
Polynomial-Time Computability

in Analysis: A Survey

Ker-I Ko
Stony Brook University, New York

Tsinghua University, Beijing

Outline

1 Computational Models

Church’s thesis in computational analysis?

2 Complexity Hierarchy of Numerical Operations

Applying NP-theory to analysis

3 Applications to Computational Geometry

P-time computable Jordan domains

4 Applications in Complex Analysis

Julia sets, conformal mappings

Computational Theory of Real Analysis

Constructive Analysis Bishop, Bridges, Ishihara, · · ·
Intuitionistic Logic

Recursive Analysis (Computable Analysis)

Recursion Theory

Russian School Šanin, Moschovakis, Ceitin, · · ·
Polish School Grzegorczyk, Mostowski

Lacombe, Pour-El, Richards

Weihrauch, · · ·

Polynomial-Time Analysis

Complexity Theory

Turing machine model Ko, Friedman, Weihrauch, Müller

Rettinger, Zheng, Cook, Braverman, · · ·
Real-valued circuit model Hoover

Algebraic model Blum, Shub, Smale, Cucker, · · ·
Information-based complexity theory

Traub, Wozniakowski, · · ·

Numerical Analysis

Classical analysis, Arithmetic complexity theory

Interval analysis, Scientific computing

Relationship between these theories

Computability

Theory
↔ NP-complete

Theory
↔ Analysis of

Algorithms

l l l
Computable

Analysis
↔

Polynomial-Time

Theory of

Analysis

↔ Numerical

Analysis

Example: Roots of Polynomials

Bishop: Fundamental Theorem of Algebra has a constructive

proof.

Specker: All roots of a computable polynomial function are

computable.

The mapping from coefficients to roots is computable.∗

Ko-Friedman: All roots of a polynomial-time computable

polynomial function are polynomial-time computable.

Neff: The mapping from coefficients to roots is in NC.

Schönhage: The mapping from coefficients to roots is

computable in time O(n3φ(n)).

Smale: Newton’s method runs in polynomial time on average.

Warning They may use different models.

=⇒ There is no Church’s Thesis in computational

analysis.

The models of the following theories are consistent:

Recursive analysis (Polish school)

Polynomimal-time analysis (Turing machine model)

Discrete NP-completeness theory

Classical numerical analysis (e.g., interval analysis)

Real Numbers

A real number is an infinite object, and has no finite

representations.

Basic representation: Cauchy functions with a fixed

converging rate

ϕx : N→D with |ϕx(n)− x| ≤ 1

2n
.

(

Why
1

2n
?
)

D: dyadic rationals

x is computable if ∃ a computable ϕx.

x is P-time computable if ∃ a P-time computable ϕx.

Other Representations?

Dedekind cuts: Lx = {d ∈ D : d < x}
Binary expansions: bx : N

+→{0, 1} and bx(0) ∈ Z, with

x =
∑

∞

n=0 bx(n) · 2−n.

Continued fractions: cx : N→N
+ with

x = cx(0) +
1

cx(1) + 1
cx(2)+ 1

...

For computable real numbers, these representations are equivalent

to Cauchy function representation.

For P-time computable real numbers, they are not equivalent.

Real Numbers as Discrete Objects

PR: Set of P-time computable real numbers

NPR: Set of NP-time computable real numbers

#PR, PSPACER, . . .

What are the relations between these complexity classes?

General Observation

Representations of real numbers behave like selective

sets or sparse sets.

PR = NPR ⇐⇒ P1 = NP1

#PR=?#NPR (YES if NP = UP)

Real Functions

Representation of f : R→R:

Type-2 function with a fixed converging rate

Φf : Ψ× N→D, with |Φf(ϕx, n)− f(x)| ≤ 1

2n

Ψ: set of Cauchy functions ϕx

Computational Model for type-2 functions:

Oracle Turing machine

f is computable if Φf is computable by an oracle TM M

|Mϕx(n)− f(x)| ≤ 2−n

f : [0, 1]→R is P-time computable if Mϕx(n) halts in time nO(1)

for every oracle ϕx with x ∈ [0, 1].

Compute f(x) = x2:

Input n (the output precision)

Oracle ϕx (representation of a real x)

Algorithm

(1) Compute required input precision m from n

(n 7→ m is called modulus function);

(2) Ask oracle to get a rational r with |r − x| ≤ 2−m;

(3) Compute s← r2;

(4) Output first n bits of s.

Note: Modulus function may also depend on x. So,

Steps (1) and (2) may be repeated to find the right m.

An Alternative type-1 representation

(with an additional continuity requirement)

(ϕf , mf) where ϕf : D× N→D, mf : N→N,

with |ϕf(d, n)− f(d)| ≤ 2−n, and

|x− y| ≤ 2−mf (n)⇒ |f(x)− f(y)| ≤ 2−n

f is computable iff ϕf , mf are computable

f is P-time computable iff ϕf is P-time computable,

and mf is a polynomial function.

