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Abstract. A data warehouse stores materialized views of data from one
or more sources, with the purpose of efficiently implementing decision-
support or OLAP queries. One of the most important decisions in design-
ing a data warehouse is the selection of materialized views to be main-
tained at the warehouse. The goal is to select an appropriate set of views
that minimizes total query response time and the cost of maintaining the
selected views, given a limited amount of resource, e.g., materialization
time, storage space etc.

In this article, we develop a theoretical framework for the general prob-
lem of selection of views in a data warehouse. We present competitive
polynomial-time heuristics for selection of views to optimize total query
response time, for some important special cases of the general data ware-
house scenario, viz.: (i) an AND view graph, where each query/view has
a unique evaluation, and (ii) an OR view graph, in which any view can be
computed from any one of its related views, e.g., data cubes. We extend
the algorithms to the case when there is a set of indexes associated with
each view. Finally, we extend our heuristic to the most general case of

AND-OR view graphs.

1 Introduction

A data warehouse is a repository of integrated information available for querying
and analysis [TK93, Wid95]. Figure 1 illustrates the architecture of a typical
warehouse [WGL196]. The information stored at the warehouse is in the form of
views, referred to as materialized views, derived from the data in the sources. In
order to keep a materialized view consistent with the data at sources, the view
has to be incrementally maintained [ZGMHW95, GM95]. This maintenance of
views incurs what is known as view maintenance or update costs.

In this paper, we concentrate on the problem of selecting an appropriate set
of materialized views, one of the most important design decisions in designing a
data warehouse. Given some storage space constraint, the problem is to select
a set of derived views to minimize total query response time and the cost of
maintaining the selected views. We refer to this problem as the wview-selection
problem.

Related work on this problem has been as follows. [HRU96] presents and
analyzes algorithms for selection of views in the special case of “data cubes.”
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Fig. 1. A typical data warehouse architecture

Gupta et al. in [GHRU96] extend their result to selection of views and indexes in
data cubes. Both these works ignore update costs. [RSS96] looks at the problem
of augmenting a given set of materialized views with an additional set of views
that may reduce the total maintenance cost.

The rest of the paper is organized as follows. In the next section, we develop
a theoretical framework for the view-selection problem. In the following two
sections, we present and analyze heuristics for some special cases. In Section 5, we
present an algorithm for the general view-selection problem in a data warehouse.
Finally, we conclude in Section 6.

2 View-Selection Problem Formulation

2.1 AND-OR View Graphs

In this subsection, we develop a notion of an AND-OR view graph, which is one
of the inputs to the view-selection problem. We start by defining the notions of
expression DAGs for queries or views.

Definition 2.1 (Expression A-DAG) An ezpression A-DAG (AND-DAG) for
a query or a view V is a directed acyclic graph having the base relations as
“sinks” (no outgoing edges) and the node V' as a “source” (no incoming edges).
If a node/view u has outgoing edges to nodes vy, vy, ..., vg, then all of the views
vy, Vs, ...,V are required to compute u and this dependence is indicated by
drawing a semicircle, called an AND arc, through the edges (u, v1), (u, v2), . .., (u, vg).
Such an AND arc has an operator' and a cost associated with it, which is the
cost incurred during the computation of u from vy, vs, ..., vg.

The evaluation cost of a node u in an expression A-DAG is the sum of the
costs associated with each of its descendant’s AND arc. ad

! The operator associated with the AND arc is actually a k-ary function involving
operations like join, union, aggregation etc.



Fig.2. a) An expression A-DAG, b) An expression AO-DAG

Definition 2.2 (Expression AO-DAG) An ezpression AO-DAG for a view
or a query V 1is a directed acyclic graph with V' as a source and the base relations
as sinks. Each nonsink node has associated with it one or more AND arcs, each
binding a subset of its outgoing edges. As in the previous definition, each AND
arc has an operator and a cost associated with it. More than one AND arc at a
node depicts multiple ways of computing that node. a

Definition 2.3 (AND-OR. View Graph) A graph G is called an AND-OR
view graph for the views (or queries) Vi, Va,..., Vi if for each V;, there is a
subgraph G; in G which is an expression AO-DAG for V;. Each node u in an
AND-OR view graph has the following parameters associated with it: f, (fre-
quency of the queries on u), S, (space occupied by u), and g, (frequency of
updates on u). For example, the graph in Figure 2(b) is an AND-OR view graph
for any subset of the views a through f. a

Note that in an AND-OR, view graph, if a view u can be computed from the
views v, uq, Us, ..., u; and the view v can be computed from vy, vs, ..., v;, then
u can also be computed from wuy, us, ..., ug, vy, v, ..., .

