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Abstract. We consider the problem of constructing quasi-conformal
mappings between surfaces by solving Beltrami equations. This is of
great importance for shape registration.

In the physical world, most surface deformations can be rigorously
modeled as quasi-conformal maps. The local deformation is characterized
by a complex-value function, Beltrami coefficient, which describes the
deviation from conformality of the deformation at each point.

We propose an effective algorithm to solve the quasi-conformal map
from the Beltrami coefficient. The major strategy is to deform the con-
formal structure of the original surface to a new conformal structure by
the Beltrami coefficient, such that the quasi-conformal map becomes a
conformal map. By using holomorphic differential forms, conformal maps
under the new conformal structure are calculated, which are the desired
quasi-conformal maps.

The efficiency and efficacy of the algorithms are demonstrated by ex-
perimental results. Furthermore, the algorithms are robust for surfaces
scanned from real life, and general for surfaces with different topologies.

Keywords: Quasic-Conformal Map, Beltrami Equation, Riemannian
Metric, Uniformization.

1 Introduction

Computing the mappings between surfaces is of fundamental importance in many
fields in science and engineering. Mappings will introduce distortions on sur-
faces, which can be measured by area distortion and angle distortion. Mappings
without area or angle distortions are isometric, those without angle distortions
are conformal. Isometric and conformal mappings are extremely rare in real-
ity. Most mappings in the physical world have bounded angle distortion, which
can be categorized as quasi-conformal mappings. Conformal mappings are fully
determined by boundary conditions. Quasi-conformal mappings are determined
by both boundary conditions and a function, the so-called Beltrami coefficient,
defined on the source surface, therefore it gives point-wise control to the users.
The detailed control of the mapping is crucial for many practical applications.
This work focuses on how to construct quasi-conformal mappings from the given
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(a) Original face (b) Conformal mapping (c) Circle packing from (b)

(d) Checker-board texture (e) Quasi-conformal mapping (f) Circle packing from (e)

Fig. 1. Conformal and Quasi-Conformal mappings for a topological disk

Beltrami coefficients. Although the discussions are mainly on genus zero surfaces
with an arbitrary number of boundaries, the method can be directly applied to
surfaces with general topologies.

Suppose two surfaces S1, S2 have Riemannian metrics g1 and g2. A home-
omorphism φ maps S1 to S2. We say φ is conformal, if it is angle-preserving.
Mathematically, the pull back metric φ∗g2 = e2ug1. Locally, conformal mapping
is just scaling, therefore the local shapes are well preserved. Figure 1 shows a
conformal map from a human face surface (a) to the planar disk (b). From the
planar image (b), it is obvious that the major facial features are well preserved.
If we put a checker-board on the disk, and pull back the texture onto the face
surface, all the right-angled corners of checkers are preserved (d). Geometrically,
a conformal mapping maps infinitesimal circles to infinitesimal circles. As shown
in the figure, the regular circle packing on the texture is pulled back to the face,
and the shape of the circles is well preserved as shown in (c).

In general, conformal mappings are rare. Most mappings in physical world are
quasi-conformal. Conformal mappings have no angle distortions, while
quasi-conformal mappings introduce bounded angle distortion. Geometrically,
a quasi-conformal map transforms infinitesimal circles on the source surface to
infinitesimal ellipses on the target surface with bounded eccentricity. Figure 1(e)
shows a quasi-conformal map from the face surface to the unit disk. Frames (c)
and (f) show that the circles on the texture are mapped to the ellipses.
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Fig. 2. Illustration of how Beltrami coefficient µ measures the distortion by a quasi-
conformal mapping that maps a small circle to an ellipse with dilatation K

Quasi-conformal maps are controlled by both boundary condition and the so-
called Beltrami coefficient μ. The characteristics of the infinitesimal ellipses, the
orientation of the axis and the ratio between the longer axis and shorter axis
are encoded in μ, but the scale factor is absent. In detail, let φ : S1 → S2 be
the map, z and w local conformal parameters of (S1,g1) and (S2,g2), such that
g1 = e2u1dzdz̄, g2 = e2u2dwdw̄, then φ has a local representation. The Beltrami
coefficient is defined as

∂φ

∂z̄
= μ(z)

∂φ

∂z
. (1)

The ratio between the two axis of the ellipse is given by K = 1+|μ(z)|
1−|μ(z)| and

the orientation of the axis is related to argμ(z). As shown in Figure 2, two
orthogonal lines associated with the circle are the principal distortion directions
and the angle is measured between corresponding principal distortion directions.

