Polynomial-Time Computability in Analysis: A Survey

Ker-I Ko

Stony Brook University, New York Tsinghua University, Beijing

Outline

- 1 Computational Models Church's thesis in computational analysis?
- 2 Complexity Hierarchy of Numerical Operations Applying NP-theory to analysis
- **3** Applications to Computational Geometry P-time computable Jordan domains
- 4 Applications in Complex Analysis Julia sets, conformal mappings

Computational Theory of Real Analysis

Constructive Analysis Bishop, Bridges, Ishihara, ... Intuitionistic Logic

Recursive Analysis (Computable Analysis) Recursion Theory Russian School Šanin, Moschovakis, Ceitin, ··· Polish School Grzegorczyk, Mostowski Lacombe, Pour-El, Richards Weihrauch, ··· Polynomial-Time Analysis Complexity Theory Turing machine model Ko, Friedman, Weihrauch, Müller Rettinger, Zheng, Cook, Braverman, … Real-valued circuit model Hoover Algebraic model Blum, Shub, Smale, Cucker, … Information-based complexity theory Traub, Wozniakowski, …

Numerical Analysis

Classical analysis, Arithmetic complexity theory Interval analysis, Scientific computing

Relationship between these theories

Example: Roots of Polynomials

Bishop: Fundamental Theorem of Algebra has a constructive proof.

Specker: All roots of a computable polynomial function are computable.

The mapping from coefficients to roots is computable.* Ko-Friedman: All roots of a polynomial-time computable polynomial function are polynomial-time computable. Neff: The mapping from coefficients to roots is in NC. Schönhage: The mapping from coefficients to roots is computable in time $O(n^3\phi(n))$.

Smale: Newton's method runs in polynomial time on average.

Warning They may use different models.
There is no Church's Thesis in computational analysis.

The models of the following theories are consistent:

Recursive analysis (Polish school)

Polynomimal-time analysis (Turing machine model)

Discrete NP-completeness theory

Classical numerical analysis (e.g., interval analysis)

Real Numbers

A real number is an infinite object, and has no finite representations.

Basic representation: Cauchy functions with a fixed converging rate

$$\varphi_x : \mathbb{N} \to \mathbb{D} \text{ with } |\varphi_x(n) - x| \leq \frac{1}{2^n}. \quad \left(\text{Why } \frac{1}{2^n}? \right)$$

 $\mathbb{D}: \text{ dyadic rationals}$

x is computable if \exists a computable φ_x .

x is P-time computable if \exists a P-time computable φ_x .

Other Representations?

Dedekind cuts: $L_x = \{d \in \mathbb{D} : d < x\}$ Binary expansions: $b_x : \mathbb{N}^+ \rightarrow \{0, 1\}$ and $b_x(0) \in \mathbb{Z}$, with $x = \sum_{n=0}^{\infty} b_x(n) \cdot 2^{-n}$. Continued fractions: $c_x : \mathbb{N} \rightarrow \mathbb{N}^+$ with

$$x = c_x(0) + \frac{1}{c_x(1) + \frac{1}{c_x(2) + \frac{1}{\dots}}}$$

For computable real numbers, these representations are equivalent to Cauchy function representation.

For P-time computable real numbers, they are not equivalent.

Real Numbers as Discrete Objects

 $P_{\mathbb{R}}$: Set of P-time computable real numbers $NP_{\mathbb{R}}$: Set of NP-time computable real numbers $\#P_R$, $PSPACE_{\mathbb{R}}$, ...

What are the relations between these complexity classes?

General Observation

Representations of real numbers behave like selective sets or sparse sets.

 $P_{\mathbb{R}} = NP_{\mathbb{R}} \iff P_1 = NP_1$

 $\#P_{\mathbb{R}}=?\#NP_{\mathbb{R}}$ (YES if NP=UP)

Real Functions

Representation of $f : \mathbb{R} \to \mathbb{R}$: Type-2 function with a fixed converging rate $\Phi_f : \Psi \times \mathbb{N} \to \mathbb{D}$, with $|\Phi_f(\varphi_x, n) - f(x)| \leq \frac{1}{2^n}$ Ψ : set of Cauchy functions φ_x

Computational Model for type-2 functions: Oracle Turing machine

f is computable if Φ_f is computable by an oracle TM M $|M^{\varphi_x}(n) - f(x)| \leq 2^{-n}$

 $f: [0,1] \to \mathbb{R}$ is P-time computable if $M^{\varphi_x}(n)$ halts in time $n^{O(1)}$ for every oracle φ_x with $x \in [0,1]$.

