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(a) Left-view (b) Right-view (c) Circular conformal map (d) Checkerboard (e) Checkerboard
Figure 1: Conformal mapping for multiply connected domains. A human face surface with 15 holes is mapped to the unit disk with circular
holes. (a-b): the input surfaces captured from left-view and right-view. (c): the input surface is conformally mapped to a circular domain,
where all the holes are mapped to circles. (d-e): the checkerboard texture is mapped to the input surface by the conformal parametrization
from (c). The conformality of mapping is visualized by the checkerboard texture mapping, where the right angles are preserved well.

Abstract

Surface parameterization refers to the process of mapping the sur-
face to canonical planar domains, which plays crucial roles in tex-
ture mapping and shape analysis purposes. Most existing tech-
niques focus on simply connected surfaces. It is a challenging prob-
lem for multiply connected genus zero surfaces. This work gener-
alizes conventional Koebe’s method for multiply connected planar
domains. According to Koebe’s uniformization theory, all genus
zero multiply connected surfaces can be mapped to a planar disk
with multiply circular holes. Furthermore, this kind of mappings
are angle preserving and differ by Möbius transformations. We in-
troduce a practical algorithm to explicitly construct such a circular
conformal mapping. Our algorithm pipeline is as follows: suppose
the input surface has 𝑛 boundaries, first we choose 2 boundaries,
and fill the other 𝑛 − 2 boundaries to get a topological annulus;
then we apply discrete Yamabe flow method to conformally map the
topological annulus to a planar annulus; then we remove the filled
patches to get a planar multiply connected domain. We repeat this
step for the planar domain iteratively. The two chosen boundaries
differ from step to step. The iterative construction leads to the de-
sired conformal mapping, such that all the boundaries are mapped
to circles. In theory, this method converges quadratically faster than
conventional Koebe’s method. We give theoretic proof and estima-
tion for the converging rate. In practice, it is much more robust
and efficient than conventional non-linear methods based on cur-

vature flow. Experimental results demonstrate the robustness and
efficiency of the method.

CR Categories: I.3.5 [Computing Methodologies]: Com-
puter Graphics—Computational Geometry and Object Model-
ing; G.2.1 [Mathematics of Computing]: Discrete Mathematics—
Combinatorics
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formization, Circular, Multiply Connected Domain

1 Introduction

Surface parameterization refers to the process of mapping a surface
embedded in ℝ3 to a canonical planar domain with minimal distor-
tions. In general, distortions can be classified according to angle
distortion and area distortion. Conformal parameterizations are de-
sirable for engineering applications, because there are free of angle
distortion. Conformal parameterization plays an important role in
shape modeling, synthesis and analysis. It has broad applications
in computer-aided design, engineering and manufacturing. It also
has been applied for texture mapping in graphics, surface registra-
tion in computer vision, brain mapping and colonoscopy in medical
imaging fields.

Most existing conformal parameterization methods can only han-
dle simply connected surfaces, namely topological disks without
holes inside. In practice, most shapes have complicated topologies.
For example, due to the occlusion, most surface directly acquired
from real life using 3D scanners are multiply connected domains,
namely a genus zero surface with multiple holes. According to
Koebe’s uniformization theory in differential geometry, it can be
conformally mapped to the unit disk with circular holes. If we fix
the images of an interior point and a boundary point, the mapping is
unique. This kind of mapping is called the conformal uniformiza-
tion of multiply connected domains. Figure 1 shows one example,
a human face surface with 15 holes in frames (a-b) that is mapped
to the unit disk with circular holes in frame (c). The conformality
of the mapping can be verified in frames (d-e) by texture mapping



a checkerboard image onto the surface induced by the conformal
mapping. It is easy to see that all the right angles of the checkers
are well-preserved.

Computing the conformal uniformization for disks with multiple
holes is very challenging. For the existing linear harmonic map
and least-square conformal map, if the target domain is non-convex,
the map may not be a homeomorphism. So far, the only practical
method in the literature which is able to construct the canonical con-
formal mapping for genus zero surfaces with holes in ℝ3 is discrete
curvature flow method, including both discrete Ricci flow and dis-
crete Yamabe flow. Unfortunately, there are two major drawbacks
of discrete curvature flow methods for computing the uniformiza-
tion of multiply connected domains:

1. Robustness: If the triangulation quality is not good enough,
the curvature flow methods will get stuck (see the not-
converge cases in Table 1). Especially, the curvature flow
methods are vulnerable to meshes scanned in real life due to
their low triangulation qualities. Although in theory, the exis-
tence of the solution is determined by the connectivity of the
mesh, there is no practical algorithm to predict whether the
discrete curvature flow will lead to the solution or encounter
singularities in the middle.

2. Efficiency: Curvature flow methods are highly non-linear, for
large meshes, the computations are highly expensive.

1.1 Motivation

Surfaces can be classified by the conformal equivalence relation.
Two surfaces are conformally equivalent if there exists a confor-
mal map between them. For multiply connected domains, they
are conformally equivalent, if and only if their conformal paramet-
ric domains differ by a Möbius transformation. Circular boundary
is highly preferred for shape analysis purpose. In this work, the
boundaries are mapped to circles by conformal maps, which will
give us the well defined shape fingerprints, which are the centers
and radii. The positions of the circles are determined by the ge-
ometry of the surface automatically. The fingerprints are conformal
invariants, called conformal modules [Zeng et al. 2009b], which
are invariant up to Möbius transformation. The major motivation of
this work is for shape analysis purposes, including shape indexing,
shape comparison, shape registration, etc.

In order to process large meshes with low quality of triangulations
in engineering applications, more robust and efficient algorithms
need to be developed.

1.2 Generalized Koebe’s Method

The main contribution of this work is to present a novel iterative
method to compute the conformal uniformizations for multiply con-
nected domains, based on Koebe’s method.

Iteration and Step For one step, we select two holes, and fill all
the other holes, then conformally map the annulus to the canonical
planar annulus by solving two linear systems. For one iteration,
if there are 𝑛 holes, we choose a different pair of them in each
step. We go through all the 𝑛 holes after 𝑛/2 steps, which form one
iteration.

Our method has the following merits:

1. Robustness: it is much more robust than curvature flow
method. It tolerates the triangulations with poor qualities.

2. Efficiency: Each iteration is a linear procedure, and in prac-
tice it requires only a couple of linear steps. Therefore, it is
much faster than curvature flow method.

3. Rigor: The method is rigorous, we give theoretic proof for
the analysis for converging rate in the Appendix.

The method is based on conventional Koebe’s method.

Conventional Koebe’s Method Figure 2 illustrates the conven-
tional Koebe’s method for conformal uniformization of multiply
connected domains. The input surface 𝑆 is shown in the first frame
of the top row, which has 4 boundaries

∂𝑆 = 𝛾0 − 𝛾1 − 𝛾2 − 𝛾3.

