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Motivation
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Simulation

Triangle meshes and quadrilateral meshes have been widely
used in CAD and simulation.
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Simulation

Comparing to triangle meshes, quadrilateral meshes have
many advantages.
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Advantages

Advantages of Quad-mesh

Quad-mesh can better capture the local principle curvature
directions or sharp features, as well as the semantics of
modeled objects, therefore it is widely used in animation
industry.

Quad-mesh has tensor product structure, it is suitable for
fitting splines or NURBS. Therefore it is applied for
high-order surface modeling, such as CAD/CAM for
Splines and NURBS, and the entertainment industry for
subdivision surfaces.

Patches of semi-regular quad meshes with a rectangular
grid topology, naturally match the sampling pattern of
textures. Therefore quad-mesh is highly preferred for
texturing and compression.
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Categories

Categories of Quad-meshes

1 Regular quad-mesh: all the interior vertices are with
topological valence 4, there are no singularities, such as
geometry image.

2 Semi-regular quad-mesh: The separatrices divide the
quad-mesh into several topological rectangles, the interior
of each topological rectangle is regular grids.

3 Valence semi-regular quad-mesh: The number of
singularities are few, but the separatrices have complicated
global behavior, they may have intersections, form spirals
and go through most edges.

4 Unstructured quad-mesh: A large fraction of its vertices
are irregular.
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Regular vs Semi-regular Quad-mesh

Regular vs Semi-regular Quad-mesh

Regular quad-meshes have strong topological
requirements for the surfaces, such as topological tours or
annulus.

Semi-regular quad-meshes can be realized for surfaces
with any topologies, but the number of singularities, the
behavior of separatrices are difficult to control.
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Our solution

We propose generalized regular quad-mesh, which is
between the regular and semi-regular categories, combines
their advantages and overcomes their disadvantages.

1 Comparing with regular quad-meshes, ours have no
restriction on topologies;

2 Comparing with semi-regular quad-meshes, ours
minimizes the number of singularities, simplifies the global
behavior of separatrices. Namely, it is more regular.

David Gu Quad-Hex-Meshing Based on Conformal Geometry



Contributions

main contributions
1 Propose the generalized regular quad-mesh, it can be

applied for surfaces with general topologies and with
higher regularity.

2 It reduces the number of singularities to the theoretic lower
bound and simplifies the global behavior of separatrices.

3 It is with C∞ smoothness except the singular vertices and
global tensor product structure, suitable for spline fitting
application.

4 The method is based on surface foliation theory and gives
the complete solutions, which form a 6g−6 linear space.

5 The algorithm can be fully automatic without any user input
or intervention.
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Previous Works

David Gu Quad-Hex-Meshing Based on Conformal Geometry



Previous Works

Theorem (Thurston 93 and Mitchell 96)

For a genus zero closed surface, a quadrilateral mesh admits a
hexahedral mesh of the enclosed volume if and only if it has
even number of cells.

W. Thurston, Hexadedral decomposition of polyhedra,
posting to Sci.Math. (25 October 1993).

S. A. Mitchell, A characterization of the quadrilateral
meshes of a surface which admit a compatible hexahedral
mesh of the enclosed volume, proceeding of STACS 96,
pp. 465−476.
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Previous Works

Theorem (Mitchell 96)

For a genus g closed surface in R
3, with a quad-mesh,

1 A compatible hex-mesh exists if one can find g disjoint
topological disks in the interior body, each bounded by an
cycle of even length in the quad-mesh, that cut the interior
body into a ball.

2 A compatible hex-mesh does not exist if there is a
topological disk in the interior whose boundary is a cycle of
odd length in the quad-mesh.

S. A. Mitchell, A characterization of the quadrilateral
meshes of a surface which admit a compatible hexahedral
mesh of the enclosed volume, proceeding of STACS 96,
pp. 465−476.
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Previous Works

Theorem (Erickson 2014)

Let Ω be a compact connected subset of R3 whose boundary
∂Ω is a (possibly disconnected) 2-manifold, and let Q be a
topological quad-mesh on ∂Ω with an even number of facets.
The following conditions are equivalent:

1 Q is the boundary of a topological hex-mesh of Ω.
2 Every subgraph of Q that is null-homologous in Ω has an

even number of edges.
3 The dual of Q is null-homologous in Ω.

J. Erickson, Efficiently Hex-Meshing Things with Topology,
Discrete and Computational Geometry
52(3):427-449,2014.

Generalization of Thurston and Mitchell’s works.
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Previous Works

These theoretic works consider general unstructured
hex-meshes, which do not have local tensor product structure,
therefore can not be applied for Mesh-TSpline conversion.
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Previous Works

The “Frame field” method constructs smooth frame field, the
hex-mesh is extracted from the field.

1 J. Huang, Y. Tong, H. Wei, H. Bao, Boundary aligned
smooth 3d cross- frame field, ACM Trans. Graph. 30 (6)
(2011) 143.

2 Y. Li, Y. Liu, W. Xu, W. Wang, B. Guo, All-hex meshing
using singularity-restricted field, ACM Trans. Graph. 31 (6)
(2012).

