

2009 SIAM/ACM Joint Conference on Geometric and Physical Modeling (SPM' 09) October 5 - 8, San Francisco, California

Generalized Koebe's Method for Conformal Mapping Multiply Connected Domains

Wei Zeng¹ Xiaotian Yin¹ Min Zhang¹ Feng Luo¹ Xianfeng Gu ¹ State University of New York at Stony Brook ² Rutgers University

Circular conformal mapping for Multiply connected domains

A practical algorithm to explicitly construct conformal mappings for multiply connected domains. Koebe's Uniformization Theory "All genus zero multiply connected surfaces can be mapped to a planar disk with multiply circular holes. This kind of mappings are angle preserving and differ by Mobius transformation." Generalized Koebe's Method

 General for multiply connected Domains/Surfaces. Efficient from iterative construction of linear steps. • Rigorous proof for the exponential converging rate. Intrinsic to conformal structure of surface. Free of angle distortion.

2009 SIAM/ACM Joint Conference on Geometric and Physical Modeling (SPM' 09) October 5 - 8, San Francisco, California

Advantages

Schwartz reflection & Schottky group

Theorem [Henrici 1993] Suppose the planar surface has n boundaries, then there exist constants $C_1 > 0$, $0 < C_2 < 1$, for step k, for all z in P,

Conventional Koebe's method

Generalized Koebe's method

- angle / area distortion - angle preserving

Previous work

- Surface parameterization
- Conformal parameterization
 - desirable for engineering applications
 - convex target domain, homeomorphism
- LSCM [Levy et al. 2002] - 2 specified features, free boundary

Discrete harmonic map [Pinkall & Polthier 1993]

• Discrete Ricci flow method [Jin et.al 2008] - the only existing one for multiply connected domains - Highly non-linear

3-holed

2009 SIAM/ACM Joint Conference on Geometric and Physical Modeling (SPM' 09) **October 5 - 8, San Francisco, California**

Previous work (cont.)

Harmonic Map

Ricci Flow

- linear

2009 SIAM/ACM Joint Conference on Geometric and Physical Modeling (SPM' 09) October 5 - 8, San Francisco, California

Previous work (cont.)

• Discrete holomorphic 1-form method - holomorphic 1-form [Gu & Yau 2003] - discrete exterior calculus [Mercat 2004] – generalized 1-forms [Gortler et al. 2005]

– Applications: surface tiling, quad remeshing, surface matching, manifold splines...

• Conformally map any domains / surfaces to canonical shapes. • Riemann uniformization theorem.

2009 SIAM/ACM Joint Conference on Geometric and Physical Modeling (SPM' 09) **October 5 - 8, San Francisco, California**

Conformal uniformization

Harmonic 1-form df Conjugate harmonic 1-form $*df = \lambda(dg_0 + dg_1)$

 $f: S \rightarrow R$ $f_{\gamma_0} = 0$

• Holomorphic 1-form $\omega = df + i * df$ $= df + i\lambda(dg_0 + dg_1)$

2009 SIAM/ACM Joint Conference on Geometric and Physical Modeling (SPM' 09) **October 5 - 8, San Francisco, California**

Doubly connected domain

Annulus Mapping

Riemann Mapping Disk Mapping — an interior point p - a boundary point q - A sequences of small disks D_n - Conformal mappings

Theorem: The mappings $\{f_n\}$ converge to the Riemann mapping

2009 SIAM/ACM Joint Conference on Geometric and Physical Modeling (SPM' 09) October 5 - 8, San Francisco, California

Simply connected domain

such that f maps p to the origin, q to 1.