2.2 Constructing an AND-OR View Graph

Given a set of queries @1, Qs, ..., Qg to be supported at a warehouse, we con-
struct an AND-OR view graph for the queries as follows. We first construct an
expression-AO DAG D; for each query ); in the set. An AND-OR view graph
G for the set of queries can then be constructed by “merging” the expression
AO-DAGs D1, Ds, ..., Di. Each node in the AND-OR view graph G will rep-
resent a view that could be selected for materialization, and these are the only
views considered for materialization.

For a query @Q; we construct its expression AO-DAG D; to consist of alternate
“useful” ways of evaluating @; from the given base relations, in the presence of
other queries/views. Roussopoulos in [Rou82] considers exactly this problem.
The objective of his analysis is to identify all possible (useful) ways to produce
the result of a view, given other view definitions and base relations.



2.3 The View-Selection Problem

Given an AND-OR view graph G and a quantity S (available space), the view-
selection problem is to select a set of views M, a subset of the nodes in G, that
minimizes the sum of total query response time and total maintenance cost,
under the constraint that the total space occupied by M is less than S.

More formally, let Q(u, M) denote the cost of answering a query u (also a
node of GG) using the set M of materialized views in the given view graph G.
Q(u, M) is the evaluation cost of the cheapest embedded expression A-DAG
for u in G whose sinks belong to the set M U L, where L is the set of sinks
in G. Here, without loss of generality, we have assumed that the sinks in G
are always available for computation as they represent the base tables at the
source(s). Thus, Q(u, @) is the cost of answering the query on u directly from
the source(s). Let U (u, M) be the maintenance cost for the view u in the presence
of the set of materialized views M and the set of sinks, L.

So, given an AND-OR view graph GG and a quantity S, we wish to select a
set of views/nodes M = {V1, V4, ..., V) }, that minimizes 7(G, M), where

k m
(G, M) =" [o.Q(Qi, M)+ > gv,U(Vi, M),

i=1 i=1

under the constraint that ) ,, S, < S.

The view-selection problem is NP-hard even for the special case of an AND-
OR graph where each AND arc binds at most one edge, and when the update
frequencies are zero. There is a straightforward reduction from minimum set
cover.

2.4 Benefit of a Set of Selected Views

Let C' be an arbitrary set of views in a view graph G. The benefit of C' with
respect to M, an already selected set of views, is denoted by B(C, M) and is
defined as 7(G, M) — (G, M U C), where 7 is the function defined above. The
benefit of C per unit space with respect to M is B(C, M)/S(C), where S(C) is
the space occupied by the views in C. Also, B(C, ¢) is called the absolute benefit
of the set C.

Monotonicity Property The benefit function B is said to satisfy the
monotonicity propertyfor M with respect to disjoint sets (of views) Oy, Oa, ..., On
if BO1UOy...UOy,, M) <> .27 B(O;, M).

The monotonicity property of the benefit function is important for the greedy
heuristics to deliver competitive (within a constant factor of optimal) solutions.
For a given instance of AND-OR view graph, if the optimal solution O can be
partitioned into disjoint subsets of views O1, 01, ..., O,, such that the benefit
function satisfies the monotonicity property w.r.t. O1,0s, ..., O,,, then we guide
the greedy heuristic to select, at each stage, an optimal set (of views) of type
that includes O; for all i < m. Such a greedy heuristic is guaranteed to deliver a
solution whose benefit is at least 63% of the optimal benefit, as we show later.