The fundamental problem is to find a quasi-conformal map φ, which satisfies
the given Beltrami coefficient μ, namely, solving Beltrami equations (see Eqn. 1).
The major strategy is as follows. First, we compute conformal maps, φ1 : S1 →
D1, φ2 : S2 → D2, where D1 and D2 are domains on the complex plane, with
the canonical Euclidean metric g0 = dzdz̄. Then we construct a quasi-conformal
map τ : (D1,g0) → (D2,g0), such that the Beltrami coefficient of τ equals to μ.
Then the pullback metric on D1 induced by τ is

τ∗(g0) = |∂τ
∂z

|2|dz + μdz̄|2,

which is conformal to the metric g1 = |dz + μdz̄|2, and then τ : (D1,g1) →
(D2,g0) is a conformal map. By changing the metric on D1 from g0 to g1,
the quasi-conformal map τ becomes conformal and can be computed by using
mature methods for conformal mappings, such as using Gu-Yau’s method based
on holomorphic differential forms. Finally, the desired quasi-conformal mapping
satisfying the Beltrami equation (see Eqn. 1) is given by φ = φ−1

2 ◦ τ ◦ φ1.
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Figure 1 (e) and (f) show a quasi-conformal map, whose Beltrami coefficient is
given by μ(z) = z, where z is the conformal parameter as shown in (b). Near
the nose tip, μ(z) is close to zero, therefore, the mapping there is close to be
conformal, and the ellipses are rounder as illustrated in (f).

The paper is organized in the following way: Section 2 briefly review the
most related works in the field; Section 3 introduces the theoretic background;
Section 4 focuses on the computational methodologies; Section 5 reports the
experimental results; the paper is concluded in Section 6.

2 Previous Work

Recently, with the development of digital scanning technology, computing confor-
mal mappings between surfaces becomes more and more important. In computer
graphics and discrete mathematics, much sound research has focused on discrete
conformal mappings.

The computational method of current work is mainly based on harmonic maps
and holomorphic differential forms. Here, we briefly overview most related work,
and refer readers to [1, 2] for thorough surveys. For example, curvature flow is
another important method for computing conformal mappings. In current work,
we skip the curvature flow methods, such as discrete Ricci flow [3, 4].

Discrete harmonic maps were constructed in [5], where the cotan formula was
introduced. First order finite element approximations of the Cauchy-Riemann
equations were introduced by Levy et al. [6]. Discrete intrinsic parameterization
by minimizing Dirichlet energy was introduced by [7]. Mean value coordinates
were introduced in [8] to compute generalized harmonic maps; Discrete spherical
conformal mappings were used in [9] and [10].

Discrete holomorphic forms were introduced by Gu and Yau [11] to compute
global conformal surface parameterizations for high genus surfaces. Another ap-
proach of discrete holomorphy was introduced in [12] using discrete exterior
calculus [13]. The problem of computing optimal holomorphic 1-forms to reduce
area distortion was considered in [14]. Gortler et al. [15] generalized 1-forms to
the discrete case, using them to parameterize genus one meshes. Tong et al. [16]
generalized the 1-form method to incorporate cone singularities. Discrete one-
forms have been applied for meshing point clouds in [17], surface tiling [18],
surface quadrangulation [19]. The holomorphic 1-form method has been applied
in virtual colonoscopy [20]. The colon surface is reconstructed from MRI images,
and conformally mapped to the planar rectangle. This improves the efficiency
and accuracy for detecting polyps. Conformal mapping is used for brain cortex
surface morphology study in [10]. By mapping brain surfaces to spheres, cor-
tex surface registration and comparison become straightforward. Holomorphic
1-form method has also been applied in computer vision [21, 22] for 3D shape
matching, recognition and stitching. In geometric modeling field, constructing
splines on general surfaces is one of the most fundamental problems. It is proven
in [23] that if the surface has an affine structure, then splines can be general-
ized to it directly. Holomorphic 1-forms can be applied for computing the affine
structures of general surfaces.
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3 Theoretical Background

In this section, we briefly introduce the major concepts in differential geometry
and Riemann surface theory, which are necessary to explain the quasi-conformal
maps. We refer readers to [24, 25] for detailed information.

