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Abstract. Let P be a simple polygon and let {(u;,u;)} be m pairs
of distinct vertices of P where for every distinct 7,5 < m, there exist
pairwise disjoint paths connecting u; to u} and u; to wj. We wish to
construct m pairwise disjoint paths in the interior of P connecting u;
to u; for i = 1,...,m, with minimal total number of line segments. We
give an approximation algorithm which in O(nlogm + M logm) time
constructs such a set of paths using O(M) line segments where M is the
number of line segments in the optimal solution.

1 Introduction

Let P be a simple polygon and let u and ' be two distinct vertices of P. The
(interior) link distance from u to u' is the minimum number of line segments
(also called links) required to connect u to u' by a polygonal path lying in (the
interior of) P. The interior link distance from u to 4’ may differ greatly from the
link distance between the two points. (See Figure 1.) A polygonal path which
uses the minimum number of required line segments is called a minimum link
(interior) path. Suri in [11] gave a linear time algorithm for determining the link
distance and a minimal link path between two vertices.

Let u1, u}, ua, uh be four vertices lying in the given order around P. By virtue
of the relative locations of these four vertices, there are nonintersecting paths,
¢1 and (o, connecting u; to u} and us to uh, respectively. However, it is possible
that every minimum interior link path connecting u; to u} intersects every min-
imum interior link path connecting us to u}. (See Figure 1.) To simultaneously
connect u; to uj and us to uh by nonintersecting interior paths requires more
line segments. In general, two additional line segments suffice to construct two
such nonintersecting interior paths. (See [7].)

A set IT = {(u;,u})}, ¢ < m, of m pairs of distinct vertices of P is untangled
if some set of pairwise disjoint paths connects each u; to w}. Let IT = {(u;,u})},
i < m, be an untangled set of m pairs of distinct vertices of P. Let I(u;,u})
be the interior link distance from u to w’ and let L = 3.,  I(u;,u}) be the
sum of those distances. Clearly, L line segments are required to construct a set
of pairwise disjoint interior paths connecting u; to u}, for ¢ = 1,...,m. How
many additional line segments are required? In [7] we proved that O(mlogm)
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Fig. 1. Minimum link paths, minimum link interior paths and intersecting link paths.

additional line segments suffice and claimed without proof that 2(mlogm) ad-
ditional line segments may be required. A proof of the lower bound is provided
in [6].

We define the pairwise disjoint link paths problem as: given an untangled set,
{(us,u})}, of m pairs of distinct vertices of P, find the minimum total number
of line segments required by a set of pairwise disjoint interior paths connecting
u; to uj. We were unable to give a polynomial time algorithm for this problem
or to determine if the problem is NP-complete. Instead we present an algorithm
which finds a solution within a constant factor of the optimal solution. Related
problems are shown to be NP-complete in [2] and [5], but we do not know if
those results can be applied to our problem.

A triangulation Tp of P (possibly with interior vertices) is isomorphic to
a triangulation Ty of @ if there is a one-to-one, onto mapping f between the
vertices of Tp and the vertices of Ty such that p, p', p” are vertices of a triangle in
Tp if and only if f(p), f(p"), f(p") are vertices of a triangle in Ty. An isomorphic
triangulation of P and ) defines a piecewise linear homeomorphism between P
and Q. The size of a triangulation is the total number of vertices, edges and
triangles in the triangulation.

Algorithms for constructing isomorphic triangulations and piecewise linear
homeomorphisms between simple polygons are also given in [1,8,7]. Algorithms
for constructing isomorphic triangulations between labelled point sets are de-
scribed in [9] and [10]. The main result in this paper improves the output size and
running time of the approximation algorithm in [7] from O(M; log n+nlog? n) to
O(M; logn) where n is the input size and M is the size of the optimal solution.
The improvement is described in [6].

2 Approximation Algorithm

We first give a an approximation algorithm for connecting a set of vertices U by
pairwise disjoint interior paths to a distinguished edge e* of P. We start with
some definitions.

Point p € P is wvisible from point p' € P if P contains the open line segment
(p,p'). Point p is clearly visible from point p’ € P if the interior of P contains
the open line segment (p, p').