3 M. Nieser, U. Reitebuch, K. Polthier, Cubecover-
parameterization of 3d volumes, Comput. Graph. Forum
30(5) (2011), 1397−1406.

The automatic generation of frame fields with prescribed
singularity structure is unsolved.
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Previous Works

The “advancing front” approach generates a hex-mesh from the
boundary of the surface mesh inward.

1 Pastering method: T. D. Blacker, R. J. Meyers, Seams and
wedges in plastering: A 3d hexahedral mesh generation
algorithm, Engineering with Computers 9(2) (1993)
83−93.

2 Harmonic Field method: M. Li, R. Tong, All-hexahedral
mesh generation via inside-out advancing front based on
harmonic fields, The Visual Computer 28(6) (2012)
839−847.

The singularities might be propagated to the medial axes,
which might lead to non-hexahedron shaped elements.

David Gu Quad-Hex-Meshing Based on Conformal Geometry



Previous Works

The “advancing front” approach generates a hex-mesh from the
boundary of the surface mesh inward, whisker weaving
method.

1 T. J. Tautges, T. Blacker, S. A. Mitchell, The whisker
weaving algorithm: A connectivitybased method for
constructing all-hexahedral finite element meshes (1995).

2 F. Ledoux, J.-C. Weill, An extension of the reliable whisker
weaving algorithm, in: 16th International Meshing
Roundtable, 2007.

The hex-mesh has no local tensor product structure.
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Theoretic Foundation
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Riemann Surface Theory
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Riemann Surface

Uα Uβ

φα

φβ

φαβ

zα zβ

Figure: Riemann Surface.

A surface is covered by a complex atlas A , such that all chart
transitions are bi-holomorphic. ϕαβ : (x ,y) 7→ (u,v) satisfies
Cauchy-Riemann equation:

ux = vy , uy =−vx ,
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Riemann Surface

Definition (Meromorphic Function)

Suppose f : M → C∪{∞} is a complex function defined on the
Riemann surface M. If for each point p ∈ M, there is a
neighborhood U(p) of p with local parameter z(p) = 0, f has
Laurent expansion

f (z) =
∞

∑
i=k

aiz
i ,

then f is called a meromorphic function.
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Meromorphic Differential

Definition (Meromorphic Differential)

Given a Riemann surface (M,{zα}), ω is a meromorphic
differential of order n, if it has local representation,

ω = fα(zα)(dzα )
n,

where fα(zα) is a meromorphic function, n is an integer; if
fα(zα) is a holomorphic function, then ω is called a holomorphic
differential of order n.
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Zeros and Poles

Definition (Zeros and Poles)

Suppose f : M → C∪{∞} is a meromorphic function. For each
point p, there is a neighborhood U(p) of p with local parameter
z(p) = 0, f has Laurent expansion

f (z) =
∞

∑
i=k

aiz
i ,

if k > 0, then p is a zero with order k ; if k = 0, then p is a
regular point; if k < 0, then p is a pole with order k . The
assignment of p with respect to f is denoted as νp(f ) = k .

The zeros and poles of a meromorphic differential are defined
in the similar way.
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Divisor

Definition (Divisor)

The Abelian group freely generated by points on a Riemann
surface is called the divisor group, every element is called a
divisor, which has the form D = ∑p npp. The degree of a divisor
is defined as deg(D) = ∑p np. Suppose D1 = ∑p npp,
D2 = ∑p mpp, then D1 ±D2 = ∑p(np ±mp)p; D1 ≤ D2 if and only
if for all p, np ≤ mp.

Definition (Meromorphic Function Divisor)

Given a meromorphic funciton f defined on a Riemann surface
S, its divisor is defined as (f ) = ∑p νp(f )p, where νp(f ) is the
assignment of p with respect to f .

The divisor of a meromorphic function is called a principle
divisor. The divisor of a meromorphic differential is defined in
the similar way.
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Principle Divisor

Theorem

Suppose M is a compact Riemann surface with genus g, f is a
meromorphic function, then

deg((f )) = 0,

ω is a meromorphic differential, then

deg((ω)) = 2g−2.
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Canonical Fundamental Group Generators

a1

b1

a2

b2

q

a1

b1

a
−1

1

b
−1

1

a2

b2

a
−1

2

b
−1

2

Algebraic intersection numbers satisfy the conditions:

ai ·bj = δij ,ai ·aj = 0,bi ·bj = 0.
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Holomorphic Differential Group Basis

The holomorphic one-form basis {ϕ1,ϕ2, · · · ,ϕg} satisfy the
dual condition

∫

aj

ϕi = δij .
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Period Matrix

Definition (Period Matrix)

Suppose M is a compact Riemann surface of genus g, with
canonical fundamental group basis

{a1,a2, · · · ,ag,b1,b2, · · · ,bg}

and holomorphic one form basis

{ϕ1,ϕ2, · · · ,ϕg}

The period matrix is defined as [A,B]

A =

(

∫

aj

ϕi

)

,B =

(

∫

bj

ϕi

)

.