3.1 Conformal Structure and Riemann Surface

A Riemann surface is a surface with a complex structure, such that complex
analysis can be defined on the surface.

Suppose f : C → C is a complex function. f(x, y) = (u(x, y), v(x, y)), f is
holomorphic, if it satisfies the following Cauchy-Riemann equations,{

∂u
∂x = ∂v

∂y
∂u
∂y = − ∂v

∂x

If a holomorphic function f is a bijection, and the inverse f−1 is also holomor-
phic, then f is biholomorphic.

As shown in Fig.3, suppose S is a surface covered by a collection of open sets
{Uα}, S ⊂ ⋃

α Uα. A chart is (Uα, φα), where φα : Uα → C is a homeomorphism.
The chart transition function φαβ : φα(Uα∩Uβ) → φβ(Uα∩Uβ), φαβ = φβ ◦φ−1

α .
The collection of the charts A = {(Uα, φα)} is called the atlas of S. If all chart
transition functions are biholomorphic, then the atlas is called a conformal atlas
of the surface. Two conformal atlases are compatible, if their union is still a
conformal atlas. The union of all compatible conformal atlases is called the
conformal structure of the surface. A surface with a conformal structure is called
a Riemann surface.

Suppose S has a Riemannian metric g, the local coordinates zα is called
isothermal, if the metric has local representation

g = e2λ(z)dzdz̄.

φα
φβ

Uα Uβ

S

φαβ

φα (Uα) φβ (Uβ)

Fig. 3. A surface is covered by an atlas. If all chart transitions are holomorphic, the at-
las is a conformal atlas. If all local coordinates are isothermal, the surface is a Riemann
surface.
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A conformal structure is compatible with the Riemannian metric, if all its local
coordinates are isothermal. In practice, the surfaces of interest are embedded
in R3, therefore with the induced Euclidean metric. The conformal structure
compatible to the induced metric is our major focus.

Suppose ω is a complex differential form, such that on each chart (Uα, φα)
with local complex parameter zα, ω = fα(zα)dzα. Suppose two charts overlap
Uα ∩ Uβ , then

fβ(zβ) = fα(zα(zβ))
dzα

dzβ
.

If fα is conformal for arbitrary local coordinates, then ω is called a holomorhic
1-form. All holomorphic 1-forms form a group, which is isomorphic to the first
cohomology group of the surface. The holomorphic 1-form plays a crucial role in
computing conformal mappings.

3.2 Quasi-Conformal Mapping

Suppose (S1,A1) and (S2,A2) are two Riemann surfaces and Ai’s are their
conformal structures. Suppose (Uα, φα) is a local chart of A1, and (Vβ , ψβ), is a
local chart of A2. φ : S1 → S2 is a conformal map if and only if

ψβ ◦ φ ◦ φ−1
α : φα(Uα) → ψβ(Vβ)

is biholomorphic. A conformal map preserves angles.
A generalization of the conformal map is called the quasi-conformal map

which is an orientation-preserving homeomorphism between Riemann surfaces
with bounded conformality distortion, in the sense that the first order approx-
imation of the quasi-conformal homeomorphism takes small circles to small el-
lipses of bounded eccentricity. Thus, a conformal homeomorphism that maps a
small circle to a small circle can also be regarded as quasi-conformal.