Compute $f(x) = x^2$:

Input n (the output precision) **Oracle** φ_x (representation of a real x) Algorithm (1) Compute required input precision m from n $(n \mapsto m \text{ is called modulus function});$ (2) Ask oracle to get a rational r with $|r - x| \leq 2^{-m}$; (3) Compute $s \leftarrow r^2$; (4) Output first n bits of s.

Note: Modulus function may also depend on x. So, Steps (1) and (2) may be repeated to find the right m.

An Alternative type-1 representation (with an additional continuity requirement) (φ_f, m_f) where $\varphi_f : \mathbb{D} \times \mathbb{N} \rightarrow \mathbb{D}$, $m_f : \mathbb{N} \rightarrow \mathbb{N}$, with $|\varphi_f(d,n) - f(d)| \leq 2^{-n}$, and $|x - y| < 2^{-m_f(n)} \Rightarrow |f(x) - f(y)| < 2^{-n}$ f is computable iff φ_f, m_f are computable f is P-time computable iff φ_f is P-time computable, and m_f is a polynomial function.

Warning

In this model, comparison of two real numbers is noncomputable.

• \exists oracle TM M such that $M^{\varphi_x,\varphi_y}(0) = \begin{cases} 1 & \text{if } x < y, \\ 0 & \text{if } x > y, \\ \uparrow & \text{if } x = y. \end{cases}$

• No oracle TM:
$$M^{\varphi_x,\varphi_y}(0) = \begin{cases} 1 & \text{if } x \neq y, \\ 0 & \text{if } x = y. \end{cases}$$

 The problem of determining whether a given polynomial function (represented by its coefficients) has multiple roots is undecidable.

Numerical Operators

 $F: C[0,1] \rightarrow \mathbb{R}$ is a type-3 function.

We can use Oracle TM as a computational model.

$$F \text{ is computable if } \exists \text{ oracle TM } M \text{ such that } |M^{\Phi_f}(n) - F(f)| \leq 2^{-n}.$$
 (In the computation, M may ask the oracle to find an

approximate value of f(x) by asking the oracle for the value of $\Phi_f^d(n)$, where $d \approx x$.)

P-Time Computable Operators?

Weak form: Consider only P-time invariance If f is P-time computable, what is the complexity of F(f)?

Strong form [Kawamura-Cook, 2010]

Use regular functions as representations of f, a more general notion of P-time computable operator can be defined.

Many known results about P-time computability of numerical operators in the weak form can be extended to the strong form.

Outline

1 Computational Models

Church's thesis in computational analysis?

- 2 Complexity Hierarchy of Numerical Operations Applying NP-theory to analysis
- **3** Applications to Computational Geometry P-time computable Jordan domains
- 4 Applications in Complex Analysis Julia sets, conformal mappings

A Complexity Hierarchy of Numerical Operations

Differentiation Integral Eq (with local Lipschitz cond) **Ordinary Diff Eq** (with Lipschitz cond) Integration Minimax Maximization Roots (of 2-dim. functions) Fixed Points (of 2-dim. functions) Roots (of 1-1 functions) Differentiation (f' has poly. modulus)

Noncomputable **EXPSPACE**-Complete **PSPACE**-complete #P-complete NP^{NP}-complete **NP**-complete between UP and NP **PPAD**-complete P-complete Ρ

Maximization:

What is the complexity of finding $\max\{x_1, x_2, \ldots, x_K\}$? Depending on the representation of x_1, x_2, \ldots, x_K . (1) Explicit Representation: x_1, x_2, \ldots, x_K are given as input (input size $n \approx K$): Input: $38, 25, 19, 55, \ldots, 49$ find max

Complexity: In P (needs K - 1 comparisons)

(2) Oracle Representation:

 x_1, x_2, \ldots, x_K are given by an oracle function Φ $(\Phi(i) = x_i)$

Input: K (input size $n = \lceil logK \rceil$)

Complexity: Exponential time

(must ask the oracle Φ for $K \approx 2^n$ times)

(3) Machine Representation:

 x_1, x_2, \ldots, x_K are presented by a polynomial-time algorithm A that computes the function Φ

Complexity: In NP; NP-complete for some A(Actually, the following variation is in NP: Given A and an integer M, determine whether $M < \max{\Phi(1), \ldots, \Phi(K)}$.)

• Most NP-ccomplete optimization problems can be viewed in this form.