Matrix B is symmetric, Img(B) is positive definite.
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Jacobi Variety

Definition (Jacobi Variety)

Suppose the period matrix

A = (A1,A2, · · · ,Ag), B = (B1,B2, · · · ,Bg),

the lattice Γ is

Γ =

{

g

∑
i=1

αiAi +
g

∑
j=1

βjBj

}

,

the Jacobi variety of M is defined as

J(M) = C
g/Γ.
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Jacobi Map

Definition (Jacobi Map)

Given a compact Riemann surface M, choose a set of
canonical fundamental group generators {a1, · · · ,ag ,b1, · · · ,bg},
and obtain a fundamental domain Ω,

∂Ω= a1b1a−1
1 b−1

1 a2b2a−1
2 b−1

2 · · ·agbga−1
g b−1

g .

choose a base point p0, the Jacobi map µ : M → J(M) is
defined as follows: for any point p ∈ M, choose a path γ from p0

to p inside Ω,

µ(p) =
(

∫

γ
ϕ1,

∫

γ
ϕ2, · · · ,

∫

γ
ϕg

)T

.
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Abel Theorem

Theorem (Abel)

Suppose M is a compact Riemann surface with genus g, D is a
divisor, deg(D) = 0. D is principle if and only if

µ(D) = 0 in J(M).
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Theory: measured foliation
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Measured Foliation

Figure: A finite measured foliation on a genus two surface.
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Foliation

Figure: A finite measured foliation on a genus three surface.
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Measured Foliation

Definition (Measured Foliation)

Let S be a compact Riemann surface of genus g > 1. A Ck

measured foliation on S with singularities z1, . . . ,zl of order
k1, . . . ,kl respectively is given by an open covering {Ui} of
S−{z1, . . . ,zl} and open sets V1, . . . ,Vl around z1, . . . ,zl

respectively along with Ck real valued functions vi defined on
Ui s.t.

1 |dvi |= |dvj | on Ui ∩Uj

2 |dvi |= |Im(z −zj)
kj/2dz| on Ui ∩Vj .

The kernels ker dvi define a Ck−1 line field on S which
integrates to give a foliation F on S−{z1, . . . ,zl}, with kj +2
pronged singularity at zj . Moreover, given an arc γ ⊂ S, we
have a well-defined measure µ(γ) given by µ(γ) = |

∫

γ dv |,
where |dv | is defined by |dv |Ui

= |dvi |.

David Gu Quad-Hex-Meshing Based on Conformal Geometry



Measured Foliation

Figure: Finite measured foliations on a genus three surface.
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Measured Foliation

Figure: Holomorphic quadratic differentials on a genus three surface.
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Whitehead Move

Figure: Equivalent measured foliations and Whitehead moves.
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Equivalence

Two measured foliations (F ,µ) and (G ,ν) are said to be
equivalent if after some Whitehead moves on F and G , there is
a self-homeomorphism of S which takes F to G , and µ to ν .
Here a Whitehead move is the transformation of one foliation to
another by collapsing a finite arc of a leaf between two
singularities, or the inverse procedure.
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Theory: Strebel Differential
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Holomorphic Quadratic Differentials

Definition (Holomorphic Quadratic Differentials)

Suppose S is a Riemann surface. Let Φ be a complex
differential form, such that on each local chart with the local
complex parameter {zα},

Φ= ϕα(zα )dz2
α ,

where ϕα(zα ) is a holomorphic function.

A holomorphic quadratic differentials on a genus zero
closed surface must be 0.

The linear space of all holomorphic quadratic differentials
is 1 complex dimensional, where the genus g = 1.

The linear space of all holomorphic quadratic differentials
is 3g−3 complex dimensional, where the genus g > 1.
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Zeros

Figure: Holomorphic quadratic forms on the genus two surface.

Definition (Zeros)

A point zi ∈ S is called a zero of Φ, if ϕ(zi) vanishes. A
holomorphic quadratic differential has 4g−4 zeros.

David Gu Quad-Hex-Meshing Based on Conformal Geometry



Natural Coordinates

Definition (Natural Coordinates)

For any point away from zero, we can define a local coordinates

ζ (p) :=
∫ p
√

ϕ(z)dz. (1)

which is the so-called natural coordinates induced by Φ.

The curves with constant real natural coordinates are called the
vertical trajectories, with constant imaginary natural
coordinates horizontal trajectories. The trajectories through the
zeros are called the critical trajectories.
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Algorithmic Pipeline

Figure: Trajectories of a holomorphic quadratic differential, blue -
horizontal, red - vertical, black -critical trajectory.
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Strebel Differential

(a) non-Strebel (b) Strebel

Figure: A non-Strebel (a) and a Strebel differential (b).
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Strebel Differential

Definition (Strebel)

Given a holomorphic quadratic differential Φ on a Riemann
surface S, if all of its horizontal trajectories are finite, then Φ is
called a Strebel differential.

A holomorphic quadratic differential Φ is Strebel, if and only if its
critical horizontal trajectories form a finite graph. The horizontal
trajectories of a holomorphic differential may be infinite spirals
as in the left frame, or finite loops as in the right frame.
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From Differential to Foliation

Given a holomorhic quadratic differential Φ on a Riemman
surface S, it defines a measured foliation in the following way:
Φ induces the natural coordinates ζ , the local measured
foliations are given by

({Imζ = const}, |d Imζ |), (2)

then piece together to form a measured foliation known as the
horizontal measured foliation of Φ. Similarly, the vertical
measured foliation of Φ is given by

({Reζ = const}, |dReζ |). (3)
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From Foliation to Differential

Hubbard and Masure proved the following fundamental
theorem connecting measured foliation and holomorphic
quadratic differentials.