Mathematically, φ is quasi-conformal provided that it satisfies the Beltrami
equation in Eqn. 1 on a local chart for some complex valued Lebesgue measurable
μ satisfying |μ|∞ < 1. μ is called the Beltrami coefficient, which is a measure of
conformality. In particular, the map φ is conformal around a small neighborhood
of p when μ(p) = 0. In general, φ maps an infinitesimal circle to a infinitesimal
ellipse. From μ(p), we can determine the angles of the directions of maximal
magnification as well as the amount of maximal magnification and maximal
shrinking. Specifically, the angle of maximal magnification is argμ(p)/2 with
magnifying factor 1 + |μ(p)|; the angle of maximal shrinking is the orthogonal
angle (argμ(p)−π)/2 with shrinking factor 1−|μ(p)|. The distortion or dilation
is given by:

K =
1 + |μ(p)|
1 − |μ(p)| (2)

Thus, the Beltrami coefficient μ gives us all the information about the confor-
mality of the map (See Fig. 2).
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In terms of the metric tensor, considering the effect of the pullback under φ
of the canonical Euclidean metric g0, the resulting metric is given by:

φ∗(g0) = |∂φ
∂z

|2|dz + μ(z)dz)|2 (3)

4 Computational Algorithm

This section introduces the computational algorithms for computing conformal
mappings for surfaces based on holomorphic 1-form method.

4.1 Conformal Mapping

Doubly Connected Domain. Figure 4 shows a human face surface, with the
mouth sliced open, therefore it is a doubly connected domain (a topological
annulus). We denote the surface as S, its outer boundary as γ1 and the inner
boundary as γ0, namely ∂S = γ1 − γ0. The conformal mapping φ : S → C is
constructed as follows:

1. Compute a holomorphic 1-form ω, such that

Im(
∫

γ1

ω) = 2π,

where Im() denotes the imaginary part.

γ0

γ1

τ
τ+τ−

(a) Input face (b) Exact harmonic form (c) Closed harmonic form

(d) Holomorphic form (e) Conformal image (f) Circle packing from (e)

Fig. 4. Conformal mapping for doubly connected domain
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2. Choose a base point p ∈ S, Im(φ(p)) = 0. For any point q ∈ S, find an
arbitrary path γ connecting p and q, then

φ(q) = exp(
∫

γ

ω).

We applied Gu-Yau’s algorithm for computing the holomorphic 1-form, which
is similar to that introduced in [11].
1. Compute a harmonic function f : S → R, such that⎧⎨

⎩
Δf = 0
f |γ0 = 0
f |γ1 = 1

Let ω1 = df . Figure 4 (b) shows the exact harmonic 1-form ω1.
2. Find a path τ connecting the two boundaries as shown in Fig. 4 (a). Slice the

surface along the path to get a topological quadrilateral S̃, with boundaries
γ0, τ

+, γ1, τ
−.

3. Randomly set a function g : S̃ → R, such that{
gτ+ = 2π
gτ− = 0

g is random on other points.
4. The gradient of g is a closed 1-form on S, denoted as ω̃2 = dg. Compute a

function h : S → R, such that

∇ · (ω̃2 + dh) = 0,

with Neuman boundary condition

< ω̃2 + dh,n >= 0,

where n is the normal to the boundaries γ0, γ1. Let ω2 = ω̃2 + dh, Fig. 4 (c)
shows the closed harmonic 1-form ω2.

5. Find a constant c, such that ∫
τ

∗ ω2 = c

∫
τ

ω1,

where ∗ is the Hodge star operator. Then ω = cω1 +
√−1ω2 is the desired

holomorphic 1-form. Figure 4 (d) shows the holomorphic 1-form ω.

Simply Connected Domain. The construction of a conformal mapping for
a simply connected domain (a topological disk) to the planar unit disk is very
straight forward. Given a surface which is a topological disk, as shown in Fig. 1
(a), a small hole is punched at the point p. Then we map the punched disk, which
is a topological annulus, to the planar annulus with the unit outer boundary. We
choose a point q different from p, and map q to the real axis. We then shrink the
size of the hole, and get another conformal mapping, still the outer boundary is
with radius one, q is mapped to the real axis. If the size of the hole shrinks to
zero, the conformal mapping of the annulus converges to the conformal mapping,
such that p is mapped to the origin, q is mapped to the real axis. Figure 5 shows
the conformal mapping result for a semi-cortex surface to the unit planar disk.
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Fig. 5. Conformal mapping for simply connected domain

Multiply-Connected Domains. The construction of conformal mapping from
a multiply connected domain to a planar disk with circular holes can be de-
duced to the doubly connected case by using Koebe’s method [26]. As shown in
Fig. 9, the human face surface in (a) is segmented to D0, D1, D2, D3, where D0

is a multiply connected domain. The domain is conformally mapped to a planar
disk with circular holes as shown in (b). The conformality is illustrated by tex-
ture mapping a circle packing pattern in (c), where all the small circles on the
texture are mapped to circles on the surface.