Traveling Salesman:

Input: Graph G with n vertices; weight $w : E \rightarrow \mathbb{N}^+$ Question: Find the min-weight Hamiltonian tour of G

- There are K = (n 1)! different Hamiltonian tours of G, and they can be enumerated as H_1, H_2, \ldots, H_K .
- Now, Traveling Salesman can be restated as follows:
 Find the minimum of the output from A_G:

 A_G : For i = 1, 2, ..., K, identify i with a Hamiltonian tour H_i and output $\Phi(i) =$ total weight of H_i .

Numerical Maximization

Given $f : [0,1] \rightarrow]R$ (as an oracle), find $\max_{0 \le x \le 1} f(x)$. Discretize this problem:

Assumption: Function f has a polynomial modulus: $|x - y| \le 2^{-n^c} \Rightarrow |f(x) - f(y)| \le 2^{-n}$

With this assumption, the discretized problem becomes Find the maximum value of $f(\frac{1}{2^{n^c}}), f(\frac{2}{2^{n^c}}), \dots, f(\frac{2^{n^c}}{2^{n^c}})$

(For convenience, we use c = 1 in the following discussion.)

Representation of f:

(1) Explicit representation Function values $f(\frac{1}{2^{n^c}}), f(\frac{2}{2^{n^c}}), \dots, f(\frac{2^{n^c}}{2^{n^c}})$ are given as input.

Complexity: Polynomial in input size, exponential in output precision n

• This is the common practice of Computational Geometry (with n input points, instead of 2^n points).

(2) Oracle representation

Function f is given by an oracle. The maximization algorithm may ask for f(r) for any rational number r.

Complexity: Exponential in the output precision n.

• This is used in some theoretical study of numerical analysis (e.g., Information-Based Complexity Theory of [Traub et al.]).

(3) Machine representation

Function f is assumed to be computable by a machine M_f in polynomial time (polynomial in output precision n), and the maximization algorithm may simulate M_f on any input r.

Complexity: NP-complete.

Note: The Machine representation approach is equivalent to the model in the Turing Machine-Based P-Time Theory of Analysis.

 $\begin{array}{ll} \textbf{Theorem} & [\text{Ko, Friedman}] \\ \textbf{P} = \textbf{NP} \Longleftrightarrow & \text{For every polynomial-time computable} \\ & \text{function } f: [0,1] \rightarrow \mathbb{R}, \ \max f \in \textbf{P}. \end{array}$

Ordinary Differential Equations (IVP)

 $y'(x) = f(x, y(x)), \ 0 \le x \le 1,$ y(0) = 0.

- \exists computable f: all solutions y are not computable on $[0, \delta]$ for all $\delta > 0$. Pour-El, Richards
- f computable, solution y unique $\implies y$ computable.
- ∃ P-time computable f: solution y is unique, but complexity of y is arbitrary high.
 Miller

Lipschitz Condition

 $f \in Lip(\alpha): \ (\forall x \in [0,1]) \ (\forall y_1, y_2 \in [-1,1]) \\ |f(x,y_1) - f(x,y_2)| \le \alpha \cdot |y_1 - y_2|.$

- f P-time computable, $f \in Lip(\alpha) \Longrightarrow y$ P-space computable. Ko
- $(\exists \mathsf{P}\text{-time computable } f)$: $f \in Lip(\alpha)$, y is $\mathsf{P}\text{-space complete.}$ Ko, Kawamura
- The mapping $f \mapsto y$ is P-space complete. Kawamura, Cook

Volterra Integral Equations (of the 2nd kind)

$$y(x) = f(x) + \int_0^x K(x, s, y(s)) ds, \ 0 \le x \le 1,$$

with $K \in Lip_3(\alpha)$: $|K(x, s, y_1) - K(x, s, y_2)| \le \alpha \cdot |y_1 - y_2|$

- If α is independent of x, then this problem is P-space complete. Ko, Kawamura
- If $\alpha \leq 2^{n^{O(1)}}$ for $x \leq 1 2^{-n}$, then y is EXP-space computable.
- Under the above local Lipschitz condition, this problem is EXP-space complete. Kawamura

Outline

- 1 Computational Models Church's thesis in computational analysis?
- 2 Complexity Hierarchy of Numerical Operations Applying NP-theory to analysis
- **3** Applications to Computational Geometry P-time computable Jordan domains
- 4 Applications in Complex Analysis Julia sets, conformal mappings

Subsets of \mathbb{R}^2

Computable sets of real numbers?

Again, there does not seem to be a Church's Thesis.