Then a conformal mapping 𝜙1 : 𝑆 → 𝔻 is computed, where 𝔻 is
the unit disk, such that 𝜙1 maps 𝛾0 to the unit circle. The image
𝜙1(𝑆) is shown in frame (1). Then another conformal mapping is
computed 𝜙2 : 𝜙1(𝑆) → 𝔻, such that 𝛾2 is mapped to the circle.
The image of 𝜙2 is shown in frame (2). Then a conformal mapping
𝜙3 : 𝜙2 ∘ 𝜙1(𝑆) → 𝔻 is computed, which maps 𝛾3 to the unit
circle. At the 𝑘-th step, we can get conformal mapping

𝜙𝑘 : ∘𝜙𝑘−1 ∘ ⋅ ⋅ ⋅ ∘ 𝜙1(𝑆)→ 𝔻

which maps a boundary loop to the unit circle. Then the composi-
tions of the mappings 𝜙𝑘’s converge to the desired conformal map-
ping with appropriate normalization conditions.
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Figure 3: Find a conformal mapping to map 𝛾3 to the unit circle.

Figure 3 explains how to find a conformal mapping 𝜙2 : 𝜙1(𝑆) →
𝔻, such that 𝜙2(𝛾3) is the unit circle. First, a circle 𝑐 inside 𝛾3 is
found in 𝜙1(𝑆) as shown in frame (a); Second, the reflection of the
whole complex plane about the circle 𝑐 is computed, denoted as 𝜏 .
Then 𝛾3 is transformed to the exterior boundary as shown in frame
(b); Third, fill all the inner holes bounded by 𝛾0 (yellow), 𝛾1 (red)
and 𝛾2 (green); At last, a Riemann mapping 𝜙 is computed, which
maps the domain in frame (c) to the unit disk in frame (d). Then the
desired conformal mapping 𝜙2 is given by 𝜙 ∘ 𝜏 . Note that, in the
input domain, 𝜙1(𝛾0) is a circle. After the mapping, 𝜙2(𝜙1(𝛾0)) is
still close to a circle. In the iterations, all the boundaries are getting
rounder and rounder, and eventually become circles.
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Figure 2: Conventional Koebe’s method (CK). Steps (0-4): Iteration 1; Steps (5-9): Iteration 2. In each step, one boundary is chosen to be
mapped to the exterior circle. In each iteration, the boundary is chosen in the following order: 𝛾0, 𝛾3, 𝛾1, 𝛾2.

Let 𝑝 be a interior point of 𝑆. We can easily construct a Möbius
transformation from the complex plane to itself 𝜏(𝑧) = 1

𝑧−𝑝
. Then

𝜏 transforms all the boundaries to be interior boundaries. Denote
𝜏(𝑆) as 𝑆. Let 𝑓𝑘 = 𝜙𝑘 ∘𝜙𝑘−1 ⋅ ⋅ ⋅𝜙1 ∘ 𝜏−1, then by using Möbius
transformations we can normalize 𝑓𝑘, such that

𝑓𝑘(∞) =∞, 𝑓𝑘(𝑧) = 𝑧 +𝑂(𝑧−1), (1)

near the∞ point. Let 𝑓 : 𝑆 → ℂ by the conformal uniformization
map, which satisfies the normalization condition in 1. Then the
following theorem gives the convergence estimation explicitly,
Theorem 1.1 (Henrici). Suppose the planar surface has 𝑛 bound-
aries, then there exist constants 𝐶1 > 0, 0 < 𝐶2 < 1, for step 𝑘,
for all 𝑧 ∈ ℂ,

∣𝑓𝑘 ∘ 𝑓−1(𝑧)− 𝑧∣ < 𝐶1𝐶
[ 𝑘
𝑛
]

2

Here [ 𝑘
𝑛
] denotes the greatest integer not exceeding 𝑘

𝑛
. The detailed

proof can be found in [Henrici 1993], theorem 17.7a.

Generalized Koebe’s Method The generalized Koebe’s method
differs from conventional ones by the following face: at each step,
conventional Koebe’s algorithm deforms one boundary to a circle;
whereas, generalized Koebe’s algorithm deforms two boundaries
to circles. The computational costs for each step of conventional
method and generalized method are almost the same and general-
ized method converges much faster and requires much fewer iter-
ations. Therefore, the new method is much more efficient. Figure
4 demonstrates the computational process of the same surface as
in Figure 2. From the roundness of the boundaries, it is easy to
tell that the generalized Koebe method converges much faster than
conventional method.

In one word, the generalized Koebe’s method makes great improve-
ments in the following aspects

1. Generality Conventional Koebe’s algorithm handles the pla-
nar regions, this method is generalized to handle surfaces in
ℝ3.

2. Efficiency This method converges quadratically faster than
conventional Koebe’s method.

Theorem 1.2 (Generalized Koebe). Suppose genus zero surface
has 𝑛 boundaries, then there exists constants 𝛾 > 0, 0 < 𝜇 < 1,
for step 𝑘, for all 𝑧 ∈ ℂ,

∣𝑓𝑘 ∘ 𝑓−1(𝑧)− 𝑧∣ < 𝐶1𝐶
2[ 𝑘

𝑛
]

2

We give the proof in the Appendix.

2 Previous Works
Recently, with the development of digital scanning technology,
computing conformal mappings between surfaces becomes more
and more important. In computer graphics and discrete mathemat-
ics, much sound research has focused on discrete conformal map-
pings.

The computational method of current work is mainly based on har-
monic maps and holomorphic differential forms. Here, we briefly
overview most related work, and refer readers to [Floater and Hor-
mann 2005; Kraevoy and Sheffer 2004] for thorough surveys.

Discrete harmonic maps were constructed in [Pinkall and Polthier
1993], where the cotan formula was introduced. First order finite
element approximations of the Cauchy-Riemann equations were in-
troduced by Levy et al. [Lévy et al. 2002]. Discrete intrinsic pa-
rameterization by minimizing Dirichlet energy was introduced by
[Desbrun et al. 2002]. Mean value coordinates were introduced
in [Floater 2003] to compute generalized harmonic maps; Discrete
spherical conformal mappings are used in [Gotsman et al. 2003]
and [Gu et al. 2004].

