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Abstract

Non-rigid surface matching and registration play funda-
mental roles in computer graphics, computer vision and
Computer Aided Geometric Design. Recently, various con-
formal geometric methods have been proposed for non-rigid
surface registration in these fields. The major disadvantage
for conformal geometric method is that they are too sensitive
to the boundary conditions. In reality, due to partial occlu-
sion, cluttering, surfaces acquired from real life are always
with inconsistent boundaries. Many surfaces in practice
are symmetric, such as human faces, surfaces of furniture.
Symmetry can be utilized to overcome the inconsistency of
boundaries.

This work propose to improve the robustness of conformal
geometric methods to the boundaries by incorporating the
symmetric information of the input surface. The key idea
is to preserve the symmetry during the conformal mapping,
such that eventually, the image on the parameter domain
is symmetric, the area distortion factor on the parameter
image is also symmetric.

We developed novel algorithms based on different con-
formal geometric tools, one is based on solving Riemann-
Cauchy equation, one is based on curvature flow. We tested
our algorithms on geometric data sets acquired from real
life, and make thorough comparison with most existing
techniques. Experimental results demonstrate that the sym-
metric conformal mapping is insensitive to the boundary
occlusions. The method outperforms all the others in terms
of robustness. The method has the potential to be generalized
to high genus surfaces using hyperbolic curvature flow.

1. Introduction

In recent decades, there has been a lot of research into
surface representations for 3D surface analysis, which is
a fundamental issue for many applications in computer
graphics, computer vision and geometric modeling, such
as 3D shape registration, partial scan alignment, 3D object
reconstruction, 3D object recognition, and classification[1],
[2], [3], [4]. In particular, as 3D scanning technologies
improve, large databases of 3D scans require automated

methods for matching and registration. However, match-
ing surfaces undergoing non-rigid deformation is still a
challenging problem, especially when data is noisy and
with complicated topology. Different approaches include
curvature-based representations [5], [6], regional pointrep-
resentations [3], [7], spherical harmonic representations [8],
[9], shape distributions [10], multi-dimensional scaling[11],
[12], local isometric mapping [13], summation invariants
[14], landmark-sliding [15], physics-based deformable mod-
els [16], Free-Form Deformation (FFD) [17], and Level-Set
based methods [18]. However, many surface representations
that use local geometric invariants can not guarantee a global
convergence and might suffer from local minima in the
presence of non-rigid deformations. To address this issue,
many global parameterization methods have been developed
recently based on conformal geometric maps [19], [20], [21],
[22], [23], [24]. Although the previous methods have met
with a great deal of success in both computer vision and
graphics, there are major shortcomings in conformal maps
when applied to matching of real discrete data such as the
output of 3D scanners:inconsistent boundaries. In this paper
we will address the above issue by introducing intrinsic
symmetry to the registration.

There are four categories of conformal geometric meth-
ods. The first category is based onharmonic maps, which
has been applied for surface matching in [19] high resolution
tracking of non-rigid 3D motion of densely sampled data
[20] and conformal brain mapping [21]. The second rows
in figure 1 and 4 show the harmonic maps. The second
category is based onsolving Riemann-Cauchy equation, such
as least square conformal maps introduced in [22]. This
method has been applied for 3D shape matching, recog-
nition, and stitching[24], automatic non-rigid registration
of 3D dynamic data for facial expression synthesis and
transfer [25]. The third rows in figure 1 and 4 illustrate
the result using this method. The third category is based on
holomorphic differentials, which induces different conformal
mappings, by combining them, better results can be achieved
for surface matching and registration [26]. The third rows
in figure 1 and 4 show the Riemann mapping results using
holomorhic differentials. The last category is usingRicci
flow, Euclidean Ricci flow has been applied for shape
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Figure 1. Comparision among different conformal map-
ping methods. Symmetric conformal map is the most
robust to boundary occlusion.

analysis in [27], and hyperbolic Ricci flow has been used
for face matching and registration in [28]. Recently, discrete
surface Yamabe flow has been introduced by Luo in [32], it
has been reintroduced in [33]. A similar method is applied
for conformal parameterization in [34]. The fourth row in
figure 4 shows the conformal mapping using Euclidean Ricci
flow.