For discrete $A \subseteq \{0,1\}^*$, A is computable if

$$\chi_A(x) = \left\{ \begin{array}{ll} 1 & \text{if } x \in A, \\ 0 & \text{if } x \notin A \end{array} \right\} \text{ is computable.}$$

Try: For $S \subseteq \mathbb{R}^2$, S is computable if $\chi_S(\mathbf{z}) = \left\{ \begin{array}{ll} 1 & \text{if } \mathbf{z} \in S \\ 0 & \text{if } \mathbf{z} \notin S \end{array} \right\} \text{ is computable.}$?? Warning The function χ_S is not computable for nontrivial S (i.e., $S \neq \emptyset$, $S \neq \mathbb{R}^2$).

For an oracle TM, let

 $Err_n(M) = \{ \mathbf{z} : M^{\mathbf{z}}(n) \neq \chi_S(\mathbf{z}) \}.$

P-time Approximable (Measurable) Sets \exists P-time oracle TM M: $\mu(Err_n(M)) \leq 2^{-n}$.

P-time Recognizable Sets

 \exists P-time oracle TM M:

 $\mathbf{z} \in Err_n(M) \Rightarrow \delta(\mathbf{z}, \partial S) \leq 2^{-n}.$

Strongly P-time Recognizable Sets \exists P-time oracle TM M: $\mathbf{z} \in Err_n(M) \Rightarrow \delta(\mathbf{z}, \partial S) \leq 2^{-n} \text{ and } \mathbf{z} \notin S.$ **P-time Computable Sets** [Weihrauch, ···] \exists P-time oracle TM M: $\mathbf{z} \in Err_n(M) \Rightarrow 2^{-n} < \delta(\mathbf{z}, S) \le 2 \cdot 2^{-n}.$ $P = NP \iff$ the above two classes are equivalent. **P-time Computable Sets** wrt Hausdorff Distance \exists P-time oracle TM M: [Braverman, Yampolsky] $\delta_{\text{HAUS}}(S, \{\mathbf{z} \ M^{\mathbf{z}}(n) = 1\}) \le 2^{-n}$ All of the above definitions are not equivalent.

Jordan Domains

A Jordan domain is a singlyconnected set whose boundary is a Jordan curve Γ (the image of a mapping $f : [0, 1] \rightarrow \mathbb{R}^2$).

Computable Curves — still **no** unique definition

Monotonically Computable: f is one-to-one Retraceably Computable: f is not necessarily one-to-one Gu, Lutz, Mayordomo Normalizably Computable: Length of f[0, t] is proportional to t, for 0 < t < 1 (if $leng(\Gamma)$ is finite). Rettinger, Zheng

Continuous Computational Geometry

Goals: Resolve the numerical non-robustness problem Deal with more general geometric objects Allow efficient implementation of traditional algorithms E.g. Exact Geometry Computation (EGC) Yap, Melhorn, ...

Jordan Domain-Based Approach

General Question

Given a two-dimensional domain S whose boundary is a P-time computable Jordan curve, what is the complexity of the related problems?

P-Time Computable Jordan Domains as an extension of Polygon Representation

If ∂S is *P*-computable, then it has polynomial modulus.

So, ∂S is represented by an implicit polygon of $2^p(n)$ vertices.

$\label{eq:complexity of Jordan Domains} S$

Area Length of ∂S Shortest Paths in SPancake Cutting Membership ($x \in S$?) Circumscribed Rectangle Distance of x from S**Convex Hull**

Noncomputable (fractal) Noncomputable (fractal) between #P and PSPACE **#P-complete** between UP and #PNP^{NP}-complete NP-complete **NP-complete**

Outline

- 1 Computational Models Church's thesis in computational analysis?
- 2 Complexity Hierarchy of Numerical Operations Applying NP-theory to analysis
- **3** Applications to Computational Geometry P-time computable Jordan domains
- 4 Applications in Complex Analysis Julia sets, conformal mappings

Analytic Functions

If f is real analytic and P-time computable, then integral $\int_0^x f$, derivative f'(x), maximum value $\max f(x)$, and roots $\{x : f(x) = 0\}$ are all P-time computable.