Theorem (Hubbard-Masur)

If (F ,µ) is a measured foliation on a compact Riemann surface
S, then there is a unique holomorphic quadratic differential Φ
on S whose horizontal foliation is equivalent to (F ,µ).
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Quad-Mesh/Hex-Mesh Theorems

David Gu Quad-Hex-Meshing Based on Conformal Geometry



Metric Holonomy Condition

David Gu Quad-Hex-Meshing Based on Conformal Geometry



Quad-Mesh

Figure: Quad-meshes with different number of singularities.
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Quad-Mesh

Figure: Quad-meshes with different number of singularities.
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Quad-Mesh

Figure: Quad-meshes with different number of singularities.
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Quad-Mesh Metric

Definition (Quad-Metric)

Given a quad-mesh Q, each face is treated as the unit planar
square, this will define a Riemannian metric, the so-called
quad-mesh metric gQ, which is a flat metric with cone
singularities.

Theorem (Quad-Mesh Metric Conditions)

Given a quad-mesh Q, the induced quad-mesh metric is gQ,
which satisfies the following four conditions:

1 Gauss-Bonnet condition;
2 Holonomy condition;
3 Boundary Alignment condition;
4 Finite geodesic lamination condition.
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Gauss-Bonnet Condition

Definition (Curvature)

Given a quad-mesh Q, for each vertex vi , the curvature is
defined as

K (v) =
{ π

2 (4−k(v)) v 6∈ ∂Q
π
2 (2−k(v)) v ∈ ∂Q

where k(v) is the topological valence of v , i.e. the number of
faces adjacent to v .

Theorem (Gauss-Bonnet)

Given a quad-mesh Q, the induced metric is gQ, the total
curvature satisfies

∑
vi∈∂Q

K (vi)+ ∑
vi 6∈∂Q

K (vi) = 2πχ(Q).

Namely

∑
∂

(2−k(vi))+ ∑
∂

(4−k(vi)) = 4χ(Q).David Gu Quad-Hex-Meshing Based on Conformal Geometry



Holonomy Condition

Definition (Holonomy)

Given a quad-mesh Q, the induced flat metric is gQ, the set of
singular vertices is SQ. Suppose γ : [0,1]→ Q \SQ is a closed
loop not through singularities, choose a tangent vector
v(0) ∈ Tγ(0)Q, parallel transport v(0) along γ(t) to obtain v(t).
The rotation angle from v(0) to v(1) in Tγ(0)Q is the holonomy
of γ , denoted as ρ(γ).

Because gQ is flat on Q \SQ, if γ1 is homotopic to γ2, then
ρ(γ1) = ρ(γ2). Therefore, holonomy is a homomorphism from
the fundamental group to S

1,

λ : π1(Q \SQ)→ S
1.
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Face Loop

Definition (face path)

A sequence of faces, {f0, f1, · · · , fn}, such that fi and fi+1 share
an edge. If f0 equals to fn, then the face path is called a face
loop.

Figure: A face path and a face loop.
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Fundamental Group

Definition (Fundamental Group)

Given a quad-mesh Q with singularities SQ, fix a base face σ0,
the homotopy classes of face loops through σ0 form the
fundamental group, denoted as π1(Q−SQ,σ0).

Figure: A face path and a face loop.
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Holonomy

Definition (Holonomy of a loop)

Given a face loop γ through σ0, fix a frame on σ0, parallel
transport the frame along γ . When we return to σ0, the frame is
rotated by an angle kπ/2, which is called the holonomy of γ ,
and denoted as 〈γ〉.

π

2

σ0
γ

Figure: Parallel transportation along a face loop.David Gu Quad-Hex-Meshing Based on Conformal Geometry



Holonomy Condition

Theorem (Holonomy)

Given a quad-mesh Q with induced metric gQ, the holonomy
homomorphism is

λ : π1(Q \SQ)→ S
1,

then the holonomy group is a subgroup of rotation group

λ (π1(Q \SQ))⊂ R = {ei kπ
2 ,k = 0,1,2,3}.
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Boundary Alignment Condition

Given a flat cone metric with satisfying the holonomy condition,
one can define a global cross field by parallel transportation,
which gives the stream lines.

Figure: Quad-mesh with 4 saddle points.
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Boundary Alignment Condition

Definition (Boundary Alignment Condition)

Given a quad-mesh Q, with induced metric gQ, one can define
a global cross field by parallel transportation, which is aligned
with the boundaries.

Figure: Cross field is mis-aligned with the inner boundaries.
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Finite Geodesic Lamination Condition

Definition (Finite Geodesic Lamination Condition)

The stream lines parallel to the cross field are finite geodesic
loops. This is the finite geodesic lamination condition.

