first proto-
type implementation of triangular B-splines and showed
several useful properties, such as affine invariance, con-
vex hull, locality, and smoothness. Greiner and Seidel!”!
showed the practical feasibility of multivariate B-spline
algorithms in graphics and shape design. Pfeifle and
Seidell’®l demonstrated the fitting of a triangular B-
spline surface to scattered functional data through the
use of least squares and optimization techniques. Gor-
maz and Laurent studied the piecewise polynomial re-
production of triangular B-spline and gave a direct and
intuitive proofi'']. Franssen et al.l'?! proposed an effi-
cient evaluation algorithm, which works for triangular
B-spline surfaces of arbitrary degree. He and Qin[*!
presented a method of surface reconstruction using tri-
angular B-splines with free knots. Recently, Neamtu!'*!
described a new paradigm of bivariate simplex splines
based on the higher degree Delaunay configurations.

Traditional triangular B-splines are defined on the
planar domains. Many researchers have explored the
feasible ways to generalize them to be defined on sphere
and manifold with arbitrary topology. Alfeld et al.[1®]
presented spherical barycentric coordinates which nat-
urally lead to the theory of Spherical Bernstein-Bézier
polynomials (SBB). They showed fitting scattered data
on sphere-like surfaces with SBB in [16]. Pfeifle and
Seidell? presented scalar spherical triangular B-spline
and demonstrated its applications for approximating
spherical scattered data. Neamtul'”) constructed a func-
tional space of homogeneous simplex splines and showed

that restricting the homogeneous splines to a sphere
gives rise to the space of spherical simplex splines. He
et al.l¥! presented the rational spherical spline for genus
zero shape modeling.

Recently, Gu et all¥ developed a general theoret-
ical framework of manifold splines in which the exist-
ing spline schemes defined over planar domains can be
systematically generalized to any manifold domain of
arbitrary topology (with or without boundaries) using
affine structures. They demonstrated the idea of mani-
fold spline using triangular B-splines because of the at-
tractive properties of triangular B-splines, such as ar-
bitrary triangulation, parametric affine invariance, and
piecewise polynomial reproduction.

All the existing literatures of triangular B-splines fo-
cus on either theoretical foundation or evaluation/data
fitting algorithms. No previous work has been done in
the surface quality analysis of triangular B-splines. This
paper aims at providing such tools for automatic shape
control and analysis of triangular B-splines.

3 Construction of Triangular B-Splines

The planar triangular B-spline was proposed by Dah-
men et al. in [1]. Pfeifle and Seidel successfully gener-
alized the planar triangular B-splines to the spherical
domain/®. Recently, Gu et all* systematically built
the theoretic framework of manifold spline, which lo-
cally is a traditional planar spline, but globally defined
on the manifold. They demonstrated manifold splines
using triangular B-spline as building block.

The constructions of planar and spherical triangular
B-splines are simple and straightforward. In the inter-
ests of space, we only briefly introduce the construction
of manifold triangular B-spline: given a triangular mesh
of arbitrary topology with or without boundaries, we
first compute the global conformal parameterization of
the domain manifold*®!. Then, we compute a special at-
las covering the manifold, such that the transition func-
tions are affine. Next, we define the sub-knots on the
manifold directly. Finally, we define basis functions on
the chart and assign control point to each basis function.

Triangular B-splines have many valuable properties
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which are desirable for geometric modeling. For exam-
ples, triangular B-splines are piecewise polynomial de-
fined on the parametric domain of arbitrary triangula-
tion. Therefore, the computations of various differential
properties are robust and efficient. The degree n trian-
gular B-spline is of C™~! continuous everywhere if there
are no degenerate knots. Furthermore, by intentionally
placing knots along the edges of the domain triangula-
tion, we can model sharp features easily. The manifold
spline of genus g has no more than 2g — 2 singular points
while planar and spherical splines do not. Table 1 sum-
marizes the properties of triangular B-splines for shape
modeling.