Parallel Complexity

If f is analytic and is NC (or LOG-space) computable, then integral, derivative, maximum value and roots of fare all NC (or LOG-space, resp.) computable. Yu

Zeroes of an Analytic Fuction f on a Jordan domain ${\cal S}$

Assumptions

- f is analytic on $S\cup\partial S$
- $f(\mathbf{z}) > 0$ on ∂S
- f and ∂S are NC computable

Quadrature Method

(1) Compute the number of zeroes $n = \frac{1}{2\pi i} \int_{\partial S} \frac{f'(\mathbf{z})}{f(\mathbf{z})} d\mathbf{z} \quad \text{(by principle of argument)}$ (2) Compute the Newton sums $s_p = \sum_{i=1}^{n} \mathbf{z}_i^p = \frac{1}{2\pi i} \int_{\partial S} \mathbf{z}^p \frac{f'(\mathbf{z})}{f(\mathbf{z})} d\mathbf{z}$ (3) Compute the associated polynomial $p_n(\mathbf{z}) = \prod (\mathbf{z} - \mathbf{z}_i)$ (by Newton's identity i=1 and $s_p, \ p = 1, ..., n$) (4) Solve the associated polynomial equation [Neff]

All the above calculations can be parallelized.

Some problems related to Membership Problem

- Computing Winding Number of a closed curve
- Computing Single-Valued Analytic Branch of a multi-valued function

Square Root Problem

On a complex domain, $\sqrt{z} = \sqrt{|z|} \cdot e^{iarg(z)/2}$ has 2 single-valued, analytic branches:

$$\sqrt{\mathbf{z}} = \sqrt{|\mathbf{z}|} \text{ or } \sqrt{|\mathbf{z}|} \cdot e^{i\pi}$$

Logarithm Problem

On a complex domain, $\log \mathbf{z} = \log |\mathbf{z}|$ $+ i \arg(\mathbf{z})$ has ∞ single-valued analytic branches:

 $arg(\mathbf{z}) = \cdots, -4\pi$, $-2\pi, 0, 2\pi, 4\pi, \cdots$

corresponding to $arg(\mathbf{z}_0) = \cdots, 0$, $2\pi, 4\pi, 6\pi, 8\pi, \cdots$

Analytic Branch Problem

Given a P-time computable closed Jordan curve Γ , what is the complexity of finding a single-valued analytic branch of $\log z$ or \sqrt{z} on $S = Int(\Gamma)$?

Equivalent Problem: Given Γ , what is the complexity of computing a continuous argument function $h(\mathbf{z}) \in arg(\mathbf{z})$ on S?

$$\log \mathbf{z} \equiv h(\mathbf{z}) - h(\mathbf{z}_0) \qquad \sqrt{\mathbf{z}}, \equiv \frac{h(\mathbf{z}) - h(\mathbf{z}_0)}{2\pi} \mod 2$$

If \mathbf{z} and \mathbf{z}_0 are on the boundary of S, $h(\mathbf{z}) \approx \text{ winding number about } \mathbf{z}$.

Complexity

Problem	Lower bound	Upper bound
Winding Number	#P	#P
Logarithm	#P	#P
Square root	$\oplus P$	MP
Membership	UP	MP

NP: $\{x \mid (\exists^p y) R(x, y)\}$, where $R \in P$ #P: f(x) = number of y such that R(x, y) $\oplus P$ (Parity P): f(x) is odd MP (Midbit P): the middle bit of f(x) = 1.

Analytic Continuation

Assume that f is an analytic function defined on a domain S. Then, the power series of f at any $\mathbf{z} \in S$ can be computed from that of f at a starting point \mathbf{z}_0 .

Complexity?

Depends on geometric properties of ∂S ?

Julia Sets

For a function $f : \mathbb{C} \to \mathbb{C}$, define $\frac{K(f)}{I} = \{ \mathbf{z} \in \mathbb{C} \mid (\exists C > 0)(\forall n) \mid f^n(\mathbf{z}) \mid \leq C \},$ J(f) = boundary of K(f).

- ∃ P-time computable f : C→C such that J(f) encodes the halting problem of the universal Turing machine.
- Membership problem of J_f for a hyperbolic polynomial f is P-time computable [Rettinger, Weihrauch, Braverman, Yampolsky]
- A special group of functions: f_c(z) = z² + c, z, c ∈ C.
 For most c (including all c outside the Mandelbrot set), f_c is hyperbolic.

Conformal Mappings

Given a Jordan domain S, what is the complexity of the Riemann mapping from S to the unit disk (relative to the complexity of S)?

- Under some restrictions on the boundary of S, the complexity is #P-complete (if S is P-time computable). [Braverman, Yampolsky, Rettinger]
- Open Question:

In the general case, when it is only known that ∂S is P-time computable, is the complexity still #P?

Thank You