The algorithm is as follows. The face surface is denoted as S. First, D1 is
removed from the surface S as shown in (d). Then the doubly connected domain
S − D1 is conformally mapped to a planar annulus as shown in (e). Then D1

is glued back to the planar annulus by solving a harmonic map, such that the
boundary of D1 is mapped to the inner circle of the planar annulus. By using
a scaling and a Möbius transformation, the conformal mapping is normalized,
such that the point p ∈ S is mapped to the origin, and the boundary point q ∈ S
is mapped to +1. The result is shown in (f). A similar procedure is repeated for
segment D2 shown in (g), (h) and (i), and for segment D3 in (j), (k) and (l). By
repeating this procedure, the images of the inner holes are getting rounder and
rounder. Eventually, the images converge to a planar disk with circular holes
where p is mapped to the origin, q is mapped to +1, as shown in (b).

The detailed proof for the convergence of Koebe’s algorithm can be found
in [26]. The convergence is very fast. In the example, the procedure only goes
through each segment Dk, k = 1, 2, 3 once, and the images of the inner bound-
aries are very close to circles as shown in Fig. 9 (l).
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(a) µ = 0.0 (b) µ = 0.25 (c) µ = 0.25i

Fig. 6. Quasi-Conformal mapping for a simply connected domain

4.2 Quasi-Conformal Maps

Simply Connected Domain. Given a surface S, which is a topological disk,
two points p, q ∈ S, we want to compute a quasi-conformal map φ : S → D, such
that φ satisfies the Beltrami equation

∂φ

∂z
= μ(z)

∂φ

∂z
,

where z is the isothermal coordinate of S. Furthermore

φ(p) = 0, φ(q) ∈ R
+.

First, we compute a conformal map φ1 : S → D, where D is the planar unit
disk with the canonical Euclidean metric:

g0 = dzdz.

Assume the Beltrami coefficient is defined on D, μ : D → C, then we construct
a new Riemannian metric g for D,

g(z) = |dz + μ(z)dz|2. (4)

We compute a conformal map φ2 : (D,g) → (D,g0), such that φ2(φ1(p)) =
0, φ2(φ1(q)) ∈ R+. Then the quasi-conformal map is given by φ = φ2 ◦ φ1,
φ : S → (D,g0), which satisfies the Beltrami equation.
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(a) µ = 0.0 (b) µ = 0.25 (c) µ = 0.25i

Fig. 7. Quasi-Conformal mapping for a doubly connected domain

Doubly Connected Domain. Similarly, if S is a topological annulus, first
a conformal map φ1 : S → A2 is computed using the algorithm discussed
above, where A2 is a planar annulus with canonical Euclidean metric g0, whose
boundaries are concentric circles. Similarly, a new metric g is constructed for
T 2 using Formula 4. Then a conformal map φ2 : (A2,g) → (Ã2,g0) is com-
puted, where Ã2 is another planar annulus with canonical Euclidean metric and
concentric boundary circles. The shape of Ã2 is determined automatically by
(T 2,g). The quasi-conformal map φ is given by the composition of φ1 and φ2,
φ : φ2 ◦ φ1 : S → (Ã2,g0).

Multiply Connected Domain. Suppose S is a multiply connected domain
with boundaries

∂S = γ0 − γ1 − · · · − γn

First, we fill all the holes with topological disks D1, D2, · · ·Dn, such that ∂Dk =
γk. Then S̃ = S ∪ {⋃k Dk} is a simply connected domain. Then we compute a
conformal map φ1 : S̃ → D. We can extend the Beltrami coefficient μ to μ̃ on D

from φ1(S) to φ1(Dk)’s by solving harmonic functions using Dirichlet boundary
condition,