Multiply connected domain • *n*-holed genus 0 surfaces (n>1)

Previous: Ricci curvature flow methods Proposed: Holomorphic 1-form based Koebe's methods

Conventional Koebe's method

Generalized Koebe's method

2009 SIAM/ACM Joint Conference on Geometric and Physical Modeling (SPM' 09) October 5 - 8, San Francisco, California

Proof of Koebe's methods

 $h_1 \circ f$

Multiply connected domain S, *n* boundaries Composed by linear iterations • Each iteration includes *n* steps • Each step maps 1 boundary to the unit circle. • Each step has *linear* time, angle preserved.

2009 SIAM/ACM Joint Conference on Geometric and Physical Modeling (SPM' 09) October 5 - 8, San Francisco, California

Theorem proof (Henrici) formula and area estimate. • See pages 502-505 in [Henrici 1993]

Convergence is proved using Cauchy intergral

• Conformally map 1 inner boundary γ_3 to the unit circle D. • Linear time

• In each iteration, each boundary is chosen to be mapped to the unit circle. $(\gamma_0, \gamma_3, \gamma_1, \gamma_2)$

2009 SIAM/ACM Joint Conference on Geometric and Physical Modeling (SPM' 09) October 5 - 8, San Francisco, California

2 iterations

Generalized Koebe's method (GK) Multiply connected domain S, n boundaries

 Composed by iterations • Each iteration includes n/2 steps • Each step maps 2 boundaries to circles. • Each step has *linear* time, angle preserved.

Theorem proof Appendix

2009 SIAM/ACM Joint Conference on Geometric and Physical Modeling (SPM' 09) October 5 - 8, San Francisco, California

Much faster & Much fewer!! Convergence is proved using Cauchy intergral formula and area estimate by reflection.

• Conformally map 2 boundaries γ_0, γ_2 to the interior and exterior circles of unite disk *D*. • Linear time

In each iteration, each two boundaries are chosen to be mapped to the exterior and interior circles. (γ_0,γ_2)

2009 SIAM/ACM Joint Conference on Geometric and Physical Modeling (SPM' 09) October 5 - 8, San Francisco, California

$\left(\frac{1}{3}, \frac{1}{3} \right)$

γ_{0}, γ_{2}

Each step chooses 1 inner boundary mapped to inner circle. The outer boundary is always mapped to exterior unit circle.

2009 SIAM/ACM Joint Conference on Geometric and Physical Modeling (SPM' 09) October 5 - 8, San Francisco, California

2 iterations

Each step chooses arbitrary 2 boundaries mapped to exterior and interior circles. The outer boundary is regarded as a hole and filled during the computation.

2009 SIAM/ACM Joint Conference on Geometric and Physical Modeling (SPM' 09) October 5 - 8, San Francisco, California

3 iterations

Conformal Maps of Koebe's M. • 6 boundaries 10 boundaries

Conformal Maps of Koebe's M. 16 boundaries

Application • Shape Analysis by Conformal Modules Zeng et al. 2009]

Mod = (0.238, 0.809, 0.053, 0.657, 0.657)-0.385, 0.055)

Mod = (r1, y2, r2, x3, y3, r3)The L_2 (Euclidean) distance is 0.064952.

2009 SIAM/ACM Joint Conference on Geometric and Physical Modeling (SPM' 09) October 5 - 8, San Francisco, California

Mod = (0.234, 0.833, 0.057, 0.708,-0.411, 0.073)

• A practical algorithm to explicitly construct conformal mappings for multiply connected domains. Generalized Koebe's Method - General for multiply connected Domains/Surfaces. - Quadratically faster than conventional Koebe's method. - Rigorous proof for exponential converging rate analysis. - Efficient from *iterations of linear steps*. - Intrinsic to conformal structure of surface.

2009 SIAM/ACM Joint Conference on Geometric and Physical Modeling (SPM' 09) October 5 - 8, San Francisco, California

Generalized Koebe's Method for Conformal Mapping **Multiply Connected Domains**

Questions?

Thanks

Xiaotian Yin¹ Min Zhang¹ Feng Luo¹

Xianfeng Gu¹ ¹ State University of New York at Stony Brook ² Rutgers University