In general, harmonic maps, least square conformal maps
are linear methods, but can only handle surfaces with simple
topologies, such as topological disks. Holomorphic differen-
tials can handle multiply connected domains and high genus
surfaces, but it introduces singularities. Ricci flow method
is very general and has no topological limitations, but it isa
nonlinear optimization. All of them are very sensitive to the
boundaries. In reality, due to partial occlusion, noises, arbi-
trary surface patch acquired by a single scan by a camera-
based 3D scanner, eg. face frontal scan, cloth, machine parts
etc, is a genus zero surface with arbitrary number of holes.
The boundaries are in general inconsistent. This affects the
mapping quality. As shown in figure 1 and 4, inconsistent
boundary conditions produce drastically different conformal
mappings and lead to the failure for partial matching and
registration.

In real applications in graphics and CAD, many categories
of surfaces of interests are symmetric, such as human faces,
human bodies, most furniture, buildings, automobiles etc.
To address this critical issue, we propose to incorporate the
symmetry of the input surface to the conformal mapping,
such that the conformal mapping preserves the intrinsic
symmetry of the surface and is more robust to the inconsis-
tency of the boundaries. The conformal mapping preserves
the symmetry in the following ways: first the image of the
mapping is still symmetric; second, the area distortion factor
on the image is symmetric as well. The bottom rows in
figures 1 and 4 are the conformal mappings preserving the
symmetry, which are much more robust to the boundary
occlusions and inconsistency.

We make the following contributions in our paper:

• A conformal mapping method based on solving
Riemann-Cauchy equation is introduced, which pre-
serves the symmetry of the input surface.

• A conformal mapping method based on discrete curva-
ture flow (Yamabe Flow) is introduced, which preserves
the symmetry of the input surface.

• A robust method for non-rigid surface matching and
registration based on symmetric conformal mapping is
introduced, which is very robust to boundary occlusion
and clutter.

Although the work focuses on topological disks, it can be
generalized to surfaces with more complicated topologies,
such as multiply connected domains or high genus surfaces,
as long as the surface has intrinsic symmetry.



2. Mathematical Background

All surfaces embedded inR3 have the induced Euclidean
metric g. A conformal structureis an atlas, such that on
each local chart, the metric can be represented as

g = e2u(dx2 + dy2).

we can use complex parameter to represent itz = x + iy,
which is calledisothermal coordinates. Suppose two charts
have overlapping region on the surface, then the chart
transition function is an analytic function. A surface with
a conformal structure is aRiemann surface, therefore, all
surfaces inR3 are Riemann surfaces.

A complex valued functionf : C → C is holomorphic,
if it satisfies the following Riemann-Cauchy equation,f :
z → w, wherez = x + iy andw = u + iv,

∂u

∂x
=

∂v

∂y
,
∂u

∂y
= −

∂v

∂x
. (1)

A mapping between two Riemann surfacesf : S1 → S2

between two surfaces isconformal, if it satisfies the fol-
lowing condition: Arbitrarily choosing a local isothermal
coordinates ofS1, (Uα, φα), a local isothermal coordinates
of S2, (Vβ , φβ), then the local presentation off is

φβ ◦ f ◦ φ−1
α

is holomorphic. In this work,S1 is a genus zero surface with
a single boundary,S2 is a planar domain.

There are many ways to compute conformal mappings.
There are mainly four categories.

2.1. Harmonic Maps

Let f : S → D be a mapping between two surfaces, then
the harmonic energyof f is defined as

E(f) =

∫

S

|∇f |2dA,

where∇f is the gradient off , dA is the area element on
S. The harmonic map is the critical point of the harmonic
energy, which satisfies the following Laplace equation

∆f = 0.

The harmonic map can be achieved using the heat flow
method

df

dt
= −∆f,

where∆ is the Laplace-Beltrami operator onS. In general,
if the target domain is convex, the boundary mappingf :
∂S → ∂D is a homeomorphism, then the harmonic map is
a diffeomorphism. Especially, ifD is a genus zero closed
surface, then the hamronic map is also a conformal map.
Figure 1 (c) and (d) are computed using harmonic maps.