4 Fairing Algorithm

The fairing is of central importance during the design
process of free form surfaces. Conventional methods for
local and global fairing usually involve a physics based
fairness criterion, e.g., membrane energy and thin-plate
energy. Note that these fairness functionals involve the
integration of the derivatives of F' over the paramet-
ric domain. Calculating the exact value of the fairness
functional is challenging for triangular B-splines, since
there is no restriction on the domain triangulation and
the sub-knots are also distributed irregularly. In this
paper, we propose a new post-processing fairing method
which does not need the computation of the complicated
double integral. Instead, it only relies on a set of linear
constraints of the control points.

Our method is inspired by the knot-line elimination
work of Gormaz!'®!. Although triangular B-spline has
C™~! continuity if there are no degenerate knots, the
spline surfaces may not be smooth as expected. The
curvature along the images of the edges in the paramet-
ric domain is larger than other regions. Fig.2 shows a
degree 4 planar triangular B-spline, which is C® contin-
uous everywhere. However, the surface is not visually
smooth due to the high curvature concentration along
the edges of adjacent spline patches. This phenomenon
is called “knot line” of the triangular B-splines.

Given a degree n triangular B-spline surface F(u)
defined on arbitrary triangulation, consider two domain
triangles A(I) = [t}, ¢, t2] and A(J) = [t],t], ;] such
that A(I) and A(J) are adjacent. For example, sup-
pose t}) = tJ and t! = t{ (see Fig.3). The sub-knots
satisfy té’i = t&i and t{ﬂ' = tlin, for : =1,...,n. Let
FT be the piecewise polynomial restricted on the trian-

gle A(D), ie., F'(u) =3 5, e1,sN (u|V}). Let f! be
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the polar form of F!. Similarly, we can define F/ and
f7, respectively (see [20] for the details of polar form).
Then, Gormaz proved!'?!:

The spline surface F(u) has no disconti-
nuity of its n-th derivative along the lines

[té,ﬂoat{”ﬂllavﬂa ‘ﬂ| = naﬁ? < r

iff erp=f'(V4),VB,18l=n,B2 < (2)

where 0 < r < n — 1, andVﬁI

I I I
{th st gy1s- s thos -

’tévﬂZ*l}'

1

®

(h) ()

Fig.2. Illustration of our fairing algorithm to a degree 4 planar
triangular B-spline. (a) Parametric domain. (b) Spline surface.
(c) Control net. (d) Mean curvature plot of the spline surface.
(Note that the curvature along the image of edges on the domain
triangulation is significantly larger than the vicinity.) (e-g) Fair-
ing the spline surface with » = 1. (h—j) Fairing the spline surface
with r = 2.

(2) defines the affine relations between the control
points of F'(u) and F”(u). Given an r € [0,n), let the
control points satisfy (2), then the discontinuity along
certain knot lines disappear, and the curvature distri-

Table 1. Properties of Triangular B-Splines

. . Local Convex Affine Modeling  Singular L.
Triangulation . . Smoothness . Applications
control hull invariance features points
Planar spline Arbitrary Yes Yes Yes cn—1 No Open surfaces,
Yes . .
disk-like topology
Spherical spline Arbitrary Yes No No cn-1 Yes No Sphere-like,
genus zero surfaces
Manifold spline Arbitrary Yes Yes Yes cn-1 Yes Yes Surfaces of complicated

topology
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Fig.3. Illustration of (2) for » = 1. (a) Parametric domain. (b) Control points.

bution along those lines improves. Fig.3 illustrates the
case r = 1. For 8 = (B, 41,1), (2) is written as

I d(t20,t1,6,,t30) )

€(Bo.B11) T g( ) C(Bo+1,61,0

t0,60,t1,8,5 83,0
d(to,,t2,0,t3,0) o
(0,4, t1,,, t3,0) o)
d(toﬂovtlﬁut?,O)CJ
d(to,g0,t1,8,, E3,0) 1Y)

where d(-,-,-) is the determinant function. It is easy to
verify that (2) is just a linear combination of the control
points for 0 < r < n — 1.

