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Abstract—Teichmüller shape space is a finite di-
mensional Riemannian manifold, where each point
represents a class of surfaces, which are conformally
equivalent, and a path represents a deformation
process from one shape to the other. Two surfaces in
the real world correspond to the same point in the
Teichmüller space, only if they can be conformally
mapped to each other. Teichmüller shape space can
be used for surface classification purpose in shape
modeling.

This work focuses on the computation of the
coordinates of high genus surfaces in the Teichmüller
space. The coordinates are called as Fenchel-Nielsen
coordinates. The main idea is to decompose the
surface to pairs of hyperbolic pants. Each pair of
pants is a genus zero surface with three boundaries,
equipped with hyperbolic metric. Furthermore, all
the boundaries are geodesics. Each pair of hyperbolic
pants can be uniquely described by the lengths of
its boundaries. The way of gluing different pairs
of pants can be represented by the twisting angles
between two adjacent pairs of pants which share a
common boundary.

The algorithms are based on Teichmüller space
theory in conformal geometry, and they utilize the
discrete surface Ricci flow. Most computations are
carried out using hyperbolic geometry. The method
is automatic, rigorous and efficient. The Teichmüller
shape space coordinates can be used for surface
classification and indexing. Experimental results on
surfaces acquired from real world showed the po-
tential value of the method for geometric database
indexing, shape comparison and classification.

Keywords—conformal geometry, Teichmüller
space, shape space, shape analysis, shape
classification.

1. INTRODUCTION

Surfaces in real life have multiple geometric struc-
tures, such as topology, conformal structure, Riemannian
metric etc. They can be classified according to different
geometric structures. This work focuses on the classifi-
cation which is based on conformal geometric structures.

A conformal mapping between two surfaces preserves
angles. Two surfaces are conformally equivalent, if
there exists a conformal mapping between them. All

conformal equivalent classes for fixed topology form a
finite dimensional Riemannian manifold, the so-called
Teichmüller space. In this shape space, each point rep-
resents a class of surfaces, and a curve is a deformation
process from one shape to the other. Teichmüller theory
plays an important role in Riemann surface theory,
differential geometry and theoretic physics. With the
advancement of computational conformal geometry, the
coordinates of shapes in Teichmüller space can be
computed efficiently today, which is the major focus of
the current work.

The main idea for Teichmüller space coordinates is
as follows. First, each closed surface of genus g > 1 in
R3 has an induced Euclidean metric. By using curvature
flow method, one can conformally deform the metric to a
canonical Riemannian metric with constant −1 Gaussian
curvature, which is called hyperbolic metric. Then under
the hyperbolic metric, one can decompose the surface to
2g−2 pairs of pants, ( a pair of pants are a genus zero
surface with three boundaries), by cutting the surface
along 3g−3 geodesic loops. Two adjacent pairs of pants
are glued together along a cutting geodesic loop with an
angle, called twisting angle. The lengths of the cutting
loops and the twisting angles give the coordinates of the
surface in the Teichmüller space, which are the so-called
Fenchel-Nielsen coordinates.

The Fenchel-Nielsen coordinates uniquely determine
the conformal structure of the surface. They can be
treated as the fingerprint of the surfaces and can be
applied for shape comparison and classification. Two
surfaces with the same Fenchel-Nielsen coordinates can
be further compared by their Riemannian metrics and
the embedding in R3.

a) Contributions: The major contributions of the
current work are:

A A framework of using Teichmüller shape space for
surface classification and comparison.

B A set of rigorous and practical algorithms for
computing Fenchel-Nielsen coordinates for high
genus surfaces, including hyperbolic pants decom-
position, computing the closed geodesic, shortest
paths on hyperbolic pants etc.

The computational algorithms are based on hyperbolic
surface Ricci flow. Most computations are carried out
using hyperbolic geometric methods. We tested our
algorithms using surfaces from real life. Potential ap-
plications are illustrated as well.