2.2. Solving Riemann-Cauchy Equation

Conformal maps satisfy the Riemann-Cauchy equation
1. Therefore by solving Riemann-Cauchy equation with
boundary conditions, a conformal map can be obtained.
in practice, one can solve the equation by minimizing the
following energy,

E(f) =

∫

S

(
∂u

∂x
−

∂v

∂y
)2 + (

∂u

∂y
+

∂v

∂x
)2dxdy.

Figure 1 (g) and (h) are computed by minimizing the above
energy using the method described in [22].

2.3. Holomorphic 1-form Method

Let ω be a complex-valued differential form on the
Riemann surfaceS, such that on each local chart(Uα, φα)
with isothermal coordinateszα, ω has local representation

ω = gα(zα)dzα,

wheregα is holomorhpic, thenω is called aholomorphic
1-form. On another local chart(Uβ , φβ) with isothermal
coordinateszβ, ω has local representation

ω = gβ(zβ)dzβ

where

gα

dzα

dzβ

= gβ,

where dzα

dzβ
is a holomorphic function. All the holomorphic

1-form form a group, which is isomorphic to the first
cohomology group of the surface.

The holomorphic 1-form group basis can be computed
using the following method: first we compute the homology
group basis of the surface, the the dual cohomology group
basis, then we use Hodge theory to get the unique harmonic
1-form for each cohomologous class. Finally, by using
Hodge star, we can compute the conjugate harmonic 1-
forms, each pair of harmonic 1-form and its conjugate form
a holomorphic 1-form. This method has been introduced in
[35].

By using holomorhpic 1-forms, the surface can be confor-
mally mapped to the canonical planar domains. For example,
multiply connected domains can be mapped to rectangles
with parallel slits. Figure 1 (e) and (f) are computed using
holomorphic 1-forms.

2.4. Ricci Curvature Flow

Let S be a surface embedded inR3. S has a Riemannian
metric induced from the Euclidean metric ofR3, denoted by
g. Supposeu : S → R is a scalar function defined onS. It
can be verified that̄g = e2u

g is also a Riemannian metric
on S. Furthermore, angles measured byg are equal to those



measured bȳg. Therefore, we saȳg is a conformal to g,
e2u is called theconformal factor.

When the Riemannian metric is conformally deformed,
Gaussian curvatures will also be changed accordingly. The
Gaussian curvature will become

K̄ = e−2u(−∆gu + K), (2)

where ∆g is the Laplacian-Beltrami operator under the
original metricg. The above equation is called theYamabe
equation. By solving the Yamabe equation, one can design
a conformal metrice2u

g by a prescribed curvaturēK.
Yamabe equation can be solved usingRicci flowmethod.

The Ricci flow deforms the metricg(t) according to the
Gaussian curvatureK(t) (induced by itself), wheret is the
time parameter

dgij(t)

dt
= 2(K̄ − K(t))gij(t). (3)

Ricci flow method can be applied to design Riemannian
metric with prescribed Gaussian curvature. If the target
curvature is zero on every interior point, then the surface
can be flattened onto a planar domain with the resulting
metric.

Surface Ricci flow has been generalized to the discrete
setting by Luo and Chow in [36]. In surface case, Ricci
flow is equivalent to Yamabe flow. Discrete Yamabe flow
was first introduced by Luo in [32].

3. Symmetric Conformal Mapping Method

All the existing conformal mapping methods are sensi-
tive to boundary conditions. Surface registration algorithms
based on conformal geometric methods are susceptible to
occluded boundaries, clutters and inconsistent boundaries.
We propose to improve the robustness of conformal mapping
methods by utilizing the symmetry of the input surface.