Figure: Finite geodesic lamination condition.
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Quad-Mesh Singularity Abel condition
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Singularities on Quadrilateral Meshes

Yellow, Green and Red vertices are with topological valence 3,
5 and 6 respectively.
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Singularities on Quadrilateral Meshes

Yellow, Green and Red vertices are with topological valence 3,
5 and 6 respectively.
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Singularities on Quadrilateral Meshes

Yellow, Green and Red vertices are with topological valence 3,
5 and 6 respectively.
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Quad-Mesh Riemannian Metric

Definition (Quad-Mesh Metric)

Suppose Q is a closed quadrilateral mesh, if each face is
treated as a unit square, then Q induces a Riemannian metric
gQ.

Theorem (Gauss-Bonnet)

Suppose Q is a closed quad-mesh, then

∑
v∈Q

(4−k(v)) = 4χ(M). (4)

where v is a vertex of Q with valence k(v).

Theorem (Holonomy Condition)

Suppose Q is a closed quad-mesh, then gQ induces holonomy
group is a subgroup of the rotation group {ei k

2 π ,k ∈ Z}.
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Divisor

Definition (Divisor)

The Abelian group freely generated by points on a Riemann
surface is called the divisor group, every element is called a
divisor, which has the form D = ∑p npp. The degree of a divisor
is defined as deg(D) = ∑p np. Suppose D1 = ∑p npp,
D2 = ∑p mpp, then D1 ±D2 = ∑p(np ±mp)p; D1 ≤ D2 if and only
if for all p, np ≤ mp.

Definition (Quad-Mesh Divisor)

Suppose Q is a closed quadrilateral mesh, then Q induces a
divisor

DQ = ∑
vi∈Q

(k(vi )−4)vi ,

where vi is a vertex with valence k(vi ).
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Main Problem

Central Question

Given a divisor D on a closed surface (M,g), whether there
exists a quad-mesh Q on M, such that the metric induced by Q
is conformal to g, and the divisor of Q is D?

From Gauss-Bonnet condition, we know a necessary condition
of D should be

deg(D) =−4χ(M).

But only this condition can not guarantee the holonomy
condition.
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Quad-Mesh Riemann Surface

Theorem (Quad-Mesh Riemann Surface)

Suppose Q is a closed quadrilateral mesh, then Q induces a
conformal structure and can be treated as a Riemann surface
MQ.

Proof.

Uf Ue

Uv

(a) conformal atlas (b) singularities
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Quad-Mesh Meromorphic Differential

Theorem (Quad-Mesh Meromorphic Differential)

Suppose Q is a closed quadrilateral mesh, then Q induces
meromorphic quartic differential.

Proof.

On each face f , define dzf , ωQ = (dzf )
4; vertex face transition

z
k
4
v = ei nπ

2 zf +
1
2
(±1± i) (5)

where k is the vertex valence, therefore

(

k
4

)4

zk−4
v (dzv )

4 = (dzf )
4 = ωQ . (6)
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Quad-Mesh Abel Condition

Theorem (Quad-Mesh Abel Condition)

Suppose Q is a closed quadrilateral mesh, then for any
holomorphic differential ϕ

µ(DQ −4(ϕ)) = 0 in J(MQ). (7)
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Quartic Differential

Theorem (Quartic Differential to Quad-Mesh)

Suppose M is a Riemann surface, ω is a meromorphic quartic
differential with finite trajectories, then ω induces a quadrilateral
mesh Q, such that the poles or zeros with order k of ω
corresponds to the singular vertices of Q with valence k +4.
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Genus One Case

a) quad-mesh b) holomorphic 1-form

The induced meromorphic quartic differential has 18 poles and
18 zeros.

DQ =
18

∑
i=1

(pi −qi),
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Genus One Case

The results of the Abel-Jacobi map are as follows:

µ

(

18

∑
j=1

pj

)

= 2.61069+ i0.588368,

and

µ

(

18

∑
i=1

qi

)

= 2.61062+ i0.588699.

Hence, µ(DQ) is the difference between them, which equals to
6.967e−05 − i3.3064e−4, very close to the origin in J(SQ).
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Figure Eight Case

Figure: The input genus two quad-mesh.
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Figure Eight Case

(a) tunnel loops (b) handle loops

Figure: The homology group basis.
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Figure Eight Case

Figure: The holomorphic differential basis.
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Abel Condition

We set ϕ0 as ω0 and verify the Abel-Jacobi condition by
computing the Abel-Jacobi map µ(DQ −4(ω0)). The period
matrix A of the Riemann surface SQ is
(

0.99999999 − i1.4209e−09 −0.99999989+ i6.01812e−08
0.99999998+ i5.12829e−09 0.99999992− i2.88896e−08

)

The period matrix B is
(

3.18e−08+ i0.38191542 4.7433845e−20+ i0.3861979
1.433e−08+ i0.44392235 −2.3716923e−20− i0.44820492

)

The Abel-Jacobi image of the divisor,

µ(DQ −4(ω0)) =

(

1e−06
2e−07− i1.6e−06

)

,

which is very close to 0.
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Genus Two Case

Figure: The genus 2 sculpt model.
David Gu Quad-Hex-Meshing Based on Conformal Geometry



Genus Two Case: Abel Condition

We set ϕ0 as ω0 and verify the Abel-Jacobi condition by
computing the Abel-Jacobi map µ(DQ −4(ω0)). The period
matrix A of the Riemann surface SQ is

(

0.99999997 − i2.8e−09 −0.24999994+ i2.745e−08
0.99999999+ i1.13e−08 0.50000015+ i4.1e−08

)

.