Discrete holomorphic forms are introduced in [Gu and Yau 2003] to
compute global conformal surface parameterizations for high genus
surfaces. Another approach of discrete holomorphy was introduced
in [Mercat 2004] using discrete exterior calculus [Hirani 2003]. The
problem of computing optimal holomorphic 1-forms to reduce area
distortion was considered in [Jin et al. 2004]. [Gortler et al. 2005]
generalized 1-forms to the discrete case, using them to parameter-
ize genus one meshes. [Tong et al. 2006b] generalized the 1-form
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Figure 4: Generalized Koebe’s method (GK) with faster convergence. In each step, two boundaries are chosen to be mapped to the exterior
circle and the interior circle respectively. Step (1): (𝛾0, 𝛾2), Step (2): (𝛾3, 𝛾0), Step (3): (𝛾0, 𝛾2), Step (4): (𝛾3, 𝛾1), and Step (5): (𝛾0, 𝛾2).

method to incorporate cone singularities.[Yin et al. 2008]constructs
special holomorphic one forms that map a genus zero surface with
multiple holes to an annulus with concentric circular slits. Discrete
one-forms have been applied for meshing point clouds in [Tewari
et al. 2006], surface tiling [Desbrun 2006], surface quadrangula-
tion [Tong et al. 2006a]. Holomorphic 1-form method has been
applied for virtual colonoscopy [Hong et al. 2006]. The colon sur-
face is reconstructed from MRI images, and conformally mapped
to the planar rectangle. This improves the efficiency and accuracy
for detecting polyps. Conformal mapping is used for brain cortex
surface morphology study in [Gu et al. 2004]. By mapping brain
surfaces to spheres, cortex surface registration and comparison be-
come straightforward. Holomorphic 1-form method has also been
applied in computer vision [Wang et al. 2007; Zeng et al. 2008b] for
3D shape matching, recognition and stitching. In geometric mod-
eling field, constructing splines on general surfaces is one of the
most fundamental problems. It is proven in [Gu et al. 2006] that if
a surface has an affine structure, then spline can be construct on to
it directly. Holomorphic 1-forms can be applied for computing the
affine structures of general surfaces.

The Ricci flow was firstly proposed by Hamilton [Hamilton 1982]
as a tool to conformally deform the metric according to the curva-
ture. In [Chow and F.Luo 2003] Chow and Luo developed the theo-
ries of the combinatorial surface Ricci flow, which was later imple-
mented and applied for surface parameterization [Jin et al. 2006; Jin
et al. 2008a], shape classification [Jin et al. 2008b], shape mapping
[Li et al. 2008] and surface matching [Zeng et al. 2008a]. Discrete
Yamabe flow was introduced by Luo in [Luo 2004]. In a recent
work of Springborn et al. [Boris Springborn and Pinkall 2008], the
Yamabe energy is explicitly given busing the Milnor-Lobachevsky
function. Hyperbolic Yamabe flow has been applied for comput-
ing closed geodesics as the canonical representative of a homotopy
class in [Zeng et al. 2009a].

So far, only curvature flow method can compute the conformal uni-
formization of multiply connected domains. Due to the non-linear
nature of the curvature flow method, the computation is expensive.
This work uses holomorphic 1-form for the computation, which is
much more efficient.

3 Theoretic Background
This section briefly introduces the theoretic background for this
work. We refer readers to [Guggenheimer 1977; Weitraub 2007]
for more details.

3.1 Harmonic Functions

Suppose 𝑆 is a surface with a Riemannian metric g, 𝑓 is a function
defined on 𝑆, 𝑓 : 𝑆 → ℝ. The harmonic energy of 𝑓 is defined as

𝐸(𝑓) =

∫
𝑆

∣∇𝑓 ∣2𝑑𝑣,

where ∇𝑓 is the gradient of 𝑓 . A harmonic function is a critical
point of the harmonic energy, which satisfies the Laplace equation

Δ𝑓 = 0,

where Δ is the Laplace-Beltrami operator determined by the Rie-
mannian metric.

3.2 Riemann Surface

Let 𝑓 : ℂ → ℂ be a complex-valued function, 𝑓(𝑥 + 𝑖𝑦) =
𝑢(𝑥, 𝑦) + 𝑖𝑣(𝑥, 𝑦). If it satisfies the following Cauchy-Riemann
equations:

∂𝑢

∂𝑥
=

∂𝑣

∂𝑦
,
∂𝑢

∂𝑦
= −∂𝑣

∂𝑥
,

then it is holomorphic. A holomorphic function preserves angles.

Suppose 𝑆 is a topological surface. As shown in Figure 5, 𝑈𝛼 is an
open set on the surface. 𝜙𝛼 : 𝑈𝛼 → ℂ is homeomorphism, which
maps 𝑈𝛼 to the complex plane. Then (𝑈𝛼, 𝜙𝛼) is a local coordinate
chart. Suppose two local coordinate charts have an overlapping
𝑈𝛼

∩
𝑈𝛽 , then the coordinate transition function is given by

𝜙𝛼𝛽 = 𝜙𝛽 ∘ 𝜙−1
𝛼 : 𝜙𝛼(𝑈𝛼 ∩ 𝑈𝛽)→ 𝜙𝛽(𝑈𝛽 ∩ 𝑈𝛼).

Suppose {𝑈𝛼} form an open covering of the surface, 𝑆 ⊂ ∪
𝛼 𝑈𝛼,

then the collection of charts {(𝑈𝛼, 𝜙𝛼)} form an atlas. If all the

φα
φβ

Uα Uβ

S

φαβ

φα (Uα) φβ (Uβ)

Figure 5: Riemann surface: If all the chart transition functions
𝜙𝛼𝛽’s are holomorphic, the surface is a Riemann surface.

coordinates transition functions are holomorphic, then the atlas is
called a conformal structure, the surface is called a Riemann sur-
face.

Intuitively, given two curves on a Riemann surface, one can mea-
sure their intersection angle in a chart. The measurement is in-
dependent of the choice of the chart. Therefore, angles are well
defined on a Riemann surface.



Let 𝑆 be a surface embedded in ℝ3, then it has an induced Eu-
clidean metric g. Let (𝑈𝛼, 𝜙𝛼) be a local coordinates chart with
local parameters (𝑢𝛼, 𝑣𝛼), if

g = 𝑒2𝜆(𝑢𝛼,𝑣𝛼)(𝑑𝑢2
𝛼 + 𝑑𝑣2𝛼),

then the local coordinates are called isothermal coordinates. Then
one can use isothermal coordinates to build an atlas, which gives
a conformal structure of the surface. Therefore all metric surfaces
are Riemann surfaces.

3.3 Holomorphic 1-form

Let 𝑆 be a Riemann surface with a conformal atlas, the local pa-
rameter for the chart (𝑈𝛼, 𝜙𝛼) be 𝑧𝛼. A holomorphic 1-form has
the local representation

𝜔 = 𝑓𝛼(𝑧𝛼)𝑑𝑧𝛼,

where 𝑓𝛼 is a holomorphic function. On another chart (𝑈𝛽 , 𝜙𝛽), 𝜔
has the local representation 𝑓𝛽(𝑧𝛽)𝑑𝑧𝛽 , such that

𝑓𝛼
𝑑𝑧𝛼
𝑑𝑧𝛽

= 𝑓𝛽 .