The paper is organized in the following way: Section
II will briefly introduce the previous works in the
literature; Section III will introduce the major theoretic
concepts from differential geometry, Riemann surface
theory; Details of algorithms are explained in Section
IV; experimental results are reported in Section V; and
the work is concluded in Section VI.

2. PREVIOUS WORKS

Our proposed work of computing surfaces’ Fenchel-
Nielsen Coordinates in Teichmüller Shape Space can be
used as shape descriptors to classify surfaces according
to their conformal structures. Surfaces which have the
same conformal structure share the same descriptor,
which is invariant to translation, rotation, scaling, iso-
metric deformation, and triangulations. The interested
reader is referred to [17], [5] and [11] for comprehensive
surveys of different shape descriptors and evaluations of
their performance. We will focus here only on recent
shape descriptors which are most relevant to our work
using conformal geometry.

To the best of our knowledge, the first work proposed
to use conformal structure for shape classification is
[9], where the conformal structure is represented as
period matrices. Later, geodesic spectrum of surfaces
under their uniformization metrics are applied as the
conformal structure descriptors in [7], which can be
computed symbolically. A general framework for 3D
surface matching is proposed in [6] and [14]. By confor-
mally parameterizing the 3D surfaces to canonical 2D
domains, the matching problem is greatly simplified. If
the surfaces are conformally equivalent, then 2D map-
ping is an identity with appropriate boundary conditions.
Luo coordinates [12], which define surface conformal
structure in Teichmüller space using the lengths of a
special group of geodesics on surfaces, are used for
shape descriptors in [8]. Recently, the histogram of the
conformal factor computed from surface uniformization
metric is introduced and applied as shape descriptor in
[15]. This descriptor is intrinsic and can be applied to
general surfaces, but its dimension is infinite.

Previous methods using geodesic lengths as coordi-
nates have more than 6g− 6 numbers, which is the
dimension of Teichmüller space. Therefore there are
redundancy. For Fenchel-Nielsen coordinates, each co-
ordinate component is independent of others, so the
representation is more compact. The correlations among
the components of Luo’s coordinates are complicated
and unclear, while the F-N coordinates have strong
intuition behind. Basically, each pair of hyperbolic pants
are determined by their boundary lengths; the twisting
angle determine the gluing pattern of pants. So it is
trivial to construct a Riemann surface purely from
its F-N coordinates. Furthermore, Our method based
on consistent hyperbolic pants decomposition has less
ambiguity when used for surfaces comparison purpose.
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Fig. 1. (a) A pair of hyperbolic pants with three geodesic boundaries.
(b) A genus g surface with hyperbolic metric is decomposed to 2g−
2 pairs of hyperbolic pants by 3g− 3 geodesic cutting loops. The
twisting angles and lengths of cutting loops give the Fenchel-Nielsen
coordinates in the shape space. Here we visualize the twisting angle
on w2, which equals to the ratio between the hyperbolic distance of
|p1,P2| and the geodesic length of w2.

3. THEORETIC BACKGROUND

This section briefly introduces the background knowl-
edge of conformal geometry, which is necessary for the
discussion in the work. The basic concepts of algebraic
topology and hyperbolic geometry are briefly introduced
in the Appendix also. For more details, we refer readers
to the classical textbooks [13], [16] and [10].

3.1 Conformal Structure

Let S be a topological surface, we consider all the
possible Riemannian metrics on S, G = {g}. Two metrics
g1,g2 are said to be conformally equivalent, g1 ∼ g2, if
there exists a function u : S→ R, such that g1 = e2ug2.

Intuitively, the angle values measured by conformally
equivalent metrics are the same. Hence, conformal
means angle preserving. Then each conformal equivalent
class of the Riemannian metrics in G/∼ is a conformal
structure.

A mapping between two Riemann surfaces f : S1→ S2
is conformal, if it preserves angles. Conformal mappings
preserve conformal structures. Namely, if there exists a
conformal mapping between S1 and S2, the S1 and S2
have the same conformal structure.

