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Computational Theory of Real Analysis

Constructive Analysis Bishop, Bridges, Ishihara, ---

Intuitionistic Logic

Recursive Analysis (Computable Analysis)
Recursion Theory

Russian School Sanin. Moschovakis, Ceitin, - - -

Polish School Grzegorczyk, Mostowski

Lacombe, Pour-El, Richards
Weihrauch, - --



Polynomial-Time Analysis
Complexity Theory
Turing machine model Ko, Friedman, Weihrauch, Muller
Rettinger, Zheng, Cook, Braverman, - - -
Real-valued circuit model Hoover
Algebraic model  Blum, Shub, Smale, Cucker, - -
Information-based complexity theory

Traub, Wozniakowski, - - -

Numerical Analysis
Classical analysis, Arithmetic complexity theory

Interval analysis, Scientific computing
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Example: Roots of Polynomials

Bishop: Fundamental Theorem of Algebra has a constructive
proof.
Specker: All roots of a computable polynomial function are
computable.
The mapping from coefficients to roots is computable.”
Ko-Friedman: All roots of a polynomial-time computable
polynomial function are polynomial-time computable.
Neff: The mapping from coefficients to roots is in NC'.
Schonhage: The mapping from coefficients to roots is
computable in time O(n’¢(n)).

Smale: Newton's method runs in polynomial time on average.



Warning They may use different models.
—— There is no Church’s Thesis in computational
analysis.

The models of the following theories are consistent:
Recursive analysis (Polish school)
Polynomimal-time analysis (Turing machine model)
Discrete NP-completeness theory

Classical numerical analysis (e.g., interval analysis)



Real Numbers

A real number is an infinite object, and has no finite
representations.

Basic representation: Cauchy functions with a fixed
converging rate

. 1 1
0, N—D with |@.(n) — x| < —. (Why —?)
D: dyadic rationals

x is computable if 4 a computable ..

x Is P-time computable if 4 a P-time computable ...



Other Representations?

Dedekind cuts: L, ={deD:d <z}
Binary expansions: b, : NT—{0,1} and b,(0) € Z, with
=3 " gbs(n) 27"
Continued fractions: ¢, : N—NT with
1

Cm(l) T C:13(21)-|—L

r = c.(0) +

For computable real numbers, these representations are equivalent
to Cauchy function representation.

For P-time computable real numbers, they are not equivalent.



Real Numbers as Discrete Objects

Pr: Set of P-time computable real numbers
N Pg: Set of NP-time computable real numbers
#Pp, PSPACER, ...

What are the relations between these complexity classes?

General Observation
Representations of real numbers behave like selective

sets or Sparse sets.
Pr=NFPr <— PL=NP,;

# Pr= 7#NP]R YES if NP = UP)



Real Functions

Representation of f : R—R:

Type-2 function with a fixed converging rate
1
d;: U x N=D, with |P¢(p,,n) — f(z)| < o
U: set of Cauchy functions ¢,
Computational Model for type-2 functions:

Oracle Turing machine

J I1s computable if ®; is computable by an oracle TM M
[M#(n) — f(z)| <277

f :]0,1]—R is P-time computable if M*¥*(n) halts in time nO 1)

for every oracle o, with = € [0, 1].



Compute f(z) = z*

Input n (the output precision)
Oracle ¢, (representation of a real x)
Algorithm
(1) Compute required input precision m from n
(7 — m is called modulus function);
(2) Ask oracle to get a rational  with |[r — x| < 27",
(3) Compute s « 17

(4) Output first n bits of s.

Note: Modulus function may also depend on x. So,
Steps (1) and (2) may be repeated to find the right m.



An Alternative type-1 representation
(with an additional continuity requirement)

(@, mys) where g : D X N—D, my : N—N,

with |p¢(d,n) — f(d )\ < 27", and
o —y| <27 = | fx) - fy)] <27

J i1s computable iff ¢, m s are computable

J i1s P-time computable iff ¢, is P-time computable,
and m is a polynomial function.