All holomorphic 1-forms on a Riemann surface form a group
Ω1,0(𝑆), which is isomorphic to the first cohomology group of the
surface.

Each holomorphic 1-form 𝜔 can be represented as a pair of har-
monic 1-forms,

𝜔 = 𝜏 +
√−1∗𝜏,

where ∗ is the Hodge star operator (see [Gu and Yau 2003] for the
computating details).

The follows are the local representations of 𝜏 and its conjugate ∗𝜏

𝜏 = 𝑔𝛼𝑑𝑥𝛼 + ℎ𝛼𝑑𝑦𝛼,
∗𝜏 = 𝑔𝛼𝑑𝑦𝛼 − ℎ𝛼𝑑𝑥𝛼.

The exterior derivative of 𝜏 is given by

𝑑𝜏 = (
∂ℎ𝛼

∂𝑥𝛼
− ∂𝑔𝛼

∂𝑦𝛼
)𝑑𝑥𝛼 ∧ 𝑑𝑦𝛼.

If 𝑑𝜏 is zero, then 𝜏 is a closed 1-form.

The exterior co-derivative operator is defined as

𝛿 = ∗𝑑∗.

Furthermore, if 𝛿𝜏 is also closed, then 𝜏 is a harmonic 1-form. Lo-
cally, a harmonic 1-form is the derivative of a harmonic function.
Hodge theory postulates the existence and the uniqueness of har-
monic forms in each cohomologous class.
Theorem 3.1 (Hodge). Each cohomologous class has a unique
harmonic differential form.

3.4 Conformal Mappings

Let 𝑆1 and 𝑆2 be two Riemann surfaces with conformal structures
{(𝑈𝛼, 𝜙𝛼)} and {(𝑉𝛽 , 𝜂𝛽)}. A map 𝑓 : 𝑆1 → 𝑆2 is conformal, if
its local presentation

𝜂𝛽 ∘ 𝑓 ∘ 𝜙−1
𝛼 : 𝜙𝛼(𝑈𝛼)→ 𝜂𝛽(𝑉𝛽)

is holomorphic.

If 𝑆1 and 𝑆2 are metric surfaces, with Riemannian metrics g1 and
g2 respectively, then 𝑓 is conformal, if and only if the pull back
metric induced by 𝑓 satisfies

𝑓∗g2 = 𝑒2𝜆g1.

All the conformal mappings from the unit disk to itself can be rep-
resented as a Möbius transformation,

𝑧 → 𝑒𝑖𝜃
𝑧 − 𝑧0
1− 𝑧0𝑧

, 𝑧0, 𝑧 ∈ 𝔻,

where 𝔻 is the unit disk on the complex plane ∣𝑧∣ < 1.

Our current work focuses on the conformal uniformization theorem
for multiply connected domains,
Theorem 3.2 (Uniformization). Suppose 𝑆 is a genus zero sur-
face with multiple boundaries, and a Riemannian metric g. There
exists a conformal map 𝑓 : 𝑆 → 𝐷, where 𝐷 is the unit disk
with circular holes. Two such kind of mappings differ by a Möbius
transformation.

4 Computational Algorithm

4.1 Discrete Approximation

Here we briefly introduce the discrete approximation for surface,
forms, and harmonic 1-form. For more details of computational
algorithm, we refer readers to [Gu and Yau 2003].

Surface In practice, surfaces are approximated by simplicial
complexes (triangle meshes) embedded in ℝ3. Suppose 𝑀 is a
triangle mesh with vertex set 𝑉 , oriented edge set 𝐸 and oriented
face set 𝐹 . The i-th vertex is denoted as 𝑣𝑖, the oriented edge from
𝑣𝑖 to 𝑣𝑗 is [𝑣𝑖, 𝑣𝑗 ], the oriented face with vertices 𝑣𝑖, 𝑣𝑗 , 𝑣𝑘 sorted
counter-clock-wisely is [𝑣𝑖, 𝑣𝑗 , 𝑣𝑘]. The boundary operator ∂ takes
the boundary of simplicies,

∂[𝑣0, 𝑣1] = 𝑣1 − 𝑣0, ∂[𝑣0, 𝑣1, 𝑣2] = [𝑣0, 𝑣1] + [𝑣1, 𝑣2] + [𝑣2, 𝑣0].

Discrete forms A function defined on the surface is defined on
vertices 𝑓 : 𝑉 → ℝ, a 1-form is defined as a function on oriented
edges 𝜔 : 𝐸 → ℝ, a 2-form is defined as a function on oriented
faces 𝜏 : 𝐹 → ℝ. The exterior differential operator 𝑑 is defined as
the dual to boundary operator. For a zero form 𝑓 , 𝑑𝑓 is a 1-form,

𝑑𝑓([𝑣0, 𝑣1]) = 𝑓(∂[𝑣0, 𝑣1]) = 𝑓(𝑣1)− 𝑓(𝑣0).

For a 1-form 𝜔, 𝑑𝜔 is a 2-form, 𝑑𝜔([𝑣0, 𝑣1, 𝑣2]) equals to

𝜔(∂[𝑣0, 𝑣1, 𝑣2]) = 𝜔([𝑣0, 𝑣1]) + 𝜔([𝑣1, 𝑣2]) + 𝜔([𝑣2, 𝑣0]).

Discrete Harmonic 1-form Let [𝑣𝑖, 𝑣𝑗 ] be an interior edge on
the mesh, connecting two faces [𝑣𝑖, 𝑣𝑗 , 𝑣𝑘] and [𝑣𝑗 , 𝑣𝑖, 𝑣𝑙], the cor-
ner angle in [𝑣𝑖, 𝑣𝑗 , 𝑣𝑘] against [𝑣𝑖, 𝑣𝑗 ] is 𝜃𝑖𝑗𝑘 , the corner angle in
[𝑣𝑗 , 𝑣𝑖, 𝑣𝑙] against [𝑣𝑖, 𝑣𝑗 ] is 𝜃𝑖𝑗𝑙 , the edge weight is defined as

𝑤𝑖𝑗 = cot 𝜃𝑖𝑗𝑘 + cot 𝜃𝑖𝑗𝑙 ,

The discrete harmonic energy is defined as

𝐸(𝑓) =
∑

[𝑣𝑖,𝑣𝑗 ]∈𝐸

𝑤𝑖𝑗(𝑓(𝑣𝑖)− 𝑓(𝑣𝑗))
2.