μ̃(p) = μ(p), ∀p ∈ S;Δμ̃(p) = 0, p ∈
⋃
k

Dk.
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(a) µ = 0.25 (b) µ = 0.25i (c) µ = 0.25 + 0.25i

Fig. 8. Quasi-Conformal mapping for a multiply connected domain

Then we can compute a quasi-conformal map φ2 : (D,g0) → (D,g0), such that

∂φ2

∂z̄
= μ̃(z)

∂φ2

∂z

Then we can compute a conformal map from a planar multiply connected domain
(φ2 ◦ φ1(S),g0) with canonical Euclidean metric to a planar disk with circular
holes, φ3 : φ2 ◦ φ1(S) → (D,g0). The desired quasi-conformal map φ is the
composition

φ = φ3 ◦ φ2 ◦ φ1 : S → (D,g0),

which satisfies the Beltrami equation (see Eqn. 1).

4.3 Discrete Algorithm

In practice, all the surfaces are approximated by simplicial-complexes embedded
in R3, denoted asM = (V,E, F ), where V,E, F are the sets of vertices, edges and
faces respectively. We use vi to denote the i-th vertex, [vi, vj ] the halfedge from
vi to vj , [vi, vj , vk] the face with vertices vi, vj , vk, sorted counter clockwisely.
A discrete 0-form f : V → R is a real valued function defined on the vertices.
A discrete 1-form ω : E → R, defined on edges. The exterior differentiation
operator is defined as

df([vi, vj ]) = f(vj) − f(vi).
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and
dω([vi, vj , vk]) = ω([vi, vj ]) + ω([vj , vk]) + ω([vk, vi]).

ω is a closed 1-form, if dω = 0.
Suppose two faces [vi, vj , vk] and [vj , vi, vl] share an edge [vi, vj ]. The weight

on edge [vi, vj ] is defined as

wij = cot θij
k + cot θij

l ,

where θij
k is the corner angle at the vertex vk in the face [vi, vj , vk]: θij

l is defined
in the similar way. If the edge [vi, vj ] is on the boundary and only attached to
[vi, vj , vk] then the edge weight is defined as

wij = cot θij
k .

The discrete harmonic energy of a 0-form f : V → R is defined as

E(f) =
∑

[vi,vj ]

wij(f(vj) − f(vi))2.

The divergence operator is defined as

∇ · ω(vj) =
∑

j

wijω([vi, vj ]),

where vj are all the vertices connecting to vi. A discrete harmonic 1-form satisfies
∇ · ω = 0.

Let ω be a closed 1-form. A face [vi, vj , vk] can be isometrically embedded on
the plane, and then ω has local representation as ω = adx + bdy. The Hodge
star operator is defined as ∗ω = −bdx + ady, where a, b are two real numbers
and the wedge product between two closed 1-forms ωk = akdx + bkdy, k = 1, 2
is given by

ω1 ∧ ω2 =
∣∣∣∣a1 b1
a2 b2

∣∣∣∣ dx ∧ dy (5)

The inner product between ω1 and ω2 is defined as

< ω1, ω2 >=
∫

M

ω1 ∧ ∗ω2. (6)

Let M be a triangular mesh of genus g. We first compute its first homology
group H1(M,Z) basis by CW-cell decomposition, which we denote by
{γ1, γ2, · · · , γ2g}. Then we compute the dual basis for the cohomology group
H1(M,R), {τ1, τ2, · · · , τ2g}, such that∫

γi

τj = δij .

Then we find 0-forms gi : M → R, such that

∇ · (τi + dgi) = 0, i = 1, 2, · · · , 2g,
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then ωi = τi + dgi’s are harmonic 1-forms. The Hodge star of a harmonic 1-form
is also harmonic, therefore

∗ωi =
∑

j

λijωj ,

the coefficient of λij can be computed by solving the linear system

< ωk, ωi >=
∑

j

λij

∫
M

ωk ∧ ωj , k = 1, 2, · · · , 2g,

the left hand side is computed using formula 6, the right hand side by Formula
5. The holomorphic 1-form basis is given by

{ω1 +
√−1∗ω1, ω2 +

√−1∗ω2, · · · , ω2g +
√−1∗ω2g}.