Point p € P is (clearly) visible from edge e € P if there is some point p’ € e
such that p is (clearly) visible from p'. (This definition of visibility is sometimes
called weak visibility as opposed to strong visibility where p must be visible from



Fig. 2. Vis(e) and I.-.

every point p' € e. Throughout this paper, visibility refers to weak visibility.)
Edge e or triangle t is (clearly) visible from edge €' or triangle t' if there are
points p € eor p € t and p' € €' or p' € t' such that p is (clearly) visible from p’.

We let Vis(p) and Vis(e) denote the points clearly visible from point p and
edge e. (See Figure 2.) Note that Vis(p) and Vis(e) are not necessarily closed
sets.

Let v and e be a vertex and an edge of P, respectively. Edge d of triangulation
Tp separates u from e if every interior path from u to the interior of e must
intersect the interior of d. Triangle ¢ of triangulation Tp separates u from e if
every interior path from u to the interior of e must intersect the interior of ¢.

To construct pairwise disjoint paths connecting the vertices i/ to edge e*
of P, we construct a triangulated region I+ which contains and approximates
Vis(e*), the set of points clearly visible from e*. For each u; € U, let d; be the
diagonal of I',+ farthest from e* which separates e* from u;. Let s; be the portion
of e* visible from d;. Note that s; is a line segment. (See Figures 2 and 3.)

For each u; we wish to choose a point p; on e* to be the endpoint of the
path from wu; to e*. Obviously, a point in s; is a good candidate since it can
reach d; with a single line segment. However, we also need to choose the p;
such that their order on e* is consistent with the order of ¢/ around P. In other
words, u;,uj,p;j,p; should lie clockwise or counter-clockwise around P in the
given order.

We partition the set of line segments {s;} into groups and associate each
such group with a point g; on e* which is in the “middle” of the line segments
in the groups. If many of the line segments in the group contain g;, then the
corresponding diagonals can be connected to g; by pairwise disjoint line seg-
ments. If few line segments contain g;, then g; partitions the line segments into
roughly two equals subgroups in e* with the property that many line segments
connecting d; to s; from one subgroup intersect many line segments connecting
d; to s; from the other subgroup. In addition, the order that the points g; lie
on e* is consistent with the order that the associated vertices of U lie on the
boundary of P. Partitioning the line segments is conceptually and technically
the most difficult part of the algorithm.

From all the Vis(g;), we construct another triangulated region I C I'.. We
recursively connect U by pairwise disjoint paths to the edges on the boundary of
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Fig. 3. Line segments s; = int(e*) N Vis(d;).

I' and then connect those boundary edges by pairwise disjoint line segments to
I'. A careful analysis shows that I" must contain many line segments in any set
of pairwise disjoint paths connecting U to e*. Thus the number of line segments
in our solution is proportional to the number in the optimal solution.

Lemma 1. Let P be a simple polygon on n vertices with distinguished edge
e* = {wf,wi} and let U be a subset of Vert(P) \ {w§, wi} of size m. A set of m
pairwise disjoint interior paths connecting the vertices in U to the interior of e*
can be constructed in O(nlogm + M logm) time using a total of at most 240M
line segments where M is the minimum total number of line segments necessary
to connect U to e* by m pairwise disjoint paths.

Proof. Let uy,us,...,u, be the points in I/ labeled in clockwise order around
P starting at e*. Construct a triangulation Tp of P. Let I',+ be union of the
triangles of Tp which are clearly visible from edge e*. The region I« is a simple
polygon in P. (See Figure 2.)

For each u; € U, let d; be the diagonal of I+ farthest from e* which separates
e* from ;. Let s; be int(e*) N Vis(d;), the interior of e* which is clearly visible
from s;. Set s; is an open line segment lying on e*. Note that s; may equal s;
(and d; may equal d;) for many distinct points u;,u; € U. (See Figure 3.)

Let S be any set, of open line segments in R*, not necessarily distinct. For each
point ¢ € R!, let f(q,S) be the number of line segments of S which contain the
point g. The line segments of S are open and do not contain their endpoints. Let
f(g,8) and f*(q,S) be the number of line segments of S contained in the open
intervals (—o0, ¢) and (g, 00), respectively. Note that f(q,S)+f~(¢,S)+f1(q,S)
equals |S|.