3.2 Uniformization Theorem

In each conformal equivalent class of Riemannian
metrics, there exists a special metric, that induces con-
stant Gaussian curvature. This is the most fundamental
fact for surfaces.

Theorem III.1 (Uniformization). Let S be a surface
with a Riemannian metric g, there exists a Riemannian
metric g̃, such that g̃ is conformal to g and induces con-
stant Gaussian curvature, which is one of {+1,0,−1}.

For surfaces S with negative Euler number, there
exists a unique hyperbolic metric conformal to the
original metric. The universal covering space of S with
the hyperbolic metric can be isometrically embedded in
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the hyperbolic space H2. All the deck transformations
are Möbius transformation. The deck transformation
group is called the Fuchsian group of S. According
to Gauss-Bonnet theorem, each homotopy class has a
unique closed geodesic on a surface with a hyperbolic
metric.

3.3 Teichmüller Space and Fenchel-Nielsen Coordinates

Let S be a closed topological surface of genus g > 1.
All the conformal structures on S form a 6g−6 dimen-
sional manifold, called as Teichmüller space, denoted
as Tg. Because each conformal structure has a unique
hyperbolic metric, it is enough to consider only surfaces
with hyperbolic metrics for computing the Teichüller
space.

Assume S is with a hyperbolic metric, then its coor-
dinates in Tg can be constructed in the following way.

Definition III.2 (Pants). A pair of topological pants is
a genus zero surface with three boundaries.

Given a genus g surface, it can be decomposed
to 2g− 2 pairs of pants. Figure 1 illustrates one ex-
ample. Assume all the cutting loops are geodesics
{γ1,γ2, · · · ,γ3g−3}, then each pair of pants is pair of
hyperbolic pants.

Definition III.3 (Hyperbolic Pants). A pair of pants
is called a pair of hyperbolic pants, if it is with a
hyperbolic metric, and all boundaries are geodesics.

For each pair of hyperbolic pants P with three bound-
aries γi,γ j,γk, there are three shortest paths connecting
each pair of boundaries, e.g. τi connects γ j,γk, and
intersects γ j and γk with right corner angles.

Suppose two pairs of hyperbolic pants P1 and P2
are glued together along γ . The shortest path τ1 on
P1 intersects γ at p1, and the shortest path τ2 on P2
intersects γ at p2, then the twisting angle on γ is given
by

θ = 2π
d(p1, p2)
|γ|

where d(p1, p2) is the geodesic distance between p1 and
p2, |γ| is the length of γ .

Definition III.4 (Fenchel-Nielsen Coordinates). Sup-
pose S is a genus g > 1 closed surface with
a hyperbolic metric. S is decomposed to pairs
of pants {P1,P2, · · · ,P2g−2} by closed geodesics
{γ1,γ2, · · · ,γ3g−3}. Then Fenchel-Nielsen coordinates of
S in the Teichmüller space Tg are given by

{(l1,θ1),(l2,θ2), · · · ,(l3g−3,θ3g−3)},
where (lk,θk) are the length and twisting angle of γk.

3.4 Surface Ricci Curvature Flow

Let S be a surface embedded in R3. S has a Rie-
mannian metric induced from the Euclidean metric of
R3, denoted by g. Suppose u : S → R is a scalar

function defined on S, then ḡ = e2ug is also a conformal
metric. The Gaussian curvatures will also be changed
accordingly. The Gaussian curvature will become

K̄ = e−2u(−∆gu+K), (1)

where ∆g is the Laplacian-Beltrami operator under the
original metric g. The above equation is called the
Yamabe equation. Yamabe equation can be solved using
Ricci flow method. The Ricci flow deforms the metric
g(t) according to the Gaussian curvature K(t) (induced
by itself), where t is the time parameter

dgi j(t)
dt

= 2(K̄−K(t))gi j(t). (2)

Ricci flow method can be applied to compute surface
hyperbolic metric.