Warning

In this model, comparison of two real numbers is

noncomputable.

• ∃ oracle TM M such that Mϕx,ϕy(0) =

1 if x < y,

0 if x > y,

↑ if x = y.

• No oracle TM: Mϕx,ϕy(0) =

{
1 if x 6= y,

0 if x = y.

• The problem of determining whether a given polynomial function

(represented by its coefficients) has multiple roots is

undecidable.

Numerical Operators

F : C[0, 1]→R is a type-3 function.

We can use Oracle TM as a computational model.

F is computable if ∃ oracle TM M such that

|MΦf(n)− F (f)| ≤ 2−n.

(In the computation, M may ask the oracle to find an

approximate value of f(x) by asking the oracle for the

value of Φd
f(n), where d ≈ x.)

P-Time Computable Operators?

Weak form: Consider only P-time invariance

If f is P-time computable, what is the complexity of

F (f)?

Strong form [Kawamura-Cook, 2010]

Use regular functions as representations of f , a more

general notion of P-time computable operator can be

defined.

Many known results about P-time computability of

numerical operators in the weak form can be extended

to the strong form.

Outline

1 Computational Models

Church’s thesis in computational analysis?

2 Complexity Hierarchy of Numerical Operations

Applying NP-theory to analysis

3 Applications to Computational Geometry

P-time computable Jordan domains

4 Applications in Complex Analysis

Julia sets, conformal mappings

A Complexity Hierarchy of Numerical Operations

Differentiation Noncomputable

Integral Eq (with local Lipschitz cond) EXPSPACE-Complete

Ordinary Diff Eq (with Lipschitz cond) PSPACE-complete

Integration #P-complete

Minimax NPNP-complete

Maximization NP-complete

Roots (of 2-dim. functions) between UP and NP

Fixed Points (of 2-dim. functions) PPAD-complete

Roots (of 1-1 functions) P-complete

Differentiation (f ′ has poly. modulus) P

Maximization:

What is the complexity of finding

max{x1, x2, . . . , xK}?
Depending on the representation of x1, x2, . . . , xK.

(1) Explicit Representation:

x1, x2, . . . , xK are given as input (input size n ≈ K):

Input: 38, 25, 19, 55, . . . , 49
︸ ︷︷ ︸

find max

Complexity: In P (needs K − 1 comparisons)

(2) Oracle Representation:

x1, x2, . . . , xK are given by an oracle function Φ

(Φ(i) = xi)

Oracle: 38 25 19 55 · · · 49

Input: K (input size n = ⌈logK⌉)

Complexity: Exponential time

(must ask the oracle Φ for K ≈ 2n times)

(3) Machine Representation:
x1, x2, . . . , xK are presented by a polynomial-time algorithm A that

computes the function Φ

Input: A
(n = size(A) ≈ ⌈log K⌉O(1))

↓↓ · · · ↓
38, 25, 19, 55, · · · , 49 (hidden input, size = K)

Complexity: In NP; NP-complete for some A

(Actually, the following variation is in NP: Given A and an integer

M , determine whether M < max{Φ(1), . . . ,Φ(K)}.)

• Most NP-ccomplete optimization problems can be viewed

in this form.

Traveling Salesman:

Input: Graph G with n vertices; weight w : E→N
+

Question: Find the min-weight Hamiltonian tour of G

• There are K = (n − 1)! different Hamiltonian tours of G, and

they can be enumerated as H1, H2, . . . , HK.

• Now, Traveling Salesman can be restated as follows:

Find the minimum of the output from AG:

AG: For i = 1, 2, . . . , K, identify i with a Hamiltonian tour Hi

and output Φ(i) = total weight of Hi.

4

2

6

2

3

5

4

4

37

31

41

7

4

5

2
7

3

8

3

6

2

Numerical Maximization

Given f : [0, 1]→]R (as an oracle), find max0≤x≤1 f(x).

Discretize this problem:

Assumption: Function f has a polynomial modulus:

|x− y| ≤ 2−nc ⇒ |f(x)− f(y)| ≤ 2−n

With this assumption, the discretized problem becomes

Find the maximum value of

f
(

1
2nc

)
, f

(
2

2nc

)
, . . . , f

(
2nc

2nc

)

(For convenience, we use c = 1 in the following discussion.)

Representation of f :

(1) Explicit representation

Function values f
(

1
2nc

)
, f

(
2

2nc

)
, . . . , f

(
2nc

2nc

)
are given as

input.

Complexity: Polynomial in input size, exponential in

output precision n

• This is the common practice of Computational

Geometry (with n input points, instead of 2n points).

(2) Oracle representation

Function f is given by an oracle. The maximization

algorithm may ask for f(r) for any rational number r.