3 AND View Graph

In this section we consider a special case of the view-selection problem in AND-
OR view graphs. Here, we assume that each AND arc binds all the outgoing
edges from a node. This case depicts the simplied scenario where each view has
a unique way of being computed. We call such a graph G an AND wview graph,
where a node can be computed from all of its children. As before, each AND arc
has an operator and a cost associated with it. An AND view graph for a set of
queries is just a “merging” of the expression A-DAGs of the queries.

3.1 Motivation

The general view-selection problem can be approximated by this simplified prob-
lem of selecting views in an AND view graph. Given a set of queries supported at
the warehouse, instead of contructing an AND-OR view graph as in Section 2.2,
we could run a multiple-query optimizer [Sel88, CM82] to generate a global plan,
which is essentially an AND view graph for the queries. Such a global plan takes
advantage of the common subexpressions among the queries.

3.2 Selection of Views in an AND View Graph

In this subsection, we present heuristics for solving the view-selection problem
in AND view graphs without update costs. Later, we extend it to a special case
of AND view graphs with update costs. We note here that the view-selection
problem in AND view graphs is not known to be NP-complete.

Problem: Given an AND view graph GG without updates and a quantity S, find
a set of views M that minimizes the quantity 7(G, M), under the constraint that
the total space occupied by the views in M is at most S.

Algorithm 3.1 Greedy Algorithm

Given: (G, an AND-OR view graph, and S, the space constraint.
BEGIN
M = ¢; /* M = set of structures selected so far. x/
while (S(M) < 9)
Let C' be the view which has the maximum benefit per unit space
with respect to M.
M=MUC,
end while;
return M;

END.

Greedy Algorithm We present a simple greedy heuristic for selecting views.
At each stage, we select a view which has the maximum benefit per unit space
at that stage. See Algorithm 3.1. The running time of the greedy algorithm is
O(kn?), where n is the number of nodes in the graph and k is the number of
stages used by the algorithm.




Observation 1 In an AND view graph without updates, the benefit function B
satisfies the monotonicity property for any M with respect to arbitrary set of
views 01,03, ...,0p,.

Theorem 3.1 For an AND wview graph G without updates and a quantity S, the
greedy algorithm produces a solution M that uses at most S + r units of space,
where r is the size of the largest view in G. Also, the absolute benefit of M 1is at
least (1 — 1/e) times the optimal benefit achievable using as much space as that
used by M.

Proof. 1t 1s easy to see that the space used by the greedy algorithm solution,
S(M), is at most S + r units. Let £ = S(M). Let the optimal solution using k
units of space be O and the absolute benefit of O be B.

Consider a stage at which the greedy algorithm has already chosen a set G}
occupying [ units of space with “incremental” benefits ay, as, .. ., a;. The absolute
benefit of Gy is thus Zi’:l a;. Surely the absolute benefit of the set O U Gy 1s at
least B. Therefore, the benefit of the set O with respect to Gy, B(O, Gy), is at
least B — 22:1 a;.

Using Observation 1, it is easy to show by contradiction that there exists a
view O; in O such that B(0O;, G;)/|0;| > B(O, G;)/k. The benefit per unit space
with respect to G} of the set C' selected by the algorithm is at least that of O,
which is at least (B — 2221 a;)/k. Distributing the benefit of C' over each of its
unit spaces equally (for the purpose of analysis), we get a;4; > (B — Zi’:l a;)/k,
for 0 < j < S(C). As this is true for each set C selected at any stage, we have
the set of equations viz. B < ka; + 25;11 a;, for 0 < j <k.

Multiplying the j** equation by (%)k_j and adding all the equations, we
get A/B>1—(52)F > 1—1/e, where A(= Zle a;) is the absolute benefit of
M. m

Greedy-Interchange Algorithm We present another heuristic called the
“greedy-interchange” algorithm which starts with the solution produced by the
greedy algorithm (Algorithm 3.1) and then improves the solution by interchang-
ing a view already selected with some view not selected.? It iteratively performs
such interchanging until the solution cannot be improved any further by an
interchange. See Algorithm 3.2.