The discrete harmonic function is the critical point of the harmonic
energy, which satisfies the following discrete Laplace equation

Δ𝑓(𝑣𝑖) =
∑

[𝑣𝑖,𝑣𝑗 ]∈𝐸

𝑤𝑖𝑗(𝑓(𝑣𝑗)− 𝑓(𝑣𝑖)) = 0, ∀𝑣𝑖 ∈ 𝑉. (2)

Let 𝜔 be a discrete harmonic 1-form, then it satisfies the following
condition

𝛿𝜔(𝑣𝑖) =
∑

[𝑣𝑖,𝑣𝑗 ]∈𝐸

𝑤𝑖𝑗𝜔([𝑣𝑖, 𝑣𝑗 ]) = 0, ∀𝑣𝑖 ∈ 𝑉. (3)



4.2 Doubly Connected Domain

Suppose 𝑆 is a topological annulus, with boundaries ∂𝑆 = 𝛾0−𝛾1
as shown in Figure 6.

γ0

γ1 γ2

γ0

γ1 γ2

Figure 6: Harmonic 1-forms. Top row, the cut on the surface and
its conformal annulus mapping. Bottom row, the level sets of the
harmonic 1-form 𝑑𝑓 and its conjugate harmonic 1-form 𝜆(𝑑𝑔0 +
𝑑𝑔1).

First, we compute a path 𝛾2 connecting 𝛾0 and 𝛾1. Then we com-
pute a harmonic function 𝑓 : 𝑆 → ℝ, such that⎧⎨⎩ 𝑓𝛾0 = 0

𝑓𝛾1 = 1
Δ𝑓 = 0

The level set of 𝑓 is shown in Figure 6. Then 𝑑𝑓 is a harmonic
1-form.

We slice the surface along 𝛾2 to get a new surface 𝑆 with a single
boundary. 𝛾2 becomes two boundary segments 𝛾+

2 and 𝛾−
2 on 𝑆.

Then we compute a function 𝑔0 : 𝑆 → ℝ, such that{
𝑔0∣𝛾+

2
= 1

𝑔0∣𝛾−
2

= 0

𝑔0 takes arbitrary value on other vertices. Therefore 𝑑𝑔0 is a closed
1-form defined on 𝑆. Then we find another function 𝑔1 : 𝑆 → ℝ,
such that 𝑑𝑔0 + 𝑑𝑔1 is a harmonic 1-form 𝛿(𝑑𝑔0 + 𝑑𝑔1) = 0.

Then we need to find a scalar 𝜆 , such that ∗𝑑𝑓 = 𝜆(𝑑𝑔0+𝑑𝑔1), us-
ing the similar method as for topological quadrilaterals. The holo-
morphic 1-form is given by

𝜔 = 𝑑𝑓 +
√−1𝜆(𝑑𝑔0 + 𝑑𝑔1).

Let 𝐼𝑚𝑔(
∫
𝛾0

𝜔) = 𝑘, The conformal mapping from 𝑆 to a canoni-
cal annulus is given by

𝜙(𝑝) = exp
2𝜋
𝑘

∫ 𝑝
𝑞 𝜔,

where 𝑞 is the base point, the path from 𝑞 to 𝑝 is arbitrarily chosen.

4.3 Simply Connected Domain

For a surface 𝑆 which is a simply connected domain as shown
in Figure 7, the conformal mapping can be computed straightfor-
wardly.

p
q

f(p)
f(q)

Figure 7: Riemann mapping using holomorphic 1-form.

We choose an interior point 𝑝 ∈ 𝑆, and a boundary point 𝑞 ∈ ∂𝑆.
We choose a sequence of small disks 𝐷𝑛, such that
(a). 𝐷0 ⊃ 𝐷1 ⊃ 𝐷2 ⊃ ⋅ ⋅ ⋅ ,
(b). lim𝑛→∞ 𝑑𝑖𝑎𝑔𝑚𝑒𝑡𝑒𝑟(𝐷𝑛) = 0,
(c).

∩∞
𝑛=0 𝐷𝑛 = 𝑝.

Then we compute a conformal mapping 𝑓𝑛 : 𝑆 −𝐷𝑛 → 𝔻, where
𝔻 is the unit disk, the boundary of 𝐷𝑛 is mapped to a concentric
circle, furthermore 𝑓𝑛(𝑞) = 1. Then {𝑓𝑛} form a normal family,
we can prove the following
Theorem 4.1. The mappings {𝑓𝑛} converge to the Riemann map-
ping 𝑓 : 𝑆 → 𝔻

lim
𝑛→∞

𝑓𝑛 = 𝑓,

such that 𝑓 maps 𝑝 to the origin, 𝑞 to 1.

4.4 Multiply Connected Domains

Suppose the input surface is a genus zero surface with multiple
holes. We apply the generalized Koebe’s method to compute the
canonical conformal mappings, or uniformize them. Computing
the conformal mapping of multiply connected domains is reduced
to compute the conformal mapping of a topological annulus, which
is equivalent to compute a pair of conjugated harmonic 1-forms.

Hole Filling There are many ways to fill holes on surfaces, such
as the method in [Xu 2008]. In our case, the shapes of the filled
surface patches won’t affect the result quality. Then we adopted
the following simple method: For each boundary loop, we add one
central vertex, which is the mass center of all the vertices on the
boundary; then each edge on the loop and the center vertex forms
a triangle. After the first step the surface is mapped onto the plane;
then we use planar mesh generation method based on Delaunay tri-
angulation to fill planar patches.

As shown in Figure 8, the frame (a) is the input surface, which is a
genus zero surface with three holes, the boundary of the surface are
∂𝑆 = 𝛾0−𝛾1−𝛾2−𝛾3. The frame (c) shows that the surface holes
are filled with topological disks 𝐷1, 𝐷2 and 𝐷3. The conformal
mappings of (a) and (c) are shown in frames (b) and (d), where the
surface is mapped to the unit disk with circular holes.

Figure 9 shows the computational process. The following routine
handles one disk 𝐷𝑘, as shown in one row of the figure.

1. Remove a disk 𝐷𝑘 from 𝑆, shown in the frames in the first
column.
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Figure 8: Conformal mapping for Koebe’s method.

2. Conformally map the annulus to the canonical annulus, such
that the boundary 𝛾𝑘 is mapped to a circle 𝑐𝑘,

𝜙𝑘 : 𝑆 −𝐷𝑘 → 𝔻,

such that 𝜙𝑘(𝛾𝑘) = 𝑐𝑘, as shown in the frames in the second
column.

3. Compute a harmonic map of 𝐷𝑘, with the boundary condition
that the boundary of 𝐷𝑘 is mapped to 𝑐𝑘,

𝑓𝑘 : 𝐷𝑘 → 𝔻,Δ𝑓𝑘 = 0, 𝑓𝑘∣𝛾𝑘 = 𝑐𝑘.

shown in the frames in the third column.

4. Update the whole mesh 𝑆,

𝑆 ← 𝜙𝑘(𝑆 −𝐷𝑘) ∪ 𝑓𝑘(𝐷𝑘).

The whole algorithm is as follows:

1. Process 𝐷1, 𝐷2, 𝐷3 respectively using the above algorithm,
after this iteration, the boundary of each disk is mapped to a
circular curve, compute the center and the radii as (𝑐𝑘, 𝑟𝑘), as
shown in the first three rows in Figure 9.