Complexity: Exponential in the output precision n.

• This is used in some theoretical study of numerical

analysis (e.g., Information-Based Complexity Theory

of [Traub et al.]).

(3) Machine representation

Function f is assumed to be computable by a machine

Mf in polynomial time (polynomial in output precision

n), and the maximization algorithm may simulate Mf

on any input r.

Complexity: NP-complete.

Note: The Machine representation approach is equivalent to the

model in the Turing Machine-Based P-Time Theory of Analysis.

Theorem [Ko, Friedman]

P = NP⇐⇒ For every polynomial-time computable

function f : [0, 1]→R, max f ∈ P.

Ordinary Differential Equations (IVP)

y′(x) = f(x, y(x)), 0 ≤ x ≤ 1,

y(0) = 0.

• ∃ computable f : all solutions y are not computable

on [0, δ] for all δ > 0. Pour-El, Richards

• f computable, solution y unique =⇒ y computable.

• ∃ P-time computable f : solution y is unique, but

complexity of y is arbitrary high. Miller

Lipschitz Condition

f ∈ Lip(α): (∀x ∈ [0, 1]) (∀y1, y2 ∈ [−1, 1])

|f(x, y1)− f(x, y2)| ≤ α · |y1 − y2|.

• f P-time computable, f ∈ Lip(α) =⇒ y P-space

computable. Ko

• (∃ P-time computable f): f ∈ Lip(α), y is P-space

complete. Ko, Kawamura

• The mapping f 7→ y is P-space complete.

Kawamura, Cook

Volterra Integral Equations (of the 2nd kind)

y(x) = f(x) +

∫ x

0

K(x, s, y(s))ds, 0 ≤ x ≤ 1,

with K ∈ Lip3(α): |K(x, s, y1)−K(x, s, y2)| ≤ α · |y1 − y2|

• If α is independent of x, then this problem is P-space

complete. Ko, Kawamura

• If α ≤ 2nO(1)
for x ≤ 1− 2−n, then y is EXP-space

computable. Ko

• Under the above local Lipschitz condition, this

problem is EXP-space complete. Kawamura

Outline

1 Computational Models

Church’s thesis in computational analysis?

2 Complexity Hierarchy of Numerical Operations

Applying NP-theory to analysis

3 Applications to Computational Geometry

P-time computable Jordan domains

4 Applications in Complex Analysis

Julia sets, conformal mappings

Subsets of R
2

Computable sets of real numbers?

Again, there does not seem to be a Church’s Thesis.

For discrete A ⊆ {0, 1}∗, A is computable if

χA(x) =
{ 1 if x ∈ A,

0 if x 6∈ A

}

is computable.

Try: For S ⊆ R
2, S is computable if

χS(z) =
{ 1 if z ∈ S

0 if z 6∈ S

}

is computable.
??

Warning The function χS is not computable for

nontrivial S (i.e., S 6= ∅, S 6= R
2).

For an oracle TM, let

Errn(M) = {z : M z(n) 6= χS(z)}.

P-time Approximable (Measurable) Sets

∃ P-time oracle TM M : µ(Errn(M)) ≤ 2−n.

P-time Recognizable Sets

∃ P-time oracle TM M :

z ∈ Errn(M)⇒ δ(z, ∂S) ≤ 2−n.

Strongly P-time Recognizable Sets

∃ P-time oracle TM M :

z ∈ Errn(M)⇒ δ(z, ∂S) ≤ 2−n and z 6∈ S.

P-time Computable Sets [Weihrauch, · · ·]
∃ P-time oracle TM M :

z ∈ Errn(M)⇒ 2−n < δ(z, S) ≤ 2 · 2−n.

P = NP ⇐⇒ the above two classes are equivalent.

P-time Computable Sets wrt Hausdorff Distance

∃ P-time oracle TM M : [Braverman, Yampolsky]

δHAUS(S, {z M z(n) = 1}) ≤ 2−n

All of the above definitions are not equivalent.

Jordan Domains

A Jordan domain is a singly-

connected set whose boundary

is a Jordan curve Γ (the image

of a mapping f : [0, 1]→R
2).

Computable Curves — still no unique definition

Monotonically Computable: f is one-to-one

Retraceably Computable: f is not necessarily one-to-one

Gu, Lutz, Mayordomo

Normalizably Computable: Length of f [0, t] is proportional

to t, for 0 < t < 1 (if leng(Γ) is finite). Rettinger, Zheng

Continuous Computational Geometry

Goals: Resolve the numerical non-robustness problem

Deal with more general geometric objects

Allow efficient implementation of traditional algorithms

E.g. Exact Geometry Computation (EGC)

Yap, Melhorn, ...

Jordan Domain-Based Approach

General Question

Given a two-dimensional domain S whose boundary is a

P-time computable Jordan curve, what is the complexity

of the related problems?