Unfortunately, not much can be proved about the competitiveness of the solu-
tion produced by the greedy interchange algorithm except that it is obviously at
least as good as the greedy algorithm. Moreover, the running time of the greedy
interchange algorithm is unbounded. We believe that the greedy interchange
algorithm in practice would perform much better than the greedy algorithm.

2 When views occupy different amounts of space, more than one view may have to be

added/removed.



Algorithm 3.2 Greedy-Interchange Algorithm

Given: GG, an AND-OR view graph, and S, the space constraint.
Assume that all views occupy the same amount of space.
BEGIN
Run the greedy algorithm and let M be the solution returned.
repeat
Let (C1,C3) be a pair of views such that Cy € M and the absolute
benefit of (M — C1) U Cy is greater than that of M.
M = (M—Cl)UCQ;
until (no such pair (C1, Cy) exists);
return M;
END.

3.3 Incorporating Update Costs

Unfortunately, the benefit function may not satisfy the monotonicity property
when there are update costs. To see this informally, consider a view C; which
helps in maintaining another view C5. Hence, the benefit of C7 U C; might be
more than the sum of their benefits individually. However, the benefit function
does satisfy the monotonicity property for a special case as shown in the following
lemma.

Lemmal. In an AND wview graph, the benefit function B satisfies the mono-
tonicity property for any M with respect to sets consisting of single views, if the
update frequency g, at any view v is less than its query frequency f,.

Proof. Tt suffices to prove that B(v,¢) > B(v, M) for any view v and a set of
views M.

Let A be the set of (not necessarily proper) ancestors of v in the AND view
graph G, and let M4 = AN M. Let D be the set of those ancestors of v which
do not have any descendants in the set M.

We have B(U’ ¢) = erA fx(Q(‘L’ ¢)—Q(l, U))_gUU(v’ ¢) Note that’ Q(l’ ¢)_
Q(z,v) = Q(v,¢) in an AND view graph for any ancestor z of v. Therefore, we

get B(U’ ¢) = Z:cEA fo(U’ ¢) - gUU(U’ ¢)

For B(v, M), when M has already been selected, v reduces the query costs
of only the nodes in D. Therefore, B(v, M) = 3 ., fo(Q(z, M) — Q(z, M U
{0) = 9o (0, M) + Ty ey 90 (U, M) — U2, 30 {0})):

The last term on the right hand side is due to reduction in the update costs
of nodes in M4 as a result of the inclusion of v.

As Uz, M) — U(z, M U{v}) < Q(v, M), < Q(v,¢) for any z € My, and
(Q(z, M)=Q(z, MU{v})) = Q(v, M) forx € D, we get B(v, M) <>, Q(v, M)—
92U (0 M) 3 eng, Q0. 6).

Let Mp be the set of descendants of v in M and let Q(Mp, 8) = 3 cpr, @z, 8).
Using U(v,6) — U(v, M) < U(Mp,8) < Q(Mp, 6), and Ma UD U{v] C A, we
get B(v,6)— B(v, M) > Y yep Fo(@(v,6)—Q(v, M)+ £, Q(v, 6) g (Q(Mp, 6).



Now as Q(v, ¢) — Q(v, M) = Q(Mp, ¢), we get B(v,¢) — B(v, M) > 0. n

Theorem 3.2 Consider an AND wview graph G, where for any view the update
frequency is less than its query frequency. For such a graph G, the greedy algo-
rithm produces a solution M whose absolute benefit is at least (1 — 1/e) times
the optimal benefit achicvable using as much space as that used by M. n

3.4 AND View Graph with Indexes

In this section, we generalize the view-selection problem in an AND view graph
by introducing indexes for each node/view. In the presence of indexes the cost of
computation depends upon the indexes being used to execute the operation. As
indexes are built upon their corresponding views, an index can be materialized
only if its corresponding view has already been materialized. Thus, selecting an
index without its view does not have any benefit and hence, the benefit function
may not satisfy the monotonicity property for arbitrary sets of structures.> We
assume that if an index i1s not materialized, then it is never “computed” while
answering user queries.