In the following, we consider the global fairing prob-
lem of triangular B-splines. Given a (planar, spherical
or manifold) triangular B-spline surface F'(u), we want
to find a faired surface f‘(u) such that F approximates
the original surface F' as much as possible. This leads
to the following least square problem:

mgnz > lers —ergll?

I |Bl=n
subject to &7, 5 = f/(V3), VI,VB,|8/ =n,B < 7. (3)

In the objective function, we minimize the squared
distance between the control points of the original and
the new spline surface, which implies that the minimal
change of the shape. In the constraints, we use an inte-
ger r < n—1 to control the fairness of the spline surface.
The bigger the value 7, the more faired surface we ob-
tain. In our experiments, we can get visually pleasing
surfaces with » =1 or r = 2.

As mentioned above, the constraints in (3) are just
linear equations of the control points. Therefore, (3)
is a linear constrained quadratic programming problem
which has the following form:

mgi:n %a:TIa: +cl'z+ f subject to Az =b  (4)
where I is the identity matrix. In our implementation,
we solve the above problem using Lagrange multipliers
approach.

5 Experimental Results

We have implemented a prototype system on a 3GHz
Pentium IV PC with 1GB RAM. We perform experi-
ments on several models ranging from planar triangu-
lar B-splines to manifold triangular B-splines. Table 2
shows the spline configurations and execution times of
our test cases.

Table 2. Statistics of Test Cases
Object Type n N N, r  Time (s)
Cap planar 4 13 123 2 <1
Face planar 5 251 3181 2 2
Venus spherical 5 682 8527 2 8
Skull spherical 5 948 11852 2 16
Dog spherical 5 656 8202 2 7
Bottle manifold 3 1889 8513 1 6

Note: n: degree of spline surface; N¢: # of domain
triangles; N.: # of control points; r: smoothness
factor. The execution time measures in seconds.

Fig.2 illustrates the fairing algorithm to a planar
triangular B-spline. Fig.4 shows example for fairing a
spherical triangular B-spline. Compared to the shapes
before and after fairing, the curvature concentration
phenomena disappear, i.e., the knot-lines are eliminated.

Fig.5 shows examples of smooth triangular B-spline
surfaces generated by our fairing algorithm. As shown
in Fig.5, we can achieve highly smooth, e.g., C* and C*,
triangular B-spline surfaces of various topological types.
These results demonstrate that triangular B-splines are
both theoretic rigorous and feasible in practice.

6 Conclusion

In this paper, we have proposed an automatic and
efficient method to generate visually pleasing, high-
quality triangular B-splines of arbitrary topology. Our
shape fairing technique works for planar, spherical, and
manifold triangular B-splines. Our method is both fast
and robust, as only a system of linear equations is solved.
Furthermore, the shape deviation is minimized while the
overall curvature distribution is significantly improved.
Our experimental results on several real datasets have
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(b) (d)

Fig.4. Illustration of our fairing algorithm for a spherical triangular B-spline. (a) Spherical domain. (b) Degree 5 spline with 948
patches. (c) Mean curvature of (b) (red: H < 0, cyan: H > 0, green: H =~ 0). (Pay attention to the high curvature concentration

along the image of edges of the spherical triangles.) (d) and (e) After fairing, the curvature distribution improves significantly.
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Fig.5. Examples of triangular B-splines. Row 1: C* planar spline; Row 2: C% spherical spline; Row 3: C? manifold spline of genus 2
(the other handle is inside the bottle). (a) shows the parametric domain. The red curves on the spline surfaces (b) correspond to the
edges in the domain triangulation (a). (c) and (d) show the spline surfaces and mean curvature plot respectively. Note that there is
no restriction on the triangulation of the parametric domain. Those knot-lines (curvature concentration on the image of the edges of

domain triangulation) are completely eliminated.
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demonstrated that triangular B-splines are powerful and
effective in both theory and practice.
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