Warning
In this model, comparison of two real numbers is
noncomputable.

y

1 if x <y,
e Joracle TM M such that M¥=%v(0) = ¢ 0 if x >y,

T it z=y.

\

e No oracle TM: M¥=%u(0) = { (1) i i f 3;7

e The problem of determining whether a given polynomial function
(represented by its coefficients) has multiple roots is

undecidable.



Numerical Operators
F : C|0,1]—R is a type-3 function.
We can use Oracle TM as a computational model.

F'is computable if 4 oracle TM M such that
M®(n) - F(f)| < 27"
(In the computation, M may ask the oracle to find an
approximate value of f(x) by asking the oracle for the

value of ®%(n), where d ~ x.)



P-Time Computable Operators?

Weak form: Consider only P-time invariance
If / is P-time computable, what is the complexity of

F(f)?

Strong form [Kawamura-Cook, 2010}
Use regular functions as representations of f, a more
general notion of P-time computable operator can be

defined.

Many known results about P-time computability of
numerical operators in the weak form can be extended
to the strong form.
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A Complexity Hierarchy of Numerical Operations

Differentiation Noncomputable
Integral Eq (with local Lipschitz cond) EXPSPACE-Complete
Ordinary Diff Eq (with Lipschitz cond) PSPACE-complete

Integration #P-complete
Minimax NPNP—compIete
Maximization NP-complete

Roots (of 2-dim. functions) between UP and NP
Fixed Points (of 2-dim. functions) PPAD-complete
Roots (of 1-1 functions) P-complete

Differentiation (f’ has poly. modulus) P



Maximization:

What is the complexity of finding
max{riy, Lo, ..., LK} !

Depending on the representation of 1,29, ..., 2 k.

(1) Explicit Representation:

xri,To, ..., T are given as Iinput (input size n ~ K):
Input: 38,25,19,55,...,49
N———
find max

Complexity: In P (needs K — 1 comparisons)



(2) Oracle Representation:
xr1,T9,..., T are given by an oracle function @

(2(i) = 2,

Oracle: |38 125(19|55| --- |49

Input: K (input size n = [logK )

Complexity: Exponential time

(must ask the oracle ® for K ~ 2™ times)



(3) Machine Representation:
xr1,T9,..., T are presented by a polynomial-time algorithm A that
computes the function ®

Input: A

L1
38,25,19,55,---,49 (hidden input, size = K)

(n = size(A) ~ [log K1)

Complexity: In NP; NP-complete for some A
(Actually, the following variation is in NP: Given A and an integer
M, determine whether M < max{®(1),...,P(K)}.)

e Most NP-ccomplete optimization problems can be viewed

In this form.



Traveling Salesman:

Input: Graph G with n vertices; weight w : F—NT
Question: Find the min-weight Hamiltonian tour of G

e There are K = (n — 1)! different Hamiltonian tours of &, and
they can be enumerated as Hy, Ho, ..., Hg.

e Now, Traveling Salesman can be restated as follows:

Find the minimum of the output from Ag:



Ac: For i =1,2...., K, identify i with a Hamiltonian tour H,
and output ®(7) = total weight of H;.




Numerical Maximization
Given f : [0, 1]—|R (as an oracle), find maxy<,<1 f(x).
Discretize this problem:

Assumption: Function f has a polynomial modulus:
z—y| <27 = [f(z) - f(y)| < 27"

With this assumption, the discretized problem becomes
Find the maximum value of

Fke)s F(52) o f ()

(For convenience, we use ¢ = 1 in the following discussion.)



Representation of f:

(1) Explicit representation

Function values f(Qic),f(Qic), i, ,f(gZZ) are given as
Input.

Complexity: Polynomial in input size, exponential in
output precision n

e This is the common practice of Computational
Geometry (with n input points, instead of 2" points).



(2) Oracle representation
Function f is given by an oracle. The maximization
algorithm may ask for f(r) for any rational number r.

Complexity: Exponential in the output precision n.
e This is used in some theoretical study of numerical

analysis (e.g., Information-Based Complexity Theory
of [Traub et al]).