Let R be the set of midpoints of line segments of S, again not necessarily
distinct. The median point of R is the [|R|/2]’th point in R, ordered from —oo
to 0o. Let g(S) be this median point of R. At least |R|/2 = |S|/2 points of R
lie in each of the closed intervals (—o0, g(S)] and [g(S), 00). If the midpoint of
segment s € S lies in (—o0, g(S)], then segment s either contains ¢g(S) or lies in
the open interval (—oo, g(S)). Thus f(g9(S),S) + f (g(S),S) is greater than or
equal to [|S]/2]. Similarly f(g(S),S) + f(g(S),S) is greater than or equal to
[1S]/2]. (See Figure 4.)
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Now consider two sets of line segments Sy and S; on R! and let S = Sy U S;.
Define

F(So,81) = f(9(S5),S) + £+ (9(S), S0) + f (9(8), S1).

Without loss of generality, assume that wg, e*, w] appear in counter-clockwise
order around P. Let Sy be the sequence (s1,ss,--.,58,). Embed e* and the
line segments s; € S in the real line R!, mapping w{ to zero and w; to
one. In the next section, we describe an algorithm to partition &y into con-

tiguous subsequences o1 = (S1,52,-.-,8i1), 02 = (Sig41,Siz42s--->Sig)s--
g9op = (S’iQh—1+17 Sion_1425++ > Sm), such that:
L g(o1U03) < glosUoy) < ---... < g(o2n—1 Uo2m);

2. |ogj—1| = |oa;| (+1) for 1 < j < h;
2 j=1.n Flo2j-1,025) > m/40.

(One possible partition of the segments in Figure 3 is o9 = {s1,52,83},
oy = {s4,85}, 03 = {s¢}, 04 = {s7}.)

Let g; equal g(o2j—1 U 0g;) for j = 1,...,h. Note that g1,92,...,9x lie in
counter-clockwise order around P. Let U; = {u; : s; € 0;} be the points in U
corresponding to the line segments in o; for j = 1,...,h. For each g;, let I}
be the union of the triangles of Tp which intersect Vis(gj) and separate some
u € Upj_1 Uly; from e*. (See Figure 5.) Let I' be the union of all the I';. Similar
to I+, the region I' is also a simple polygon in P, its boundary is composed of
edges and chords of P, and it has a triangulation T induced by the triangulation
TP of P.

Let C be the set of chords of P bounding I'. Each chord ¢ € C separates P
into two subpolygons. Let P, be the subpolygon not containing I'. Let w§ and wf
be the endpoints of ¢. For each chord ¢ € C, let U, be the points of U \ {w§, ws}
in P.. Recursively, construct pairwise disjoint paths connecting the points in U,
to c. (See Figure 6.)

For each u; € U, let d; be the diagonal of I farthest from e* which separates
e* from u;. Choose the minimum j such that d; is a diagonal of I';. Connect d;
to g; by a line segment ); in the interior of P. (See Figure 7.) Diagonal d; may
also separate other vertices of U from e* and there may be many line segments
which intersect d;. The line segments A; should be chosen so that their order
along d; corresponds to the order of the vertices around P. The choice of d;
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Fig. 7. Diagonals d;, line segments \; and paths connecting U to e*.

and the associated point g; ensures that line segments ); intersect only at their
endpoints. (See [6].)

For each point u; € U(c), let mo(u;) be the endpoint on ¢ of the path con-
necting u; to ¢. For each point u; € Y which lies in I, let mo(u;) equal u;. Let
m1 (u;) be the endpoint of A; on d;. Let (u;) be the first intersection point of A;
and the triangle containing e*. Place m points equally spaced on e*. Let m3(u;)
be the i’th point, ordered counter-clockwise from wg. Connect m(u;) to e* with
a polygonal line through mo(u;), 71 (u;), w2 (u;), w3(u;). (See Figure 7.)

We claim that this algorithm connects U to e* using O(M) links where M
is the number of links in some optimal solution. For each u; € U, let (; be the
path constructed from u; to e* by our algorithm while #; is the path from u; to
e* in the optimal solution. Path (; has at most three line segments in I'. Line
segment s; is in o9;_1 U 09; for some j. If s; contains g;, then some point on



diagonal d; is clearly visible from g; and d; is a diagonal of I'; C I'. Since d; is
the farthest diagonal visible from e* which separates u; from e*, any path from
u; to e* must have at least one line segment contained in I'; C I'. Thus if s;
contains g;, then we can charge the three links of ¢; in I" to a line segment of 7;
in I'. However, s; may not contain g;.