Surfaces with boundaries can be converted to symmetric closed surfaces by
double covering and therefore their holomorphic 1-form group basis can be com-
puted in the similar way. For details, we refer readers to Gu and Yau’s work [11].
Conformal mappings between genus zero surfaces with boundaries can be car-
ried out using holomorphic 1-forms, which can be approximated in the discrete
setting.

By the above discrete forms and the operators, the algorithms described in
previous two subsections can be carried out in the discrete setting.

5 Experimental Results

Most of the surfaces are captured using 3D scanner based on phase shifting
principle [27, 28]. The scanned resolution is 640 × 480, at 60 frames per second.
The triangulations are directly determined by the pixel grid structure of the
scanned images. We did not perform preprocessing operations, such as smooth-
ing, denoising and mesh simplification. The raw data sets are computed using the
algorithms described above. This demonstrates the robustness of our method.

All the algorithms are implemented using generic C++ on a Windows XP
platform with Dual 2.33GHz CPU and 3.98 GB of RAM. The linear systems are
in general symmetric and positive definite. We use the Matlab C++ library as
the linear solver.

In our experiment, the surfaces are described as triangular meshes. The Bel-
trami coefficient μ is a function over the whole surface. In Fig. 1(e), the μ is
set to be x+ iy for each vertex. The quasi-conformal mappings are constructed
using holomorphic differential forms, which is general for surfaces with different
topologies. In other cases, it is set to be a constant complex number. Table 1
lists the computational time for each case with different Beltrami coefficient μ.
For large meshes with 160k faces, the processing time for Koebe’s method [26]
with multiple iterations is about 2.5 minutes. This demonstrates the efficiency
of our algorithm.
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D0

D1

D2D3

p
q p q

(a) Original surface (b) Planar domain (c) Texture mapping

(d) D1 is removed (e) Conformal mapping for (f) Möbius transform
S − D1 D1 is glued back

(g) D2 is removed (h) Conformal mapping for (i) Möbius transform
S − D2 D2 is glued back

(j) D3 is removed (k) Conformal mapping for (l) Möbius transform
S − D3 D3 is glued back

Fig. 9. Conformal mapping for a multiply connected domain using Koebe’s algorithm
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Table 1. Computational Time

Figure #Vertex #Face #Boundary Beltrami Coefficient µ Iterations Time

Fig. 1(e) 80593 160054 1 x + iy 1 102s

Fig. 6(a) 80593 160054 1 0.00 + 0.00i 1 73s
Fig. 6(b) 80593 160054 1 0.25 + 0.00i 1 110s
Fig. 6(c) 80593 160054 1 0.00 + 0.25i 1 105s

Fig. 7(a) 80724 160054 2 0.00 + 0.00i 1 78s
Fig. 7(b) 80724 160054 2 0.25 + 0.00i 1 110s
Fig. 7(c) 80724 160054 2 0.00 + 0.25i 1 112s

Fig. 9(c) 15160 29974 4 0.00 + 0.0i 2 156s
Fig. 8(a) 15160 29974 4 0.25 + 0.0i 2 160s
Fig. 8(b) 15160 29974 4 0.00 + 0.25i 2 156s
Fig. 8(c) 15160 29974 4 0.25 + 0.25i 2 157s

Besides the scanned data sets, we also test human cortex surface as shown in
Fig. 5. The surface is reconstructed from MRI images. Furthermore, we tested
some synthetic data to verify the accuracy of our method. The algorithm recovers
the correct solution with high accuracy.

6 Conclusion and Future Works

This work introduces a rigorous method for computing quasi-conformal map-
pings by solving Beltrami equations. The method is efficient and robust. The
major point is to deform the Riemannian metric by the Beltrami coefficient and
convert a quasi-conformal mapping to a conformal mapping. In the current work,
the method is based on holomorphic differentials, and it can be directly gener-
alized to discrete Ricci flow [29,3,4] and to the Yamabe flow method [30,31,32].

In the future, we plan to apply quasi-conformal mappings to shape regis-
tration, surface comparison, shape recognition, and many other applications in
computer graphics, computer vision, medical imaging and geometric modeling.
Also, we will explore rigorous algorithms for computing extremal quasi-conformal
maps.
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