Suppose the input surfaceS has some symmetries. For
example, supposeτ is a plane inR3, Rτ is the reflection
about τ . If S is symmetric aboutτ , then Rτ (S) = S.
Let γ be the intersection curvature of the surface and the
symmetric plane,γ = S ∩ τ , φ : S → C is a conformal
mapping of the surface to the complex plane. We say the
conformal mapping preserves symmetry, if

φ(Rτ (p)) = −φ(p),

whereφ(p) means the conjugate ofφ(p). Namely,φ mapsγ
to the imaginary axis, the images of the symmetric pointsp

andRτ (p) are symmetric about the imaginary axis. This can
be accomplished by adding symmetric constraints during the
optimization process.

In practice, surfaces are approximated by triangle meshes,
conformal mappings are approximated by piecewise linear
maps.

vi vj

vk

(ui, vi)

(uj , vj)

(uk, vk)

f(x, y) = (u(x, y), v(x, y))

si

sj

sk

Figure 3. Discrete approximation of Riemann-Cauchy
euqation.

3.1. Riemann-Cauchy Equation Method

This method is a direct generalization of LSCM in [22]
by adding symmetric constraints. Let[vi, vj , vk] be a face
on the mesh. The images of them under the linear mapf :
[vi, vj , vk] → R2 are (ui, vi), (uj , vj), (uk, vk). Let si =
n× (vk − vj), sj = n× (vi − vk), sk = n× (vj − vi), n is
the normal vector of the face, then

−∇u = uisi + ujsj + uksk,

−∇v = visi + vjsj + vksk,

Riemann-Cauchy energy on face[vi, vj , vk] can be approx-
imated by

E([vi, vj , vk]) = |∇v − n ×∇u|2.

The energy 1 can be approximated as
∑

[vi,vj ,vk]∈M

E([vi, vj , vk])A([vi, vj , vk]), (4)

whereA([vi, vj , vk]) represents the area of the face.
The symmetric constraints can be inserted naturally during

the optimization of the above energy. Supposevi, vj are
symmetric vertices of the mesh,Rτ (vi) = vj , then we add
constraint

ui = −uj, vi = vj .

3.2. Yamabe Flow Method

Symmetry constraints can also be added to the curvature
flow method naturally. Here we use Yamabe flow method
introduced in [32]. On a triangle mesh, thediscrete metric
is the edge length functionℓ : E → R+ satisfying triangle
inequality. Thevertex discrete curvatureis defined as angle
deficiency,

Ki =

{

2π −
∑

[vi,vj ,vk]∈F θ
jk
i vi 6∈ ∂M

π −
∑

[vi,vj ,vk]∈F θ
jk
i vi ∈ ∂M
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Figure 2. Conformal mapping preserving symmetry. γ is the intersection curve between the surface and the
symmetric plane. p and Rτ (p) are symmetric points. The symmetry is preserved on the image of the conformal
mapping φ.

whereθ
jk
i is the corner angle atvi in the face[vi, vj , vk],

∂M is the boundary ofM . Let u : V → R be the discrete
conformal factor. The edge length of[vi, vj ] is defined as

ℓij := exp(ui) exp(uj)ℓ
0
ij ,

where ℓ0
ij is the original edge length inR3. The discrete

Yamabe flow is defined as

dui

dt
= K̄i − Ki,

with the constraint
∑

i ui = 0. The discrete Yamabe flow
converges, and the final discrete metric induces the pre-
scribed curvature; a detailed proof can be found in [32].

During the Yamabe flow, we can enforce the symmetry
in the following way. Assumevi andvj are two symmetric
interior vertices,Rτ (vi) = vj , vi, vj 6∈ ∂M , therefore their
target curvatures are the samēKi = K̄j, then during the
Yamabe flow, we always ensureui = uj.

4. Computational Algorithm

The computational algorithm for symmetric conformal
mapping is straight forward. It includes the following steps.

4.1. Finding the symmetric plane

Assume the input surface has a reflective symmetric plane
τ , this step aims at find the plane. Although there are rich
literature on finding symmetry of images, we focus on find-
ing the symmetry of a 3D surface. The generalized Hough
transformation has been introduced in [29] for finding the
symmetry plane of 3D point clouds. We adapt the method
to locate the symmetry plane for our dense point clouds of
human face surfaces.