We need to introduce a slightly different cost model for the AND view graphs
with indexes. In an AND view graph with indexes, there may be multiple edges
from a node u to v, possibly one for each index of v. Instead of associating costs
with the arcs, we associate a label (i,%;) with each edge from u to v. The cost
ti(i > 0)* can be thought of as the cost incurred in accessing the relation (as
many times as required to compute u) at v using its i*" index. In addition, we
have a k-ary monotonically increasing cost function associated with every arc
that binds k edges.

Consider a node u which has k outgoing edges to nodes vy, vs,...,v5 and
let the k-ary cost function associated with the arc binding all these outgoing
edges be f. Then, the cost of computing u from all its children vy, vs,..., vg
using their i1, 29, .. .,z'zh indexes respectively is f(¢;,, iy, ..., %, ), Wwhere there is
an edge from u to v;, for 0 < j <k, with a label (i;,1;,).

Problem: Given a quantity S and an AND view graph GG with indexes. Associ-
ated with each edge is a label (¢,;),7 > 0, and there is a cost function associated
with each arc, as described above. Assume that there are no updates.

Find a set of structures M that minimizes the quantity 7(G, M), under the
constraint that the total space occupied by the structures in M is at most S.

Inner-Level Greedy Algorithm The inner-level greedy algorithm works in
stages. At each stage, it selects a subset C', which consists either of a view and
some of its indexes selected in a greedy manner, or a single index whose view
has already been selected in one of the previous stages.

3 A structure is a view or an index.
* When i = 0, o is the cost in accessing v without any of its indexes.



Algorithm 3.3 Inner-Level Greedy Algorithm

Given: G, a view graph with indexes, and S, the space constraint.
BEGIN
M = ¢; /x M = Set of structures selected so far */
while (S(M) < 9)
C = ¢; /* Best set containing a view and some of its indexes */
for each view v; not in M
IG = {v;}; /* IG = Set of v; and some of its indexes selected */
/* in a greedy manner */
while (S(IG) < S)  /* Construct IG */
Let I;. be the index of v; whose benefit per unit space w.r.t.
(M U IG) is maximum.
1G = IG U I
end while;
if (B(IG,M)/S(IG) > B(C,M)/|C|)or C =¢
C = IG,
end for;
for each index [;; such that its view v; € M

ifB([ij,M)/S(Iij) > B(C, M)/S(C)

C={Ii;};
end for;
M=MUC,;

end while;
return M,
END.

Each stage can be thought of as consisting of two phases. In the first phase,
for each view v; we construct a set 7/G; which initially contains only the view.
Then, one by one its indexes are added to IG; in the order of their incremental
benefits until the benefit per unit space of IG; with respect to M, the set of
structures selected till this stage, reaches its maximum. That IG; having the
maximum benefit per unit space with respect to M is chosen as C'. In the second
phase, an index whose benefit per unit space is the maximum with respect to
M 1is selected. The benefit per unit space of the selected index is compared with
that of C'| and the better one is selected for addition to M. See Algorithm 3.3.

The running time of the inner-level greedy algorithm is O(k?m?), where m
is the total number of structures in the given AND view graph and k is the
maximum number of structures that can fit in S units of space, which in the
worst case is S.

Observation 2 In an AND view graph with indexes and without updates, the
benefit function B satisfies the monotonicity property for any M with respect to
arbitrary sets of structures O1,0s, . .., O, where each O; consists of a view and
some of its indexes.



Theorem 3.3 For an AND view graph with indexes and a given quantity S, the
inner-level greedy algorithm (Algorithm 3.3) produces a solution M that uses at
most 25 units of space. Also, the absolute benefit of M is at least (1 —1/¢%53) =
0.467 of the optimal benefit achievable using as much space as that used by M,
assuming that no structure occupies more than S units of space.

Proof. Tt is easy to see that S(M) < 2S. Let k = |M|. Let the optimal solution
be O, such that S(O) = k and the absolute benefit of O be B.