4. ALGORITHMS

The key of our algorithm is to compute hyperbolic
pants decomposition for a given closed high genus sur-
face. The geodesic lengths of cutting loops which seg-
ment the surface into pairs of hyperbolic pants and the
angles of gluing pair of pants together are the Fenchel-
Nielsen coordinates of the surface. The pipelines of our
algorithms can be listed as:

A Compute topological pants decomposition (section
IV-A);

B Compute the hyperbolic metric using Ricci flow
(section IV-B);

C Compute hyperbolic pants decomposition (section
IV-C);

D Compute the Fenchel-Nielsen coordinates (section
IV-D).

4.1 Compute Topological Pants Decomposition

To get hyperbolic pants decomposition, we need to
compute topological pants decomposition first. Surface
topological pants decomposition has been widely studied
and done in [1], [2]. Since the major application of
computing Fenchel-Nielsen coordinates in out paper is
for surface index and classification purpose, we adopt
the methods in [4] and [3] to consistently decompose
surfaces with same topology to a set of corresponding
pants, which will induce consistent hyperbolic pants
decomposition and Fenchel-Nielsen coordinates. The
algorithm to consistently decompose surfaces to topo-
logical pants can be illustrated in Figure 2. For a closed
g > 1 surface, the set of cutting loops which decompose
surface to topological pants is 3g− 3. Since we have
indexed surfaces handles, the ordered set of topological
pants is consistent with surfaces of same topology.

4.2 Compute the Hyperbolic Metric

For a negative Euler number surface, there exists
a unique hyperbolic metric conformal to its original
metric. The computation of the hyperbolic metric on a
triangular mesh is based on the discrete hyperbolic Ricci
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Fig. 2. Topological pants decomposition for surface with g handles: (a) Compute surface handle loops bi and tunnel loops ai with the technique
(and the software) presented in [4]; (b) Slice surface open along tunnel and handle loops; (c) Connect all other boundaries except c0 to form a
big boundary and get a topological cylinder; (d) Find a locally shortest loop w0 along the path l connecting boundaries c0 and ć0, which is the
waist of the handle; (e) Repeat the process to find waists for each handle; (f) Cutting handles out along each waist, we get a topological sphere
with g holes. Repeat this process as long as the total number of boundaries is less than 4: a locally shortest loop wi j which is homotopic to
wi ◦w j is computed (with the increasing number of indexes), and surface patch bounded by wi, w j , and wi j is cut out. (g) The set of cutting
loops are tunnel loops computed in (a), waists computed in (e), and loops computed in (f). They decompose the surface to topological pants.

flow algorithm. We brief the outline of the algorithm on
triangular mesh. Details can be found in [18] and [19].

A For each vertex vi, assign a circle with a initial
radius; For each edge ei j, its weight φi j is the
intersection angle of the two circles associated
with the ending vertices of the edge, vi and v j.

B The edge length li j of ei j is updated by current
vertex radius and edge weight using the hyperbolic
cosine law,

cosh li j = coshri coshr j + sinhri sinhr j cosφi j.

C Update the angle θ jk
i , related to each corner i∠k

j,
using current edge lengths with the inverse hyper-
bolic cosine law.

D Compute the discrete Gaussian curvature Ki of
each vertex vi :

Ki =

{
2π−∑ fi jk∈F θ jk

i , interior vertex

π−∑ fi jk∈F θ jk
i , boundary vertex

(3)
where θ jk

i represents the corner angle attached to
vertex vi in the face fi jk.

E Update the radius ri of each vertex vi:

ri = ri + ε(K̄i−Ki)sinhri,

where K̄i is the target vertex curvature.
F Continue the procedure from B to E, until ‖K̄i−

Ki‖ of all vertices satisfy the user-specified error
tolerance.