Consider the case where s; € 02;_1 lies between g; and w while sy € o9  lies
between wg and g;. Any two paths from wu; to s; and uy to sy must intersect.
Since paths 7; and ny are pairwise disjoint, either the endpoint of n; must lie
between wgi and g; or the endpoint of n; must lie between g; and wi. Without
loss of generality, assume that the endpoint p of 7; lies between w§ and g;. In
that case, g; lies between p and s;. Let d be the farthest diagonal of P visible
from p and separating p from u;. By the construction of d; and s;, diagonal d
separates d; from e* and hence is visible to s;. Since g; lies between p and s;,
diagonal d is also visible to g; and is contained in I; C I'. Thus if p lies between
wg and g;, path n; must have at least one line segment contained in I; C I.
Similarly, if the endpoint of i, lies between g; and wj, path 7y must have at
least one line segment contained in I'; C I'. It follows that either n; or n; must
have a line segment contained in I; C I'.

Let mo,m_,m4 equal f(gj,02j-1), f(9j,02j—1) and f*(g;,02j_1), respec-
tively, while mg, m’_,m!_ equal f(g;,025), f~(g;,02;) and f*(g;,02;), respec-
tively. By the arguments above, the paths connecting the points in Us;_1 U Uy;
to €* in the optimal solution must have at least mg + m{ + min(my,m' ) line
segments contained in I'. By the choice of point g;, mg + m— + mg + m__ >
loaj—1 U 02j|/2. Since |o2;_1| equals |o2;] or |o2j_1]|+1, mg+m_ +my+m’ >
|o2j—1|- On the other hand, mo + m_ + my = |02;_1|. Subtracting the second
equation from the first gives m{ + m’_ > m. Thus

mo + mg + min(my,m’ ) = min(mg + m{ + m4,mo + mgy +m’)
> min(mg + mg + m4, mo +my.)

=mg + my
Similarly, mo + m4 > m' and mo + m{ + min(m4,m’) > mgy +m’ . Thus
mo +mg + min(my,m’) > max(mo +my,my +m’) > F(g;,02j-1,025)/2.

The paths connecting the points in Usj_1 U Uz; to e* in the optimal so-
lution must have at least F(g;,02j_1,02;)/2 line segments in I'. Since
> j=t1.n F(02j-1,025) > m/40, any pairwise disjoint paths connecting the points
in U to e* must have at least m/80 line segments contained in I". The construc-
tion produces at most 3m line segments in I', so the solution is at most 240
times the optimal.

Finally, we discuss the running time of our algorithm. Constructing the initial
triangulation T'p takes O(n) time [3]. As discussed in the next section, partition-
ing Sy into the subsequences o; takes O(mlogm) time. Constructing I+ takes
O(n*) time where n* is the number of triangles of T intersected by Vis(e*) [4].
All the other steps in the algorithm can be done in O(n* + m) time. Thus the



PARTITION(S)

/* 8§ = a sequence of line segments (s1,82,...,8m) */

/* Returns a linked list of contiguous subsequences of § */
1. Initialize linked list A to 0;

2. FORi=1TO m DO

3. Create new node a where a.seq = (s;) and a.size = 1;
4 Add a to the end of linked list A4;

5. WHILE 3a € A such that g(a.seq) > g(a.next.seq) DO
6 Merge a and a.next to form a new node @’ in A;
7. BALANCE-NEXT(a');

8 BALANCE-PREV(d);

9. Return(A).

Fig. 8. Algorithm PARTITION.

non-recursive steps in this algorithm take O(n* + mlogm) time. A careful ac-
counting for the recursive steps gives the desired O(nlogm + M logm) bound.
Details appear in [6]. |

Using arguments similar to those given in [7], the previous algorithm can be
turned into an algorithm for connecting an untangled set of m pairs of vertices
of P. The algorithm and its analysis is provided in [6].