(3) Machine representation

Function f is assumed to be computable by a machine
My in polynomial time (polynomial in output precision
n), and the maximization algorithm may simulate M/
on any Input 7.

Complexity: NP-complete.

Note: The Machine representation approach is equivalent to the
model in the Turing Machine-Based P-Time Theory of Analysis.

Theorem [Ko, Friedman]
P = NP <= For every polynomial-time computable
function f : [0, 1]—R, max f € P.



Ordinary Differential Equations (IVP)

y'(z) = f(z,y(x)), 0 <o <1,

y(0) = 0.
e J computable f: all solutions 1 are not computable
on [0, 4] for all § > 0. Pour-El, Richards

e f computable, solution y unique =— y computable.

e J P-time computable f: solution v is unique, but
complexity of vy is arbitrary high. Miller



Lipschitz Condition

f € Lip(a): (vz €[0,1]) (Yy1,92 € [-1,1])
’f(mvyl) _ f(mva)‘ <a- ’yl — yQ‘

e f P-time computable, f € Lip(a) = y P-space
computable. Ko

e (d P-time computable f): f € Lip(«), y is P-space
complete. Ko, Kawamura

e The mapping f +— vy is P-space complete.

Kawamura, Cook



Volterra Integral Equations (of the 2nd kind)

y(@) = f(z) + / K(z,5.y(s))ds, 0< z < 1,

with K € Lips(a): |K(z,s,y1) — K(z, 8, y2)| < o~ [y1 — 32

e If o is independent of x, then this problem is P-space
complete. Ko, Kawamura

o If o < gntH for x <1 — 27", then y is EXP-space
computable. Ko

e Under the above local Lipschitz condition, this
problem is EXP-space complete. Kawamura
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Subsets of r?

Computable sets of real numbers?
Again, there does not seem to be a Church’s Thesis.

For discrete A C {0,1}*, A is computable if

1 fxze A .
xalx) = { 0 ifzrd A } is computable.

Try: For S C R?, S is computable if

(z)—{1 ifzeS*> is computable
XS =10 ifzg s . IS




Warning The function g is not computable for
nontrivial S (i.e., S # (), S # R?).

For an oracle TM, let
Err,(M) ={z: M*(n) # xs(z)}

P-time Approximable (Measurable) Sets
1 P-time oracle TM M: pu(Err,(M)) < 27",

P-time Recognizable Sets
3 P-time oracle TM M:
z € Err,(M) = 0(z,05) < 27"



Strongly P-time Recognizable Sets
3 P-time oracle TM M:
z € Err,(M) = 6(z,05) <2"andz ¢ S.

P-time Computable Sets |[Weihrauch, - -]
- P-time oracle TM M:
z € Err,(M) =2"<0(z,5) <2-27"

P = NP <= the above two classes are equivalent.

P-time Computable Sets wrt Hausdorff Distance
- P-time oracle TM M:: |[Braverman, Yampolsky]
5HAUS(57 {Z Mz(n) — 1}) < 27"

All of the above definitions are not equivalent.



Jordan Domains

A Jordan domain is a singly-
connected set whose boundary
is a Jordan curve I' (the image
of a mapping f : [0, 1] —R?).

Computable Curves — still no unique definition

Monotonically Computable: f is one-to-one
Retraceably Computable: f is not necessarily one-to-one
Gu, Lutz, Mayordomo
Normalizably Computable: Length of £[0,t] is proportional
tot, for 0 <t <1 (if leng(I") is finite).  Rettinger, Zheng



Continuous Computational Geometry

Goals: Resolve the numerical non-robustness problem
Deal with more general geometric objects

Allow efficient implementation of traditional algorithms

E.g. Exact Geometry Computation (EGC)
Yap, Melhorn, ...

Jordan Domain-Based Approach

General Question

Given a two-dimensional domain S whose boundary is a

P-time computable Jordan curve, what is the complexity
of the related problems?