4.3 Compute Hyperbolic Pants Decomposition

The key to decompose surfaces to hyperbolic pants
is to compute geodesics homotopic to the set of cutting
loops which decompose the given surface to topological
pants (see Section 4.1) under hyperbolic metric (see
Section 4.2). Our main idea is to embed the universal
cover of the given surface to hyperbolic space, then the
set of cutting loops will be lifted to a set of paths. For
each path, its two ending points will be projected to the
same point on the surface, while in the universal cover,
the two ending points for each path induce a Möbius

Fig. 3. Embed the Universal Cover Isometrically onto H2: (a) A
set of canonical homology basis is marked on surface with red; (b)
surface is sliced open along homology basis to form a unit disk,
the fundamental domain; (c) one layer copies of the fundamental
domain are transformed with Möbius transformation and glued with
the original one; (d) a portion of the universal cover embedded in
Poincaré disk.

transformation. The axis of each Möbius transformation,
when projected from universal cover to the surface,
is a geodesic loop homotopic to the original cutting
loop. The details of our algorithms are introduced in
the following pipelines.

1) Embed the Universal Cover Isometrically onto
H2: For practical purpose, we only need to construct
a portion of the universal cover which are needed in
the next step, instead of computing the whole universal
cover.

A Slice M open along a set of canonical homology
basis a1,b1,a−1

1 ,b−1
1 · · ·ag,bg,a−1

g ,b−1
g to form a

topological disk, the fundamental domain M̄ (Fig-
ure 3(a)) (see Appendix for definition of canonical
homology basis).

B Embed the fundamental domain of M into
Poincaré disk with boundary segments (Figure
3(b))

∂M̄ = a1b1a−1
1 b−1

1 · · ·agbga−1
g b−1

g .

The embedding method is similar to that in [19].
C To construct the universal cover of M, the embed-

ding of infinite copies of M̄ in Poincaré disk, we
need to compute a set of Möbius transformations,
called Fuchsian transformations. Suppose we want
to transform a copy of M̄ by a Möbius transfor-
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Fig. 4. Cutting loops which decompose surface to consistent
topological pants are lifted to universal cover: (a) a set of cutting loops
marked with green, and a set of canonical homology basis marked
with red; (b) Surface is cut open along homology basis to form a
fundamental domain. Part of its universal cover is embedded onto the
Poincaré disk with η1 and η2 lifted.

mation φ along a1 of M̄. Let the ending points of
a1 are p1,q1 on S̄, the ending points of a−1

1 are
p2,q2. To find a Möbius transformation φ which
maps p1,q1 to p2,q2, we first construct a unique
Möbius transformation φ1:

ψ0(z) = e−iθ0
z−p0

1− p̄0z
, where θ0 = arg

q0−p0

1− p̄0q0
,

such that p1 is mapped to the origin, and q1 to
a positive real number. Similarly, we construct
another unique Möbius transformation φ2, which
maps p2 to the origin and q2 to a positive real
number. Then φ = φ−1

2 ◦φ1.
Figure 3(c) and (d) shows the process of gluing copies

of the fundamental domain of a genus two surface in
the Poincaré disk. Different fundamental domains are
encoded by different colors.

2) Compute Hyperbolic Cutting Loops Based on Uni-
versal Cover: We have computed a set of cutting loops
which decompose the given surface to topological pants
in Section 4.1. In this section, we propose the algorithms
that compute a set of geodesics which are homotopic
to the set of topological cutting loops and decompose
the given surface to hyperbolic pants based on universal
cover.

For each cutting loop η computed in Section 4.1,
we perform a ”lifting” process which lifts the loop
to the universal cover. In practice, to save space, the
lifting is only needed to perform in a finite portion
of the universal cover, which contains η̃ . The portion
is constructed during the lifting process ”on the fly”,
which means we glue one more copy of the fundamental
domain only if we have to. The steps of the ”lifting” can
be summarized as:

A For one cutting loop η on surface M, we choose
one point p ( can be arbitrary point in η) as the
base point of the loop.

B To lift η to universal cover, We first lift the base
point p to the center fundamental domain M̄.