2. Repeat step 1 until the process converges. The termination
condition is given by:

3∑
𝑘=1

∣𝑐0𝑘 − 𝑐1𝑘∣2 + ∣𝑟0𝑘 − 𝑟1𝑘∣2 < 𝜖,

where (𝑐0𝑘, 𝑟
0
𝑘) and (𝑐1𝑘, 𝑟

1
𝑘) are the center and radius of 𝐷𝑘 of

two consecutive iterations.

Figure 9 shows the first two iterations, the circles of all the bound-
aries are very similar already.

In the previous method, the boundary 𝛾0 is not filled by a disk and
always mapped to the unit circle in the process. In fact, 𝛾0 can also
be filled and treated as the same other boundaries. This will further
improve the efficiency.

1. Given a multiply connected domain 𝑆 with 𝑛+1 boundaries,
fill all boundaries 𝛾𝑘’s with topological disks 𝐷𝑘’s,

∂𝐷𝑘 = 𝛾𝑘, 𝑘 = 0, 1, ⋅ ⋅ ⋅ , 𝑛.
The resulting surface is a topological sphere

𝑆 = 𝑆 ∪𝐷0 ∪𝐷1 ∪ ⋅ ⋅ ⋅ ∪𝐷𝑛.

2. Remove two disks 𝐷𝑖 and 𝐷𝑗 from 𝑆, denote the annulus as

𝑆𝑖𝑗 = 𝑆/{𝑈𝑖 ∪ 𝑈𝑗}.

3. Map the annulus 𝑆𝑖𝑗 to a canonical planar annulus, such that
𝛾𝑖 is mapped to the unit circle, 𝛾𝑗 is mapped to a concentric
inner circle, denote the map as 𝜙 : 𝑆𝑖𝑗 → 𝔻. Replace 𝑆𝑖𝑗 by
its image 𝜙(𝑆𝑖𝑗),

𝑆𝑖𝑗 ← 𝜙(𝑆𝑖𝑗).

4. Choose another two disks 𝐷𝑘 and 𝐷𝑙, further remove them
from 𝑆𝑖𝑗 , denote the three hole annulus as

𝑆𝑖𝑗𝑘𝑙 = 𝑆𝑖𝑗/{𝐷𝑘 ∪𝐷𝑙}.

5. Compute a small circle (𝑐𝑘, 𝑟𝑘) inside 𝛾𝑘. Translate and scale
the whole plane to transform the circle to be the unit circle.
Reflect 𝑆𝑖𝑗𝑘𝑙 with respect to the unit circle, 𝜏 : ℂ → ℂ, for
all 𝑧 ∈ ℂ,

𝜏(𝑧)− 𝑐𝑘 =
1

∣𝑧 − 𝑐𝑘∣2 (𝑧 − 𝑐𝑘).

Update 𝑆𝑖𝑗𝑘𝑙 by its image

𝑆𝑖𝑗𝑘𝑙 ← 𝜙(𝑆𝑖𝑗𝑘𝑙).

6. Fill the holes 𝛾𝑖 in 𝑆𝑖𝑗𝑘𝑙 with 𝐷𝑖 by a harmonic map 𝜙𝑖 :
𝐷𝑖 → 𝔻 using 𝛾𝑖 as the boundary condition, namely

Δ𝜙𝑖 ≡ 0, 𝜙(∂𝐷𝑖) = 𝛾𝑖.

Similarly, fill the hole 𝛾𝑗 with 𝐷𝑗 by a harmonic map 𝜙𝑗 :
𝐷𝑗 → 𝔻 using 𝛾𝑗 as boundary condition. Update

𝑆𝑘𝑙 ← 𝑆𝑖𝑗𝑘𝑙 ∪ 𝜙𝑖(𝐷𝑖) ∪ 𝜙𝑗(𝐷𝑗).

7. Repeat step 4 through 6, until the process converges.

This algorithm converges much faster than the previous one. Fig-
ure 10 shows the computational process for conformal mapping a
human face surface with 5 holes. The first frame (at the top left)
is the input surface, the last frame (at the bottom right) shows the
conformal parameterization result, transformed by a Möbius trans-
formation.

5 Experimental Results

We implemented the generalized Koebe’s method (GK) using
generic C++ language on Windows platform. The sparse linear sys-
tems are solved using Matlab C++ library. The computational time
is tested on the laptop with 2.00GHz CPU, 3.00G RAM.

The geometric data sets are scanned from real human face with high
speed and high resolution, phase shifting scanner, as described in
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Figure 10: Generalized Koebe’s method for computing conformal
maps for multiply connected domains with 5 holes. (0): Input sur-
face; (1-9) show the computing process for conformal parameteri-
zation transformed by a Möbius transformation.

Figure 11: Conformal Mapping for a face surface with 5 holes.

Figure 12: Conformal Mapping for a face surface with 9 holes.

[Wang et al. 2005]. We thoroughly tested our algorithm on several
data sets, including two surfaces with 3 holes in Figures 2 and 9,
two face with 5 holes in Figures 10 and 11, 9 holes in Figures 12 and
15 holes in Figure 1. The statistics of the experiments are shown in
Tables 1 and 2.

Table 1: Comparison for Generalized Koebe’s (GK) method and
Ricci Flow (RF) method
Model Fig.2 Fig.8 Fig.10 Fig.11 Fig.12 Fig.1
# H 3 3 5 5 9 15
# V 13515 36737 17732 40335 73839 20226
# F 26304 72391 34653 79999 145566 40034
RF
T 36 115 45 120 NC NC
R 0.048356 0.042560 0.044641 0.043786 NC NC
GK
# S 42 42 12 6 10 16
T 17 50 14 10 46 16
R 0.040613 0.039315 0.041758 0.037872 0.038551 0.047927
H - hole; V - vertex; F - face; NC - not converge; S - step, T - Time (min); R -
Roundness.

Comparison to Curvature Flow Method We compared the gen-
eralized Koebe’s method with discrete Ricci flow method. In prac-
tice, the curvature flow method requires high quality triangulation,
and can hardly handle raw meshes generated by 3D scanners. In
theory, discrete Yamabe flow is even more vulnerable than discrete
Ricci flow (RF). GK is much robust to meshes with degenerated
faces and geometric noises. The comparison results are reported in
Table 1 in terms of computational time and the roundness for RF
and our GK respectively. For surfaces with few holes, such as 3
holes in Figure 8 and 5 holes in Figure 10, the computational speed
is improved greatly. For surface with many holes, such as 9 holes in
Figure 12 and 15 holes in Figure 1, RF doesn’t converge at all. Our
experimental results demonstrate the fact that GK is much faster
and much more robust than RF.