The period matrix B is
(

−4.8789098e−19+ i0.50669566 7.5894152e−19+ i0.15720634
−7.5894152e−19+ i0.73261918 4.8789098e−19+ i0.589281

)

.

The Abel-Jacobi map image of the divisor is

µ(DQ−4(ω0))=

(

−1.568599999979e−05+ i3.69999999994e−06
4.28899999998e−05− i4.400000000182e−07

)

,

which is very close the 0.
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Trinity Theorem
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Colorable Quad-Mesh

Figure: A red-blue (colorable) Quad-Mesh.
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Colorable Quad-Mesh

Definition (Colorable Quad Mesh)

Suppose Q is a quadrilateral mesh on a surface S, if there is a
coloring scheme ι : E →{red ,blue}, which colors each edge
either red or blue, such that each quadrilateral face includes
two opposite red edges and two opposite blue edges, then Q is
called a colorable (red-blue) quadrilateral mesh.

γ0

γ1 γ2

γ0

γ2γ1

(a) Colorable quad-mesh. (b) Non-colorable quad-mesh

Figure: Quadrilateral meshes of a multiply connected planar domain.
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Colorable Quad-Mesh

Lemma

Suppose S is an oriented closed surface, Q is a quadrilateral
mesh on S. Q is colorable if and only if the valences of all
vertices are even.

γ0

γ1 γ2

γ0

γ2γ1

(a) Colorable quad-mesh. (b) Non-colorable quad-mesh

Figure: Quadrilateral meshes of a multiply connected planar domain.
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Trinity

Theorem (Trinity)

Suppose S is a closed Riemann surface with a genus greater
than 1. Given an colorable quad-mesh Q, there is a finite
measured foliation (FQ,µQ) induced by Q, and there exits a
unique Strebel different Φ, such that the horizontal measured
foliation induced by Φ, (FΦ,µΦ) is equivalent to (FQ,µQ).
Inversely, given a Strebel differential Φ, it is associated with a
finite measured foliation (FΦ,µΦ), and induces a colorable
quad-mesh Q.

{Colorable Quad-Mesh}↔{Finite Measured Foliation}↔{Strebel Differential}.
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From Differential to Hex-Mesh

Theorem

Suppose S is a compact Riemann surface embedded in R
3, the

interior solid I is a handle-body, then there exists a Strebel
differential Φ, such that Φ induces a colorable quad-mesh QΦ,
QΦ admits a hexahedral mesh of the enclosed volume I of S.
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Admissible Curve System

β1

β2

β3

β4

η1

η2

η3

η4

α1

ξ1

Figure: Admissible curve system.

1 Boundaries of cutting disks βk ,
k = 1, · · · ,g

2 ηk = αk βk α−1
k β−1

k , k = 1, · · · ,g
3 ξk , k = 1, · · · ,g −3

We obtain an admissible curve
system:

Γ = {βi ,ηj ,ξk}
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Strebel Differential

γ1

γ2 γ3

(a) Admissible curve system

τ1

τ2

τ3

τ4

τ5

τ6

σ1

σ2

σ3

z1 z2

(b) Colorable quad-mesh QΦ

1 Admissible curve system Γ

2 The pants decomposition
graph GΓ with a height
function h, determines a
Strebel differential Φ

3 Zeros of Φ are z1,z2

4 Critical graph of Φ,
{τ1,τ2,τ3,τ4,τ5,τ6}

5 Critical vertical trajectories
{σk}, k = 1,2, · · · ,6g−6
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Segmentation

li lj

lk

τiτj

τk
hi/2 hj/2

hj/2

hk/2hk/2

hi/2
z1

z2

d

At each connected component
of the critical graph {τi ,τj ,τk},
the singular line d connects z1

and z2, form 3 half-cutting-disks
{Di ,Dj ,Dk},

∂Di = τi ∪d

segment the interior volume
into solid cylinders.
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Segmentation

p1

p2

q2

q1

q1

p1

p1

p2 q2

Ckγ+

k γ−

k

σ1

σ1

σ2
σ1

σ2

τ4

τ1
τ1

τ4
q1

d1
d2Σ

τ2

τ3
τ3

τ2

For each solid cylinder, construct a surface Σ,

∂Σ= σ1 ∪σ2 ∪d1∪d2,

the solid cylinder is divided into two half solid cylinders.
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Segmentation

τ1

τ2

τ3

τ4

τ5

τ6

σ1

σ2

σ3

t1

t2 t3

z1 z2

The vertical STC chords of Qφ is shown as {t1, t2, t3}, each
chord represents a loop of half-solid-cylinders.
Each loop of half-solid-cylinder is a direct product

D×S
1, ∂D = τk ∪d .

where D is a half disk.
By “sweeping” method, one can generate the hexahedral
mesh for each loop of half-solid-cylinders.
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Strebel Differential to Quad-Mesh

(a) (b) (c)