C Then we extend the lifting vertex by vertex along

the loop. Whenever the lifted loop intersects the
boundary segment of the fundamental domain,
we compute a Möbius transformation (with the
method in Section 4.3.1) to glue a new copy of the
fundamental domain along that boundary segment,
then we continue the extension of the lifting (see
η̃1 in Figure 4(b)). If the lifted path goes through a
corner point of the fundamental domain, we need
to compute 4g− 1 Möbius transformations and
glue 4g−1 copies at that corner (see η̃2 in Figure
4(b)).

D When the lifting process comes back to the base
point, we have lifted the cutting loop η in M to
a path η̃ in universal cover, with the base point
lifted to the two ending points p̃0 and p̃1 of η̃ .

E We construct a deck transformation τ , such that
τ(p̃0) = p̃1.

F Since τ is a Möbius transformation, its two fixed
points can be computed as

s = lim
n→∞

τn(z), t = lim
n→∞

τ−n(z),

where z is an arbitrary point in the unit disk.
G A unique geodesic γ̃ in Poincaré disk passing

through s and t can be computed, which is the
axis of τ .

Then the projection of γ̃ , γ = h(γ̃), from universal
cover back to the original surface, is the geodesic
homotopic to η .

4.4 Compute the Fenchel-Nielsen Coordinates

Let the geodesic cutting loops computed from Section
4.3.2 be {γ1,γ2, · · · ,γ3g−3}, we can decompose surface
M to hyperbolic pants. For a pair of hyperbolic pants
S, the three boundaries ∂S = γi + γ j + γk are geodesics
in hyperbolic space. Since we have indexed each handle
at the step of topological pants decomposition, we will
consistently assign a number to each boundary of the
pant.

To compute the Fenchel-Nielsen coordinates, we first
compute the length of each geodesic cutting loop. They
can be easily computed using hyperbolic geometry. Here
are the steps:

A For each geodesic cutting loop γk on M, the same
as we lift the topological cutting loop to universal
cover in Section 4.3.2, we first choose one base
point p on that loop, then lift that base point to
universal. We extend the lifting vertex by vertex
along this loop until we are back to the base point.

B Then γk is lifted to universal cover as part of a
geodesic hyperbolic line, with p lifted to p̃0 and
p̃1. The geodesic hyperbolic line will intersect the
unit circle at q0 and q1, then the length of γk
is given by the logarithm of the cross ratio of
{q0, p̃0, p̃1,q1}.

To compute the twisting angle associated with each
geodesic cutting loop, the algorithm is:
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(a) (b) (c) (d)

Fig. 5. Compute the Fenchel-Nielsen Coordinates. (a) Hyperbolic cutting loops computed on universal cover for cup model and 3-hole model;
(b) hyperbolic cutting loops computed on universal cover are projected back to original surfaces, and decompose cup model to 2 hyperbolic
pants, 3-hole model to 4 hyperbolic pants; (c) computing the geodesics perpendicular to the boundaries of these pants on universal cover;
(d) those perpendicular geodesics are projected back to the surface to visualize the twisting angles: the ratio between the distance of the two
intersection points (q1 and q2) along the same cutting loop and the geodesic length of that loop (marked with dark green). Again, the 3-hole
surface is very symmetric, so its twisting angle is very small, while for the cup model, its twisting angle is around π

2 .

A Suppose geodesic cutting loop γk glues the two
pairs of pants P1 and P2 together. The lifting of γk
and other boundaries of pants P1 and P2 (other
geodesic cutting loops) are geodesic hyperbolic
lines in Poincaré disk.

B The geodesic ζ1 between γ̃k and γ̃1 (let γ̃1 be
one of the other two lifted boundaries of pant
P1, with the smallest assigned number) is also a
hyperbolic line in Poincaré disk, which is not only
perpendicular to γ̃k and γ̃1, but also perpendicular
to the unit circle. Namely, we compute a circular
arc, orthogonal to three circles, the unit circle, γ̃k,
and γ̃1. ζ1 is unique.