Theorem 2. Let P be a simple polygon on n vertices let II = {(u,u’)} be an
untangled set of m pairs of distinct vertices of P. A set of m pairwise disjoint
interior paths connecting u to u' for each (u,u') € II can be constructed in
O(nlogm + Mlogm) time using O(M) line segments where M is the mini-
mum total number of line segments necessary to connect all pairs (s,s') € IT by
pairwise disjoint paths.

3 Partition Algorithm

In this section, we describe and analyze the algorithm for partitioning a sequence
of line segments. The functions f, f*, f~ and F were defined in the previous
section.

Lemma 3. Let S be a sequence of line segments(s1,s2,...,8m) on the real
line R'. In O(mlogm) time, S can be partitioned into contiguous subse-
quences 01 = (S1,82,---,8i,), 02 = (Siy+1,8i142, -, 8ia)s- - O2h = (Sign_141,
Sion_1425 - -5 8m), Such that:

1. g(o1Uo2) < glogUos) <---... < g(oan—1 Uoan);

2. |oaj—1| = loas| (+1) for 1 <j < h;
8. Y jm1.n Flo2j-1,025) > m/40.



Proof (outline). Split S into m distinct subsequences, (s;), consisting of one
element each. Store the m subsequences in a linked list A in the order they
appear in S. Each node a € A contains a subsequence a.seq. Call A balanced
if the size of each subsequence is at most three times the size of any adjacent
subsequence in A.

While A contains two adjacent subsequences, a.seq followed by a.next.seq,
such that g(a.seq) > g(a.next.seq), merge the subsequences a.seq and a'.seq. Af-
ter each merge of two such subsequences, rebalance list A by merging adjacent
subsequences, as necessary. Figure 8 contains the main algorithm. A complete
description of the subroutines BALANCE-NEXT and BALANCE-PREV is pro-
vided in [6].

Let a; be the j’th node in A when the algorithm is completed. Partition
a;j.seq = (si,...,sy) into two approximately equal sized sequences o2j_1 =
(8i5+ s S(i4i)/21) and 025 = (8[(itir)/2]415 - - - Sir)- We claim that this is a par-
titioning of & with the desired properties. Initially, the s; are stored in A in
sorted order. The merging and splitting steps in the main algorithm and in the
subroutines BALANCE-NEXT and BALANCE-PREV preserve the order of the
s;, so the ¢; properly partition S into contiguous subsequences.

Let g; be g(aj.seq) = g(025-1 U 02;). The while loop only terminates when
g1 £ g2 < --- < gn, so property 1 is clearly satisfied. Sets 09;_; and oy; are
created by partitioning a;.seq into two equal sized sequences, so property 2 is
satisfied.

To show property 3 holds, note that a; could be an initial node or it could be
created when g(a.seq) > g(a.next.seq) or it could be created in the rebalancing
procedure.

If a; is an initial node, then a;.seq = {s} for some s € S and 09;_1 = {s}
and 025 = @ Point gj is the midpoint of s and f(UQj_l,Uzj) Z 1 Z (1/8)|a]|

Assume a; is created when g(a.seq) is greater than g(a.next.seq) and that
|a.next| > |a|. The sequence a.seq is a subsequence of 025_1, SO

f(gj,02j—1) > f(g;,a.seq) and
fH(gj 02j-1) > f1(g5,a.seq).

The point g; = g(a;.seq) must lie between a.g and a.nezt.g, so

f(gj,a.seq) + f1(g;,a.seq) > f(g(a.seq),a.seq) + [T (g(a.seq), a.seq)
> |al/2.

Since |a.next| < 3|al, we have |a;| < 4|a|. Thus,
F(02j-1,025) = f(g5,02j-1) + [T (g5, 02j-1) > (1/8)la;-
In the case that |a.next| < |a|, similar reasoning gives
Flo2j-1,025) > f(95:025) + [ (95,025) 2 (1/8)]a;]-

Finally, if a; is created in the rebalancing step, F(o2j—1,02;) may not have
the desired lower bound. However, at most (4/5)m line segments lie in nodes



created in the rebalancing step. By counting the m/5 line segments which are
not in a rebalanced node, we find )., | F(02j_1,025) > m/40.

A complete description and analysis of the algorithm, its correctness and

O(mlogm) running time appears in [6]. O
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