Consider a stage at which the Inner-level greedy algorithm has already chosen
a set (7 occupying [ units of space with “incremental” benefits a,as, as.....q;.
The absolute benefit of the set O U Gy 1s at least B. Therefore, the benefit of the
set O with respect to Gy, B(O, G)), is at least B — Zi’:l a;.

If O contains m views, it can be split into m disjoint sets O1,0s,...,On,
such that each O; consists of a view and its indexes in O. By the monotonic-
ity property of B w.r.t. the sets O1,...,0,,, B(O,G;) <>, B(0;,G)). Now,
it 1s easy to show by contradiction that there exists at least one O; such that
B(0;,G)/S(0;) > B(O,G)/k. The benefit per unit space of the set C', se-
lected by the Inner-level greedy algorithm at this stage, is at least 0.63 times
B(0;,Gy)/S(0;). This follows from the result of Theorem 4.1 on the perfor-
mance guarantee of the simple greedy algorithm (skipping some tedious details
here.) Let k&' = 0.63. Distributing the benefit of C over each of its unit spaces
equally (for the purposes of analysis), we get ai4; > k'(B — Zi’:l a;)/k, for
0 < j < S(C). As this is true for each set C selected at any stage, we have the
set of equations viz. B < %a]’ + Zf;ll a;, for 0 < j <k.

Let k" = k/k'. Multiplying the j* equation by (k;;ﬁl)k_j and adding all the
equations, we get A/B > 1 — (k;;l)k >1-— (kll,;—,_,l)k”kl > 1—1/e%%3 where
A= Zle a;) is the absolute benefit of M. -

4 OR View Graph

In this section we consider those AND-OR view graphs in which each AND arc
binds exactly one edge. We call such a AND-OR view graph G an OR view
graph, where a node can be computed from any one of its children.

4.1 Motivation

A specific model of a data warehouse is a data cube. Data cubes are databases
where a critical value, e.g., sales, is organized by several dimensions, for ex-
ample, sales of automobiles organized by model, color, etc. Queries in such a
system are of the usually ask for a breakdown of sales by some of the dimen-
sions. Therefore, we can associate an aggregate view, called a cube, V, with each
subset a of the dimensions. A view V,, is essentially a result of a “Select «,
Sum(sales); group by a” SQL query over the base table. An aggregate view V,
can be computed from a view Vg iff a C 3.

In the data cube, the AND-OR view graph is an OR view graph, as for each
view there are zero or more ways to construct it from other views, but each way



involves only one other view. Hence, all the results developed in this section for
OR view graphs apply to data cubes. As OLAP databases have very few or no
updates, we assume that there are no update costs throughout this section.

4.2 View Selection in an OR View Graph

In this subsection, we present algorithms for solving the view-selection problem
for OR view graphs without update costs. This generalizes the problem consid-
ered by Harinarayan et al. in [HRU96] for selection of cubes in a data cube. We
prove that the greedy algorithm (Algorithm 3.1) proposed by them performs
with the same performance guarantee even in this setting of an OR view graph.
A variant of this problem known as the K-median has also been studied in a
different context of facility location [CFNT77].

Problem: Given an OR view graph GG and a quantity S, find a set of views M
that minimizes the quantity 7(G, M), under the constraint that the total space
occupied by the views in M is at most S. Assume that there are no updates.

Observation 3 In an OR view graph without updates, the benefit function B
satisfies the monotonicity property for any M with respect to arbitrary sets of

views 01,04, ...,0p,.

Theorem 4.1 For an OR view graph G without updates and a given quantity
S, the greedy algorithm produces a solution M that uses at most S + r units of
space, where 1 1s the size of the largest view in G. Also, the absolute benefit of
M is at least (1 — 1/e€) times the optimal benefit achievable using as much space
as that used by M . n

Recently, Feige in [Fei96] showed that the minimum set-cover problem can-
not be approximated within a factor of (1 — o(1))Inn, where n is the number
of elements, using a polynomial time algorithm unless P = N P. There is a very
natural reduction of the minimum set-cover problem to our problem of view
selection in OR view graphs. The reduction shows that no polynomial time algo-
rithm for the view-selection problem in OR view graphs can guarantee a solution
of better than 63% for all inputs unless P = N P [Che96].