C The same we compute the geodesic ϒ2 between
γ̃k and γ̃2 (the lifted boundary of pant P2).

D Suppose ζ1 intersects γk with point q1, and ζ2
intersects γk with point q2, hyperbolic distance
between q1 and q2 is |q1q2|, then the twisting
angle is given by

θk = 2π
|q1q2|

lk
,

where lk is the length of γ̃k in Poincaré disk.
Then the Fenchel-Nielsen coordinates are given by

{(l1,θ1),(l2,θ2), · · · ,(l3g−3,θ3g−3)}.
Figure 5 visualizes the computation of Fenchel-

Nielsen coordinates and results on models with different
topologies.

5. EXPERIMENTAL RESULTS

In our experiments, most of our testing surfaces are
closed genus two surfaces. For closed genus two sur-

faces, the dimension of Fenchel-Nielsen coordinates is
six. Half are lengths of geodesics, and half are associated
twisting angles. Due to the page limit, Table 1 only
lists the coordinates of some genus two surfaces in our
experiments.

We use L2 norm to measure their angle differences
and geodesic length differences to approximate their
distances in Teichmüller space. Using their approxi-
mated distances in Teichmüller space, we can classify
surfaces based on their conformal structure. Figure 6
shows the clustering of those genus two surfaces, with
the x-coordinate representing the twisting angle, the y-
coordinate representing the geodesic length. Based on
twisting angles, we can classify them into three big
groups. Then we can get more refined groups with
marked circles after adding geodesic lengths.

We compare our method with other existing confor-
mal structure based methods. The results are offered
in Table 2 with a selected teapot and its distances to
the other teapots. The sorting result of our method is
same with using Luo coordinates in [8], while there is
no redundancy of coordinates in our method, also, our
consistent hyperbolic pants decomposition can guaran-
tee easily the consistent comparison of coordinates for
surfaces with same topology.

Since the time complexities of algorithms to compute
consistent topological pants decomposition and surface
hyperbolic metric have been reported in [3] and [19]
respectively, we only analyze the time complexities of
algorithms to compute hyperbolic pants decomposition
and Fenchel-Nielsen coordinates. Although the time
complexity to construct universal cover grows exponen-
tially with surface genus number, and the computation
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Distance Geodesic Length Twisting Angle

1.542 4.07 1.536 0.01 0.05 0.01

1.52 4.443 1.844 0.002 1.495 0.001

7.160 4.202 0.180 0.005 1.507 0.005

0.706 3.957 0.343 0.001 3.115 0.001

TABLE 1
CONSISTENT FENCHEL-NIELSEN COORDINATES OF GENUS TWO

SURFACES: THE LENGTH OF EACH GEODESIC AND THE TWISTING
ANGLE ASSOCIATED WITH THAT GEODESIC.

of both hyperbolic cutting loops and Fenchel-Nielsen
coordinates are based on universal cover, we do not need
to compute all the Möbius transformations and glue all
the copies of the domain. When we lift the topological
cutting loops to universal, we start from one center
domain in Poincaré disk, then glue another domain only
when the extension process hits the boundary of the
center domain. The worst case is that we hit the corner
points of the domain, then we have to compute 4g−1
Möbius transformations and glue that number of copies
of domain to Poincaré disk. Since we have 3g−3 cutting
loops for a surface with genus g, and for each cutting
loop η , suppose |η | is its word length in π1(S, p) (see
Appendix), the time complexity to construct universal
cover is (3g−3)∗(4g−1)∗|η |. For other computations,
they are linear to the number of vertices and edges of
the surface.

Fig. 6. Clustering of surfaces based on their Fenchel-Nielsen
coordinates. The x-coordinate indicates the twisting angle, and the y-
coordinate indicates the geodesic length. Surfaces are clustered based
on both their twisting angle and geodesic lengths, with different groups
marked with circles.