P-Time Computable Jordan Domains
as an extension of Polygon Representation

If 0S is P-computable, >
then it has polynomial N
modulus. §

So, 05 is represented
by an implicit polygon not ”I’LV
of 2P(n) vertices. possible g



Complexity of Jordan Domains S

Area

Length of 05

Shortest Paths in S

Pancake Cutting
Membership (z € S7)

Circumscribed Rectangle

Distance of x from S

Convex Hull

Noncomputable (fractal)
Noncomputable (fractal)
between #P and PSPACE
#P-complete

between UP and #P
NPNP—compIete

NP-complete

NP-complete
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Analytic Functions

If 1 is real analytic and P-time computable, then
integral foxf, derivative f'(x), maximum value
max f(x), and roots {x : f(x) = 0} are all P-time
computable.

Parallel Complexity

If f is analytic and is NC (or LOG-space) computable,
then integral, derivative, maximum value and roots of f
are all NC (or LOG-space, resp.) computable. Yu



Zeroes of an Analytic Fuction |
on a Jordan domain S

Assumptions

— fis analyticon SUJS
— f(z) >0 on 0S8
— f and 05 are NC computable



Quadrature Method

(1) Compute the number of zeroes
Flz)

2 Jos f(2)
(2) Compute the Newton sums

1@
_Z 27”/5st f(Z)d

(3) Compute the associated polynomial
n

Pn(z) = H(Z — 7;) (by Newton's identity
i=1 and s,, p=1,...,n)

n (by principle of argument)

(4) Solve the associated polynomial equation [Neff]

All the above calculations can be parallelized.



Some problems related to Membership Problem
e Computing Winding Number of a closed curve

e Computing Single-Valued Analytic Branch
of a multi-valued function

Square Root Problem
On a complex domain, /z = \/|z| - €/4"9(*)/2 has 2 single-valued,
analytic branches:

Vz = +\/|z| or \/|z| - €™



Logarithm Problem

On a complex domain,

logz = log |z|
+iarg(z)

has oo single-valued

analytic branches:

arg(z) = ---,—4m, T PO I N ol--

—2m,0,2m,4m, - -

corresponding to S

a/rg(zo) = .-, ()’ w
2m, 4, 67, 8T, - - -




Analytic Branch Problem
Given a P-time computable closed Jordan curve I', what
Is the complexity of finding a single-valued analytic

branch of logz or \/z on S = Int(I")?

Equivalent Problem: Given I', what is the complexity
of computing a continuous argument function h(z) &
arg(z) on S7?

logz = h(z) — h(z) Vz,= Mz) h(zo)mon

2T

If z and z; are on the boundary of 5,
h(z) ~ winding number about z.



Complexity

Problem Lower bound Upper bound
Winding Number #P #P
Logarithm #P #P
Square root P MP
Membership UP MP

NP: {x | (F%y) R(z,y)}, where R € P

#P: f(x) = number of y such that R(z,v)
®P (Parity P): f(x) is odd

MP (Midbit P): the middle bit of f(x) = 1.



Analytic Continuation

Assume that [ is an

analytic function

defined on a domain “%
S. Then, the power "\‘J *
series of f at any .

z € S can be

computed from that

of f at a starting
point Z.

Complexity?
Depends on geometric properties of 057



Julia Sets

For a function f : C—C, define
K(f)={z € C|(3C > 0)(Vn) [["(z)| < C},
J(f) = boundary of K(f).

e - P-time computable f : C—C such that J(f) encodes the
halting problem of the universal Turing machine.

e Membership problem of .J; for a hyperbolic polynomial f is
P-time computable [Rettinger, Weihrauch, Braverman,
Yampolsky]

e A special group of functions: f.(z) = z° +c, z,c € C.

For most c (including all ¢ outside the Mandelbrot set),

fe is hyperbolic.



Conformal Mappings

Given a Jordan domain S, what is the complexity of the
Riemann mapping from S to the unit disk (relative to
the complexity of S)7

e Under some restrictions on the boundary of 5, the
complexity is # P-complete (if S is P-time
computable). |[Braverman, Yampolsky, Rettinger]

e Open Question:
In the general case, when it is only known that 05 is
P-time computable, is the complexity still #FP7



Thank You