4.2. Finding Feature Points

The scanned data sets have both texture information and
geometric information. In current work, we only utilize the
texture information for locating feature points. We apply
conventional SIFT method [30] on the texture image to find
major feature points, such as eye corners, mouth corners
etc. The symmetry of feature points can be computed by
the method in [31]. Then we project back the feature points
from the texture image to the 3D surfaces.

4.3. Cross Registration

S1 S2

D1 D2

-
f

?

φ1

?

φ2

-
g

Given two 3D face surfacesS1 andS2 of the same person
with different expressions and different boundaries, we want
to register them using symmetric conformal mapping. First,
we compute symmetric conformal mapsφ1 : S1 → D1,
φ2 : S2 → D2, using the symmetric information obtained
in the first step. Then we compute a constrained harmonic
mapg : D1 → D2, such thatg align the major corresponding
features and also preserves symmetry. The correspondence
between the major features are specified by the user.g =
(g1, g2) minimizes the harmonic energy

E(g) =

∫

D1

(
∂g1

∂x
+

∂g1

∂y
)2 + (

∂g2

∂x
+

∂g2

∂y
)2dxdy,

such thatg1(−x, y) = −g1(x, y), g2(−x, y) = g2(x, y).
Then the registration is given by

f = φ−1
2 ◦ g ◦ φ1 : S1 → S2.
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Figure 4. Comparison among different conformal mapping methods. Symmetric conformal map is most robust to
inconsistent boundaries.

Figure 5. Symmetric Conformal Mapping using Yamabe
flow.

5. Experimental Results

We implemented our algorithm using generic C++ on
Windows XP and used conjugate gradient optimization for

acceleration. The human face data sets are acquired using
high speed 3D scanner based on phase-shifting method in
[20]. The scanning speed is 30 frames per second, the
resolution for each frame is640 × 480. The experiments
are conducted on a HP xw4600 Workstation with Intel Core
2Duo CPU 2.33GHz, 3.98 GB of RAM. The running time
is reported in the following table.

Table 1. Computational time for symmetric conformal
maps.

Name Luke Anna 1 Anna 2 David 1 David 2
Faces 50,000 156,401 147,430 148,305 147,038
Verts 25,246 78,773 74,281 74,699 74,063

Time (s) 8 17 16 28 14

The symmetric conformal mapping for various human
face surfaces are illustrated in figures 1, 4 and 7. The



(partial) registration results for face surfaces with different
expressions and postures are illustrated in figure 8. Although
the boundaries are significantly different, and the registra-
tions are performed on the relatively small overlapping re-
gions, the texture pattern on the overlapping regions among
the four frames are very consistent. This demonstrates the
robustness of our method.

Figure 5 demonstrates the symmetric Yamabe flow
method as described in previous section. The target cur-
vatures are set to preserve the symmetry. During the flow,
the conformal factorsu are constrained to be symmetric.
The final conformal mapping image is also symmetric. This
example shows the flexibility of our method, that can handle
surfaces with complicated topologies.

Figure 6. Symmetric hyperbolic Yamabe flow.
6. Conclusion and Future Works

Conventional conformal mapping methods are susceptible
to inconsistent boundaries. This work proposes to improve
the robustness of conformal geometric methods by incor-
porating the symmetric information into the mapping pro-
cess. Novel conformal mapping algorithms based on solving
Riemann-Cauchy equation and curvature flow are devel-
oped, which preserves the symmetry of the input surface.
Experimental results demonstrate the symmetric conformal
mapping is insensitive to the boundary occlusions.

Although current work focuses on genus zero surfaces, it
can be directly generalized to high genus surfaces as well.
Figure 6 demonstrates such an example, a genus two surface
is conformally mapped to the hyperbolic space periodi-
cally using hyperbolic Yamabe flow method. In the future,
we will continue the exploration for high genus surfaces.
Furthermore, we will investigate to generalize the method
for surfaces with symmetries other than mirror reflection
and incorporate more geometric structural characteristics to
conformal mappings to improve the robustness and accuracy.
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