Figure: A Strebel differential on a genus two surface (a) and (b)
induces a quad meshing (c).
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Computational Algorithms
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Algorithm for Computing Strebel Differential
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Pants Decomposition

P1
P2

P3

P4

P5

P6

P7

P8

P9

P10

γ1

γ2
γ3

γ4
γ5

γ6

γ7

γ8 γ9

γ10

γ11

γ12

γ13

γ14

γ15

γ1

γ2 γ3

γ4

γ6

γ7

γ8

γ5

γ9

γ11

γ10

γ12

γ13

γ14
γ15

1 2 3 6 7

84 5

9 10

Figure: Pants decomposition and the pants decomposition graph.
David Gu Quad-Hex-Meshing Based on Conformal Geometry



Pants Decomposition

Definition (Pants Decomposition)

Given a genus g > 1 closed surface S, a set of 3g−3 disjoint
simple loops, Γ = {γ1,γ2, · · · ,γ3g−3} is called an admissible
curve system. Γ segments S into 2g−2 pairs of pants,
{P1,P2, · · · ,P2g−2}, this forms a pants decomposition of the
surface.

Definition (Pants Decomposition Graph)

Each pair of pants is represented as a node.

Each simple loop is denoted by an edge. Suppose the
simple loop γi connecting two pairs of pants Pj ,Pk , then the
arc of γi connects nodes of Pj and Pk . G is called the pants
decomposition graph.
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Existence of Strebel Differential

Theorem (Hubbard and Masur)

Given non-intersecting simple loops Γ = {γ1,γ2, · · · ,γ3g−3}, and
positive numbers {h1,h2, · · · ,h3g−3}, there exists a unique
holomorphic quadratic differential Φ, satisfying the following :

1 The critical graph of Φ partition the surface into 3g−3
cylinders, {C1,C2, · · · ,C3g−3}, such that γk is the generator
of Ck ,

2 The height of each cylinder (Ck , |Φ|) equals to hk ,
k = 1,2, · · · ,3g−3.

David Gu Quad-Hex-Meshing Based on Conformal Geometry



Poly-cylinder Surface

Given a Riemann surface S with genus g > 1, Φ is a Strebel
differential, then the natural coordinates of Φ ζ : U → C induces
a flat metric with cone singularities, denoted as |Φ|,

1 The zeros of Φ become cone singularities, with cone angle
3π,

2 The critical graph of Φ partitions the surface into cylinders
{C1,C2, · · · ,C3g−3}, the generators of the cylinders are
Γ = {γ1,γ2, · · · ,γ3g−3},

3 The pants decomposition graph induced by Γ is denoted as
GΓ,

4 The heights of cylinder (Ck , |Φ|) is hk ,
5 The circumference of (Ck , |Φ|) is lk ,
6 The twisting angle of Ck is θk ,

then (S, |Φ|) can be represented by (GΓ,h, l,θ).

David Gu Quad-Hex-Meshing Based on Conformal Geometry



Poly-cylinder Surface

hi/2

li/2

hk/2

lk/2

hj/2

lj/2

li/2

lj/2lk/2

hi/2

hj/2

hj/2hk/2

hk/2

hi/2

tk

ti

tj

li lj

lk

titj

tk

p

hi/2 hj/2

hj/2

hk/2hk/2

hi/2

(a) 3 rectangles (c) a hexagon (e) a pair of pants
lj + lk > li (type I)

Figure: Flat cylindric surface model of (S, |Φ|).
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Poly-cylinder Surface

hi/2

li/2

hk/2

lk/2

hj/2

lj/2

hi/2

li/2

hk/2

lk/2

hj/2

lj/2

hi/2
hi/2

li

hk/2

lk

hj/2

lj

hi/2

(a) 3 rectangles (b) a hexagon (f) a pair of pants
lj + lk < li (type II)

Figure: Flat cylindric surface model of (S, |Φ|).
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Poly-cylinder Surface

γk θk

Pijk Pklm

γi

γj
γl

γm

Figure: The twisting angle when gluing two pairs of pants.
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Strebel Differentials

γ1

γ2

γ3

γ1

γ2

γ3

(a) (b)

Figure: Strebel differentials on the genus two surface.

In the poly-cylinder surface model (GΓ,h, l,θ), (l ,θ) give a local
coordinates of the Teichmüller space. The height function h
changes.
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Strebel Differentials

γ1

γ2

γ3

γ1

γ2

γ3

(c) (d)

Figure: Strebel differentials on the genus two surface.