Comparison to Conventional Koebe’s Method We give the
theoretic proof in the Appendix to show that the convergence rate
of the generalized Koebe’s method is quadratic of that of the con-
ventional Koebe’s method (CK). We measure the roundness of the
boundary using the following formula. Suppose 𝛾𝑘 consists of a
sequence of consecutive vertices 𝑣1, 𝑣2, ⋅ ⋅ ⋅ , 𝑣𝑛, let 𝑐 be the center
of the circle estimated from the vertices, 𝑑𝑖 be the distance from the
center to 𝑣𝑖, 𝑅 be the mean of the 𝑑𝑖’s. We add a weight 𝑤𝑖 to each
vertex, which is the ratio between the two adjacent edge lengths
and the total edge lengths on the boundary loop. Then the center 𝑐
is computed as the weighted mass center:

𝑐 =
1

𝑛

𝑛∑
𝑖=1

𝑤𝑖𝑣𝑖, 𝑑𝑖 = ∣𝑣𝑖 − 𝑐∣, 𝑅 =
1

𝑛

𝑛∑
𝑖=1

𝑑𝑖.

The measurement for the roundness is defined as

𝑒(𝛾𝑘) =
1

𝑅

√√√⎷ 1

𝑛

𝑛∑
𝑖=1

∣𝑑𝑖 −𝑅∣2.

In our experiments, we set the roundness error to be less than a
given threshold, and measure the running time using CK and GK,
as shown in Table 2. For multi-holed surfaces, we use the average
of roundness as the roundness error. In theory, for the same quality
of the mapping, the time spent by GK is the square root of that of
CK. The experiments show that generalized Koebe’s mehod is at
least two times faster than the conventional one.

Table 2: Comparison for Generalized Koebe’s (GK) method with
Conventional Koebe’s (CK) method

Surface Method Steps Time (min) Roundness
Fig.2 CK 9 10.50 0.155102

GK 5 4.20 0.144580
Fig.8 CK 9 34.10 0.144207

GK 5 8.10 0.143825

Application for Shape Analysis The generalized Koebe’s
method presents an efficient way to compute the conformal map-
ping for 3D multiply-connected domains. Based on this, we com-
pute the conformal modules as the fingerprints, which have much
potential for the shape analysis purposes. Figure 13 shows the
shape indexing and comparison for two faces of different persons
with similar expression.

6 Conclusion
This work introduces a novel method for constructing conformal
mappings, which maps multiply connected domains to the unit disk
with circular holes. The method is based on holomorphic 1-form
and generalizes conventional Koebe’s method. Comparing to the
curvature flow method, this method is much more efficient and
robust. Comparing to the conventional Koebe’s method, this one
improves the efficiency, and can handle general surfaces instead
of planar domains. Our experimental results demonstrate the effi-
ciency and efficacy of the method.

In the future, we will explore further how to use similar method
to compute the conformal mappings for high genus surfaces with
boundaries.
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Mod = (0.238, 0.809, 0.053, 0.657, -0.385, 0.055)

Mod = (0.234, 0.833, 0.057, 0.708, -0.411, 0.073)

Figure 13: Shape analysis by conformal modules for face surfaces
with 3 holes. Circle 𝛾1 denotes the mouth boundary, circles 𝛾2,
𝛾3 denote the left and right eyes. After normalization, 𝛾1 is cen-
tered at the origin and the center of 𝛾2 is on positive 𝑦-axis. The
conformal module is given as (𝑟1, 𝑦2, 𝑟2, 𝑥3, 𝑦3, 𝑟3). The distance
between two surfaces is the Euclidean distance between their con-
formal modules.The 𝐿2 (Euclidean) distance is 0.064952.
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LÉVY, B., PETITJEAN, S., RAY, N., AND MAILLOT, J. 2002. Least
squares conformal maps for automatic texture atlas generation. SIG-
GRAPH 2002, 362–371.

LI, X., BAO, Y., GUO, X., JIN, M., GU, X., AND QIN, H. 2008. Glob-
ally optimal surface mapping for surfaces with arbitrary topology. IEEE
TVCG 14, 4, 805–819.

LUO, F. 2004. Combinatorial yamabe flow on surfaces. Commun. Contemp.
Math. 6, 5, 765–780.

MERCAT, C. 2004. Discrete riemann surfaces and the ising model. Com-
munications in Mathematical Physics 218, 1, 177–216.

PINKALL, U., AND POLTHIER, K. 1993. Computing discrete minimal
surfaces and their conjugates. Experimental Mathematics 2, 1, 15–36.

TEWARI, G., GOTSMAN, C., AND GORTLER, S. J. 2006. Meshing genus-1
point clouds using discrete one-forms. Comput. Graph. 30, 6, 917–926.

TONG, Y., ALLIEZ, P., COHEN-STEINER, D., AND DESBRUN, M. 2006.
Designing quadrangulations with discrete harmonic forms. In SGP ’06:
Proceedings of the fourth Eurographics symposium on Geometry pro-
cessing, 201–210.

TONG, Y., ALLIEZ, P., COHEN-STEINER, D., AND DESBRUN, M. 2006.
Designing quadrangulations with discrete harmonic forms. In Sympo-
sium on Geometry Processing, 201–210.

WANG, Y., GUPTA, M., ZHANG, S., WANG, S., GU, X., SAMARAS, D.,
AND HUANG, P. 2005. High resolution tracking of non-rigid 3d motion
of densely sampled data using harmonic maps. In ICCV, 388–395.

WANG, S., WANG, Y., JIN, M., GU, X. D., AND SAMARAS, D. 2007.
Conformal geometry and its applications on 3d shape matching, recogni-
tion, and stitching. IEEE Trans. Pattern Anal. Mach. Intell. 29, 7, 1209–
1220.

WEITRAUB, S. H. 2007. Differential Forms: A Complement to Vector
Calculus. Academic Press.

XU, G. 2008. Finite element methods for geometric modeling and process-
ing using general fourth order geometric flows. In GMP, 164–177.

YIN, X., DAI, J., YAU, S.-T., AND GU, X. 2008. Slit map: Conformal
parameterization for multiply connected surfaces. In Advances in Ge-
ometric Modeling and Processing, 5th International Conference, GMP,
Springer, vol. 4975 of Lecture Notes in Computer Science, 410–422.

ZENG, W., YIN, X., ZENG, Y., WANG, Y., GU, X., , AND SAMARAS, D.
2008. 3d face matching and registration based on hyperbolic ricci flow.
In CVPR 2008 Workshop on 3D Face Processing.

ZENG, W., ZENG, Y., WANG, Y., YIN, X., GU, X., AND SAMARAS, D.
2008. 3d non-rigid surface matching and registration based on holomor-
phic differentials. In The 10th European Conference on Computer Vision
(ECCV) 2008, 1–14.

ZENG, W., JIN, M., LUO, F., AND GU, X. 2009. Canonical homotopy
class representative using hyperbolic structure. In IEEE SMI.