Greedy Interchange Algorithm Cornuejols et al. in [CFN77] show for their
similar facility location problem through extensive experiments that in most
cases the running time of greedy interchange is a little less than 1.5 times the
running time of the greedy algorithm, and that it returns a much better solution
than that returned by the greedy algorithm.

4.3 OR view graph with Indexes

As in the case of AND view graphs, we generalize the view-selection problem
in OR view graphs by introducing indexes for each node/view. In an OR view
graph G with indexes, each edge from a node u to v has a label (i,;) associated,
where #;(i > 0) is the cost of computing u from v using its i*" index and tq is
the cost of computing u from just v.



Problem: Given a quantity S and an OR view graph G with indexes, find a set
of structures M that minimizes the quantity 7(G, M), under the constraint that
the total space occupied by the structures (views and indexes) in M is at most
S. Assume that there are no updates.

Observation 4 In an OR view graph with indexes and without updates, the
benefit function B satisfies the monotonicity property for any M with respect to
disjoint sets of structures O1,0s, ..., On,, where each O; consists of a view and
some of its indexes.

Theorem 4.2 The Inner-level greedy algorithm produces a solution M that uses
at most 2.5 units of space. Also, the absolute benefit of M is at least (1—1/e%63) =
0.467 of the optimal benefit achievable using as much space as that used by M,
assuming that no structure occupies more than S units of space. n

5 View Selection in AND-OR View Graphs

In this section, we try to generalize our results developed in the previous sections
to the view-selection problem in general AND-OR view graphs. We present
here an AO-greedy algorithm that could take exponential time in the worst
case, but has a performance guarantee of 63%. We also present a multi-level
greedy algorithm which is a generalization of the inner-level greedy algrorithm
(Algorithm 3.3). We give a different formulation of the view-selection problem
in AND-OR graphs, for the sake of simplifying the description of the algorithm.

Definition 5.1 (Query-View Graph) A query-view graph G is a bipartite
graph (QU(, E), where @ is the set of queries to be supported at the warehouse
and ( is a subset of the powerset of V| the set of views. An edge (¢q,0) is in
E iff the query ¢ can be answered using the views in the set o, and the cost
associated with the edge is the cost incurred in answering ¢ using o. There is
also a frequency f, associated with each query ¢ € Q. We assume that there is a
set p € ¢ (the set of base tables) such that (g, p) € E for all ¢ € ).° Note that an
arbitrary AND-OR view graph can be converted into an equivalent query-view
graph. a

Problem (View Selection in Query-View Graphs): Given a quantity S and
a query-view graph G = (CUQ, F), select a set of views M C V that minimizes
the total query response time,® under the constraint that the total space occu-
pied by the views in M is at most S.

5 A query-view graph can be looked upon as an OR graph, as a query q € Q can be
computed by any of the set of views o where (¢, 0) € E.

% Though we ignore update costs, it can be incorporated by adding possibly additional
nodes in ¢ and additional edges in F; (defined later).



5.1 AO-Greedy Algorithm for Query-View Graphs

We define an intersection graph F: of ( as a graph having ( and D as its set of
vertices and edges respectively such that an edge (e, 8) € D if and only if the
set of views a and [ intersect.

The AO-greedy algorithm works in stages as follows. At each stage, the algo-
rithm picks a connected subgraph H of F; whose corresponding set of views Vg
(union of the sets of views corresponding to the vertices of H) offers the maxi-
mum benefit per unit space at that stage. The set of views Vg is then added to
the set of views already selected in previous stages. The algorithm halts when
the space occupied by the selected views exceeds S.

We omit the proof of the following theorem due to space constraints.

Observation 5 An optimal solution O of the view-selection problem in query-
view graph G s of the form O = Uycpo, where I' C (.

Theorem 5.1 For a query-view graph without updates and a quantity S, the
AO-greedy algorithm produces a solution M that uses at most 25 units of space.
Also, the absolute benefit of M is at least (1 — 1/e) times the optimal benefit
achievable using as much space as that used by M . n

For a query-view graph G = ((U @, E) corresponding to an OR view graph,
the AO-greedy algorithm behaves exactly as the greedy algorithm (Algorithm 3.1),
taking polynomial time for OR view graphs.