In the poly-cylinder surface model (GΓ,h, l,θ), (l ,θ) give a local
coordinates of the Teichmüller space. The height function h
changes.
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Differential to Quad-Mesh

Given a Strebel differential Φ, we obtain a poly-cylinder surface,

hi/2

li

hk/2

lk

hj/2

lj

hi/2

li lj

lk

titj

tk

p

hi/2 hj/2

hj/2

hk/2hk/2

hi/2

(a) type II (b) type I

Figure: Change each pair of pants of type II to that of type I by a
Whitehead move.
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Differential to Quad-Mesh

Figure: Divide each cylinder to two rectangles by connecting
corresponding zeros on different boundary components; Construct an
initial colorable quad-mesh;Subdivide.
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Differential to Quad-Mesh

Lemma

Suppose Φ is a Strebel differential on a compact Riemann
surface S with genus greater than 0, then Φ induces a colorable
(red-blue) quadrilateral mesh QΦ of S.
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Algorithm for Hexahedral Meshing
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Genus Zero Case

(a) Stanford bunny(b) Spherical mapping (c) Cube mapping
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Genus Zero Case

(d) Solid bunny(e) Solid ball mapping(f) Solid cube mapping
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Genus One Case

(a) Kitten surface (b) Flat torus (c) Quad-mesh

Figure: A genus one closed surface can be conformally and
periodically mapped onto the plane, each fundamental domain is a
parallelogram. The subidvision of the parallelogram induces a
quad-mesh of the surface.
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Genus One Case

Figure: The interior of the kitten surface is mapped onto a canonical
solid cylinder.
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Algorithmic Pipeline

Figure: Input Surface.
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Algorithmic Pipeline

Figure: Tetrahedral meshing.
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Algorithmic Pipeline

γ1

γ2

γ3

P1

P2

Figure: Admissible curve system, pants decomposition.
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Algorithmic Pipeline

Figure: Two pairs of pants.
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Algorithmic Pipeline

γ1 γ3
γ2

h1

h2 h3

P1 P2

Figure: Pants decomposition graph.
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Strebel Differentials

γ1

γ2

γ3

Figure: Holomorphic quadratic differential.
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Algorithmic Pipeline

P1

P2

γ1

γ3

γ2

Figure: Admissible curve system, pants decomposition.
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Algorithmic Pipeline

γ1 γ2 γ3h1 h3h2

P1

P2

Figure: Pants decomposition graph.
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Algorithmic Pipeline

Figure: Holomorphic quadratic differential.
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Algorithmic Pipeline

Figure: Critical horizontal trajectories and vertical trajectories.
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Algorithmic Pipeline

Figure: Cylindrical decomposition.
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Algorithmic Pipeline

Figure: Cylindrical decomposition.
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Algorithmic Pipeline

Figure: Colorable quadrilateral mesh.
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Algorithmic Pipeline

Figure: Left solid cylinder, maps to the canonical solid cylinder.
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Algorithmic Pipeline

Figure: Hexahedral meshing of solid cylinders.
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Algorithmic Pipeline

Figure: Hexahedral meshing of the interior volume.
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Algorithmic Pipeline

Figure: Hexahedral meshing of the interior volume.
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Experimental Results
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Experiments

The algorithm has been tested synthetic surfaces, surfaces
scanned from real life, surfaces from mechanical CAD design
and reconstructed from medical images. The algorithm is
implemented using generic C++, the numerical computation is
based on Eigen library. All our experiments are performed on a
desktop computer with Intel(R) Core(TM) i7-4770 3.4GHz CPU
and 16GB RAM.
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Foliations

Figure: Two conjugate finite measured foliations on a genus five
surface.
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Foliations

Figure: Conjugate foliations on a genus one surface.
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Foliations

Figure: Conjugate foliations on a facial surface.
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Foliations

Figure: Foliations on a genus 0 surface with multiple boundaries.David Gu Quad-Hex-Meshing Based on Conformal Geometry



Quad-Mesh

Figure: Quadrilateral meshes for genus two and three models
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Foliations

Figure: Conjugate foliations on a genus 2 mechanical part surface.
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Foliations

Figure: Conjugate foliations on a genus 2 mechanical part surface.
David Gu Quad-Hex-Meshing Based on Conformal Geometry



Quad-Mesh

Figure: Quadrilateral mesh for the blood vessel model.
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Genus Three Model

P1

P2

P3

P4

P5

P6

Figure: Holomorphic quadratic differential of a genus three surface.
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Genus Three Model

Figure: Hexahedral mesh of a genus three model.
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Hex-Mesh

Figure: Hexahedral mesh of decocube model.
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Computation Time

Model # verts# facesgenusBndTime(ms)

Alex face 80598160058 0 1 2274
Cat 27894 55712 0 2 578907

Kitten 10000 20000 1 0 135823
Blood vessel72312144620 1 12 565012

Eight 3776 7556 2 0 32561
Nut 29840 59684 2 0 267234

3-hole torus 5996 12000 3 0 15142
Deco-cube 7492 15000 5 0 10008

Star cup 31029 62062 2 0 131114

Table: The computation time of foliations of different models.
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Conclusion

1 The quad-mesh metric satisfies conditions: Guass-Bonnet,
holonomy, boundary alignment and finite geodesic
lamination;

2 Equivalence between meromorphic quadrtic differentials
and quadrilateral meshes;

3 Singularities of a quad-mesh correspond to the divisor of
the differential, which satisfies the Abel condition;

4 Colorable quad-mesh, measured foliations and Strebel
differentials are equivalent;

5 Strebel differentials induce hexahedral meshes.

In the future, we will explore further along foliation mesh
generation approach, to find feasible way to improve the
uniformity of the cell sizes and the sharp feature alignment.
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Thanks

For more information, please email to gu@cs.stonybrook.edu.

Thank you!
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