ZENG, W., LUI, L.-M., GU, X., AND YAU, S.-T. 2009. Shape analysis
by conformal modules. Methods and Applications of Analysis.

A Theories of Generalized Koebe’s Method
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Figure 14: A circle domain 𝑃 and Schwarz reflection.

A.1 Conformal Mapping for Circle Domain

A circle domain 𝑃 is a domain in 𝐶 bounded by round circles, as
shown in Figure 14. We assume that ∞ ∈ 𝑃 and ∣𝑧∣ = 1 is a
boundary of 𝑃 . Give a circle domain 𝑃 and a component 𝐶 of ∂𝑃 ,
we can use Schwartz reflection to reflect 𝑃 about 𝐶 to produce 𝑎
new circle domain 𝑃 ′. We call 𝑃 ′ a level-1 copy of 𝑃 . There are 𝑛
level-1 copies of 𝑃 if 𝑃 has 𝑛 boundary components.

We can reflect 𝑃 ′ about its boundary circles to get level-2 copies of
𝑃 . In doing so, we obtain a Schottky picture of 𝑃 shown in Figure
15. It is well known that the boundary circles of level-𝑘 are disjoint
and bound an area < 𝐶1, 𝐶1 depends only on 𝑃 .

P

P’

P’

P’

Figure 15: Schottky picture of 𝑃 . Red regions are level-1 copies
of 𝑃 , green regions level-2 copies of 𝑃 , blue regions are level-3
copies of 𝑃 .

Let 𝑃𝑘 be the union of 𝑃 together with all level ≤ 𝑘 copies of 𝑃 .
Theorem A.1 (Henrici). There exist two constants 𝐶1, 𝐶2 >

0, 𝐶1 < 1, so that if 𝜙 : 𝑃 → 𝐶 is an analytic embedding
with 𝜙(𝑧) = 𝑧 + 𝑂( 1

𝑧
), 𝑧 → ∞, sending ∣𝑧∣ = 1 to ∣𝑧∣ = 1

and 𝜙 can be extended to be an analytic embedding to 𝑃𝑘, then
∣𝜙(𝑧)− 𝑧∣ ≤ 𝐶2𝐶

𝑘
1 for all 𝑧 ∈ 𝑃

The proof is to use Cauchy integral formula in the domain 𝑃𝑘 and
use area estimate. (see page 502-505 in [Henrici 1993])



A.2 Koebe’s Iteration and Convergence

Given a multiply connected domain 𝑅, say ∞ ∈ 𝑖𝑛𝑡(𝑅), there
exists a circle domain 𝑃 and analytic homeomorphism 𝑓 : 𝑃 → 𝑅,
as shown in .
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Figure 16: Conformal mapping from the circle domain to the mul-
tiply connected domain.

To approximate 𝑓 Koebe tries to ”renormalize” 𝑅 by make a bound-
ary component a round circle, one at a time. We may assume
∂𝑅 = 𝐶1 ∪ 𝐶2 ∪ 𝐶3 and 𝐶𝑖 analytic Jordan curves: Let 𝐷𝑖 be
the disk bounded by 𝑐𝑖 Let be ℎ1 : 𝐷𝑐

1 → {∣𝑧∣ > 1} ∪ {∞} be the
normalized Riemann mapping (ℎ1(𝑧) = 𝑧 + 𝑜( 1

𝑧
)).
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Key observation of Koebe: the composition: ℎ1 ∘ 𝑓 : 𝑃 → ℎ1(𝑃 )
sends one boundary component of 𝑃 to the circle ℎ1(𝐶1). Thus by
Schwartz reflection principle, ℎ1 ∘𝑓 extends to 𝑃 ∪𝑃 ′ → 𝐶 where
𝑃 ′ is a level-1 copies of 𝑃 . See the green region in the following
figure.
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Now, let us use Riemann mapping ℎ2 for the 2nd computation of
ℎ1(𝑅). Now, ℎ2 ∘ ℎ1 ∘ 𝑓 is defined on 𝑃 ∪ 𝑃 ′, i.e. ℎ2∣ℎ1∘𝑓(𝑃 ′) is
defined. See the green region in the following figure.
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Also ℎ2 ∘ ℎ1 ∘ 𝑓 sends the second circle boundary of 𝑃 to a circle.
Thus ℎ2 ∘ ℎ1 ∘ 𝑓 using Schwartz reflection, can be extended to
𝑃 ∪ 𝑃 ′ ∪ 𝑃 ′′ where 𝑃 ′′ is another level-1 copy, shown as yellow
region in the following figure.
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The more Riemann mapping ℎ𝑘 we use to normalize the boundary
components of ℎ𝑘−1ℎ𝑘−2....ℎ1(𝑅), the higher level-copies that we
can extend ℎ𝑘 ∘ .....∘ℎ1 ∘𝑓 from 𝑃 → 𝐶 to 𝑃 𝑘

3
→ 𝐶. By theorem

A.1,
∣ℎ𝑘 ∘ ...... ∘ ℎ1 ∘ 𝑓(𝑧)− 𝑧∣ < 𝐶2𝐶1[

𝑘
3
], (4)

namely it produces a better and better approximation to 𝑓−1.

A.3 Generalized Koebe’s Method

Now it is clear that if one normalizes pair of boundary components
𝐶1, 𝐶2 of 𝑅, one at a time, the process will converge faster.
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Given a multiply connected domain 𝑅, 𝑃 is the circle domain, 𝑓 :
𝑃 → 𝑅 is a conformal mapping. Just like Koebe’s case, one sees
that

ℎ𝑘 ∘ ℎ𝑘−1 ∘ ...... ∘ ℎ1 ∘ 𝑓 : 𝑃 → 𝐶

can be extended to 𝑃 ∪ 𝑄1 ∪ ... ∪ 𝑄𝑘, where 𝑄𝑖 are obtained
by Schwartz reflection of copies of 𝑃 . After 𝑘 steps, the mapping
ℎ𝑘 ∘ ⋅ ⋅ ⋅ ∘ ℎ1 ∘ 𝑓 from 𝑃 → 𝐶 can be extended to 𝑃 2𝑘

3
→ 𝐶, by

theorem A.1,

∣ℎ𝑘 ∘ ℎ𝑘−1 ∘ ...... ∘ ℎ1 ∘ 𝑓(𝑧)− 𝑧∣ < 𝐶1𝐶
2[ 𝑘

3
]

2 . (5)

Compareing the Equation 4 and 5, it is clear that generalized
Koebe’s method converges quadratically faster than the conven-
tional Koebe’s method.
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Step (3)

Step (4)

Step (5)

Step (6)
(a) Choose two boundaries (b) Riemann mapping (c) Fill holes

Figure 9: Koebe’s method for computing conformal maps for multiply connected domains.