5.2 Multi-level Greedy Algorithm

In this section, we generalize the inner-level greedy algorithm (Algorithm 3.3) to
multiple inner-levels of greedy selection in query-view graphs. We try to modify
the AO-greedy algorithm for query-view graphs in an attempt to improve its
running time at the expense of its performance guarantee.

Consider a query-view graph G = (Q U ¢, E) and its intersection graph F
such that there is a view v where v € o for each node o in F§.7 If no such v exists,
then run AO-greedy algorithm on G. Let (' be the set obtained by removing v
from each element of { and Fé be its corresponding intersection graph. We select
a set of views U whose benefit per unit space is close to that of the optimal.

Let Fy, Fs,..., F; be the connected components of Fé We select the set
of views U in a greedy manner. Initially the set U contains just ». Then, at
each stage, we select a set of views J, corresponding to a subgraph in some
component F;, that has the maximum benefit per unit space. The set of views
J is then added to the set U being maintained. We continue adding views to U
till the total benefit per unit space of U cannot be further improved.

It is not difficult to show that the benefit per unit space of U at least 63% of
the benefit per unit space of Vi, the set of views whose benefit per unit space is

" The technique developed here can be easily generalized to the case when F¢ has | > 1
connected components G1,Gs, ..., Gy, each satisfying the property that for some v;,
v; € o for each vertex o in G;.



the maximum among the connected subgraphs in F. The algorithm continues
by interatively picking a new set U and adding it to the set of already selected
views M, until the space occupied by M exceeds S.

This algorithm could still take exponential time because of the need to con-
sider all possible subgraphs of F;. We could apply the above technique recursively
for the graphs F;, selecting a set of views U; whose benefit is within 63% of the
benefit of an optimal set of views in F;. Applying this technique recursively r
times yields the r-level greedy algorithm. We omit the proof of the following
theorem.

Theorem 5.2 For a query-view graph G and a gwen quantity S, the r-level
greedy algorithm delivers a solution M that uses at most 25 units of space. Also,
the benefit of M is at least 1 — (1/€)%3" of the optimal benefit achievable using
as much space as that used by M, assuming that no view occupies more than S
units of space. The r-level greedy algorithm takes O((kn)?") time, excluding the
time taken at the final level. Here, k 1s the mazimum number of views that can
fit in S units of space. n

For a given instance one could estimate the value of r such that at the rt?
level the graphs F; are small constant-size graphs. The last level would then take
only a constant amount of time.

For an OR view graph [ with indexes, its equivalent query-view graph G =
(CUQ,E) is such that each element o € ¢ consists of a single view and one
of its indexes.® Hence, at the first stage itself, the graphs obtained consist of
nodes representing single indexes. For such a query-view graph, the 1-level inner
greedy algorithm behaves exactly the same as the inner-level greedy algorithm
(Algorithm 3.3) on OR view graphs with indexes.

6 Conclusions and Future Directions

In this paper, we have developed a theoretical framework for the general prob-
lem of selection of views in a data warehouse. We have presented competitive
polynomial-time heuristics for some important special cases of the problem that
occur 1n practice. We have presented proofs showing that the algorithms are
guaranteed to provide a solution that is within a constant factor of the optimal.

There are still a lot of questions which remain unanswered and need consid-
erable attention. Noteworthy among them are:

1. Are there competitive polynomial-time heuristics for other special cases like
AND-OR trees or binary AND-OR view trees, even without updates or when
optimizing just update costs? Are there heuristics which optimize total query
benefit under the constraint of total maintenance time ?

2. Can we prove any negative results about the approximability of the view-
selection problem?

8 Under the assumption that an index is never computed to answer a query.



We believe that the techniques developed in this paper would offer significant
insights into the greedy heuristic and the nature of the view-selection problem
in a data warehouse. We hope that the view-selection problem would invoke
substantial interest in the database theory community.
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