P-Time Computable Jordan Domains

as an extension of Polygon Representation

If ∂S is P -computable,

then it has polynomial

modulus.

So, ∂S is represented

by an implicit polygon

of 2p(n) vertices.

not
possible

Complexity of Jordan Domains S

Area Noncomputable (fractal)

Length of ∂S Noncomputable (fractal)

Shortest Paths in S between #P and PSPACE

Pancake Cutting #P-complete

Membership (x ∈ S?) between UP and #P

Circumscribed Rectangle NPNP-complete

Distance of x from S NP-complete

Convex Hull NP-complete

Outline

1 Computational Models

Church’s thesis in computational analysis?

2 Complexity Hierarchy of Numerical Operations

Applying NP-theory to analysis

3 Applications to Computational Geometry

P-time computable Jordan domains

4 Applications in Complex Analysis

Julia sets, conformal mappings

Analytic Functions

If f is real analytic and P-time computable, then

integral
∫ x

0 f , derivative f ′(x), maximum value

max f(x), and roots {x : f(x) = 0} are all P-time

computable.

Parallel Complexity

If f is analytic and is NC (or LOG-space) computable,

then integral, derivative, maximum value and roots of f

are all NC (or LOG-space, resp.) computable. Yu

Zeroes of an Analytic Fuction f

on a Jordan domain S

Assumptions

– f is analytic on S ∪ ∂S

– f(z) > 0 on ∂S

– f and ∂S are NC computable

Quadrature Method

(1) Compute the number of zeroes

n =
1

2πi

∫

∂S

f ′(z)

f(z)
dz (by principle of argument)

(2) Compute the Newton sums

sp =

n∑

i=1

z
p
i =

1

2πi

∫

∂S

z
pf ′(z)

f(z)
dz

(3) Compute the associated polynomial

pn(z) =
n∏

i=1

(z− zi) (by Newton’s identity

and sp, p = 1, . . . , n)

(4) Solve the associated polynomial equation [Neff]

All the above calculations can be parallelized.

Some problems related to Membership Problem

• Computing Winding Number of a closed curve

• Computing Single-Valued Analytic Branch

of a multi-valued function

Square Root Problem
On a complex domain,

√
z =

√

|z| · eiarg(z)/2 has 2 single-valued,

analytic branches:

√
z =

√

|z| or
√

|z| · eiπ

Logarithm Problem

On a complex domain,

log z = log |z|
+ i arg(z)

has ∞ single-valued

analytic branches:

arg(z) = · · · ,−4π,

−2π, 0, 2π, 4π, · · ·
corresponding to

arg(z0) = · · · , 0,

2π, 4π, 6π, 8π, · · ·

S

z z0 0

L

Analytic Branch Problem

Given a P-time computable closed Jordan curve Γ, what

is the complexity of finding a single-valued analytic

branch of log z or
√

z on S = Int(Γ)?

Equivalent Problem: Given Γ, what is the complexity

of computing a continuous argument function h(z) ∈
arg(z) on S?

log z ≡ h(z)− h(z0)
√

z,≡ h(z)− h(z0)

2π
mod2

If z and z0 are on the boundary of S,

h(z) ≈ winding number about z.

Complexity

Problem Lower bound Upper bound

Winding Number #P #P

Logarithm #P #P

Square root ⊕P MP

Membership UP MP

NP: {x | (∃py) R(x, y)}, where R ∈ P

#P: f(x) = number of y such that R(x, y)

⊕P (Parity P): f(x) is odd

MP (Midbit P): the middle bit of f(x) = 1.

Analytic Continuation

Assume that f is an

analytic function

defined on a domain

S. Then, the power

series of f at any

z ∈ S can be

computed from that

of f at a starting

point z0.

Z

Z0

Z

ZZm
=

2

1

Complexity?

Depends on geometric properties of ∂S?

Julia Sets

For a function f : C→C, define

K(f) = {z ∈ C | (∃C > 0)(∀n) |fn(z)| ≤ C},
J(f) = boundary of K(f).

• ∃ P-time computable f : C→C such that J(f) encodes the

halting problem of the universal Turing machine.

• Membership problem of Jf for a hyperbolic polynomial f is

P-time computable [Rettinger, Weihrauch, Braverman,

Yampolsky]

• A special group of functions: fc(z) = z
2 + c, z, c ∈ C.

For most c (including all c outside the Mandelbrot set),

fc is hyperbolic.

Conformal Mappings

Given a Jordan domain S, what is the complexity of the

Riemann mapping from S to the unit disk (relative to

the complexity of S)?

• Under some restrictions on the boundary of S, the

complexity is #P -complete (if S is P-time

computable). [Braverman, Yampolsky, Rettinger]

• Open Question:

In the general case, when it is only known that ∂S is

P-time computable, is the complexity still #P?

Thank You