6. CONCLUSION

This paper introduces the computational algorithms
for Fenchel-Nielsen coordinates for closed high genus
surfaces in the Teichmüller space. The method is based
on Teichmüller space theory, which is automatic, rig-
orous and efficient. Details of the algorithm has been
thoroughly explained. Computational efficiency has also
been reported.

Fenchel-Nielsen coordinates can be used to compare
and classify surfaces based on their conformal struc-
tures, and can also help to understand the structure of
surfaces, like their symmetry information. For example,
the twisting angle gives a quantitative way to measure
how two pants are glued together, like the two pants
of the cup model in Figure 5(b) glued with a π

2 angle
twisting. We will explore the direction further.

Although our current algorithms focus on closed high
genus surfaces, they can also be applied directly to
surfaces with boundaries, as long as the Euler number
of the surface is negative. We will include these cases
in our future research.

In this paper, we use Euclidean distances between
consistent Fenchel-Nielsen coordinates of surfaces to
approximate their distance in Teichmüller space. We
will explore feasible algorithms to compute the real
geodesics in Teichmüller space.

In the future, we plan to further test our algorithm for
large scale geometric database indexing and many other
real applications in engineering fields.

APPENDIX

In the appendix, we briefly introduce the concepts
from algebraic topology and hyperbolic geometry, which
are essential for understanding and implementing the
algorithm described in the current work.

6.1 Fundamental Group and Representation of Homo-
topy Class

Let S be a topological surface, and let p be a point of
S. We are interested in the set of continuous functions
f : [0,1] → S with the property that f (0) = p = f (1).
These functions are called loops with base point p. Any
two such loops, say f and g, are considered equivalent
if there is a continuous function h : [0,1]× [0,1] → S
with the property that, for all 0 ≤ t ≤ 1, h(t,0) = f (t),
h(t,1) = g(t) and h(0, t) = p = h(1, t). Such a h is
called a homotopy from f to g, and the corresponding
equivalence classes are called homotopy classes.

The product f ·g of two loops f and g is defined by
setting ( f ·g)(t) := f (2t), if 0≤ t ≤ 1/2 and ( f ·g)(t) :=
g(2t − 1) if 1

2 ≤ t ≤ 1. The product of two homotopy
classes of loops [ f ] and [g] is then defined as [ f ·g], and
it can be shown that this product does not depend on
the choice of representatives.

With the above product, the set of all homotopy
classes of loops with base point p forms the fundamental
group of S at the point p and is denoted π1(S, p). The
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TABLE 2
COMPARISON: SORTED DISTANCES BETWEEN SELECTED TEAPOT MODEL AND OTHER TEAPOT MODELS USING DIFFERENT CONFORMAL

INVARIANT BASED METHODS. SINCE THE DIMENSION OF BOTH GEODESIC SPECTRUM AND CONFORMAL FACTORS ON SURFACES ARE
INFINITE, WE CHOOSE THE LENGTHS OF THE FIRST 14 SORTED GEODESICS AS SHAPE DESCRIPTORS FOR GEODESIC SPECTRUM BASED

METHOD, AND FOR CONFORMAL FACTORS BASED METHOD, THEIR HISTGRAMS IN FINITE RANGE ARE USED TO DO COMPARISON.

identity element is the constant map at the base point,
and the inverse of a loop f is the loop g defined by
g(t) = f (1− t).

Suppose S is a genus g closed surface. A
canonical set of generators of π(S, p) consists of
{a1,b1,a2,b2, · · · ,ag,bg}, such that the pair ai and bi
has one intersection point, the pairs {ai,a j}, {bi,b j} and
{ai,b j}, have no intersections, where i 6= j. See figure
3(a) for an example of canonical basis on a genus two
surface.

6.2 Universal Cover

A covering space of S is a space S̃ together with
a continuous surjective map h : S̃ → S, such that for
every p ∈ S there exists an open neighborhood U of
p such that h−1(U) (the inverse image of U under h)
is a disjoint union of open sets in S̃ each of which is
mapped homeomorphically onto U by h. The map h is
called the covering map. A simply connected covering
space is a universal cover.
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