
1

1

Query Processing: The Basics

Chapter 10

2

External Sorting

• Sorting is used in implementing many relational
operations

• Problem:
– Relations are typically large, do not fit in main memory

– So cannot use traditional in-memory sorting algorithms

• Approach used:
– Combine in-memory sorting with clever techniques aimed at

minimizing I/O

– I/O costs dominate => cost of sorting algorithm is measured
in the number of page transfers

2

3

External Sorting (cont’d)

• External sorting has two main components:
– Computation involved in sorting records in

buffers in main memory

– I/O necessary to move records between mass
store and main memory

4

Simple Sort Algorithm
• M = number of main memory page buffers
• F = number of pages in file to be sorted
• Typical algorithm has two phases:

– Partial sort phase: sort M pages at a time; create F/M
sorted runsruns on mass store, cost = 2F

Example: M = 2, F = 7
run

Original file

Partially sorted file

5 3 2 6 1 10 15 7 20 11 8 4 7 5

2 3 5 6 1 7 10 15 4 8 11 20 5 7

3

5

Simple Sort Algorithm
– Merge Phase: merge all runs into a single run

using M-1 buffers for input and 1 output buffer
• Merge step: divide runs into groups of size M-1 and
merge each group into a run; cost = 2F

each step reduces number of runs by a factor of M-1

M pages
Buffer

6

Merge: An Example

2 3 5 6

1 7 10 15

Input buffers
Output buffer

1 2 3 5 6 7 10 15

2 3

1 7

5 6

10 15

1 23 56 710 15

Output runInput runs

4

7

Simple Sort Algorithm

• Cost of merge phase:
– (F/M)/(M-1)k runs after k merge steps

– Log M-1(F/M) merge steps needed to merge an
initial set of F/M sorted runs

– cost =  2F Log M-1(F/M)  ≈ 2F(Log M-1F -1)

• Total cost = cost of partial sort phase + cost
of merge phase ≈ 2F Log M-1F

8

Duplicate Elimination

• A major step in computing projection,
union, and difference relational operators

• Algorithm:
– Sort

– At the last stage of the merge step eliminate
duplicates on the fly

– No additional cost (with respect to sorting) in
terms of I/O

5

9

Duplicate elimination During Merge

2 3 5 6

1 3 5 15

Input buffers
Output buffer

1 2 3 5 6 15

2 3

1 3

5 6

5 15

1 23 56 15

Output runInput runs Last key used

1215356

Key 3 ignored: duplicate

Key 5 ignored: duplicate

10

Sort-Based Projection

• Algorithm:
– Sort rows of relation at cost of 2F Log M-1F

– Eliminate unwanted columns in partial sort
phase (no additional cost)

– Eliminate duplicates on completion of last
merge step (no additional cost)

• Cost: the cost of sorting

6

11

Hash-Based Projection
• Phase 1:

– Input rows
– Project out columns
– Hash remaining columns using a hash function with range 1…M-1

creating M-1 buckets on disk
– Cost = 2F

• Phase 2:
– Sort each bucket to eliminate duplicates
– Cost (assuming a bucket fits in M-1 buffer pages) = 2F

• Total cost = 4F

M pages

Buffer

12

Computing Selection σ(attr op value)

• No index on attr:
– If rows are not sorted on attr:

• Scan all data pages to find rows satisfying selection
condition

• Cost = F

– If rows are sorted on attr and op is =, >, < then:
• Use binary search (at log2 F) to locate first data

page containing row in which (attr = value)

• Scan further to get all rows satisfying (attr op value)

• Cost = log2 F + (cost of scan)

7

13

Computing Selection σ(attr op value)

• Clustered B+ tree index on attr (for “=” or range search):

– Locate first index entry corresponding to a row in which
(attr = value). CostCost = depth of tree

– Rows satisfying condition packed in sequence in
successive data pages; scan those pages.

CostCost: number of pages occupied by quali fying rows

B+ tree
index entries
(containing rows)
that satisfy
condition

14

Computing Selection σ(attr op value)

• Unclustered B+ tree index on attr (for “=” or range search):

– Locate first index entry corresponding to a row in which (attr
= value).

CostCost = depth of tree

– Index entries with pointers to rows satisfying condition are
packed in sequence in successive index pages

• Scan entries and sort record Ids to identify table data pages
with qualifying rows

Any page that has at least one such row must be fetched
once.

•• CostCost: number of rowsthat satisfy selection condition

8

15

Unclustered B+ Tree Index

index entries (containing
row Ids) that satisfy
condition

data page

Data
file

B+ Tree

16

Computing Selection σ(attr = value)

• Hash index on attr (for “=” search only):
– Hash on value. CostCost ≈ 1.2

• 1.2 – typical average cost of hashing (> 1 due to possible overflow
chains)

• Finds the (unique) bucket containing all index entries satisfying selection
condition

• Clustered index – all qualifying rows packed in the bucket (a few pages)

CostCost: number of pages occupies by the bucket

• Unclustered index – sort row Ids in the index entries to identify data
pages with qualifying rows

Each page containing at least one such row must be fetched once

CostCost: min(number of qualifying rows in bucket, number of pages in file)

9

17

Computing Selection σ(attr = value)

• Unclustered hash index on attr (for equality search)

buckets

data pages

18

Access Path
•• Access pathAccess path is the notion that denotes algorithm +

data structure used to locate rows satisfying some
condition

• Examples:
– File scan: can be used for any condition
– Hash: equality search; all search key attributes of hash

index are specified in condition
– B+ tree: equality or range search; a prefix of the search

key attributes are specified in condition
• B+ tree supports a variety of access paths

– Binary search: Relation sorted on a sequence of
attributes and some prefix of that sequence is specified
in condition

10

19

Access Paths Supported by B+ tree

• Example: Given a B+ tree whose search key is the
sequence of attributes a2, a1, a3, a4

– Access path for search σa1>5 AND a2=3 AND a3=‘x’ (R): find
first entry having a2=3 AND a1>5 AND a3=‘x’ and scan
leaves from there until entry having a2>3 or a3 ≠ ‘x’ .
Select satisfying entries

– Access path for search σ a2=3 AND a3 >‘x’ (R): locate first
entry having a2=3 and scan leaves until entry having
a2>3. Select satisfying entries

– Access path for search σ a1>5 AND a3 =‘x’ (R): Scan of R

20

Choosing an Access Path

•• SelectivitySelectivity of an access path = number of pages
retrieved using that path

• If several access paths support a query, DBMS
chooses the one with lowest selectivity

• Size of domain of attribute is an indicator of the
selectivity of search conditions that involve that
attribute

• Example: σ CrsCode=‘CS305’ AND Grade=‘B’ (TranscriptTranscript)

– a B+ tree with search key CrsCode has lower selectivity
than a B+ tree with search key Grade

11

21

Computing Joins
• The cost of joining two relations makes the

choice of a join algorithm crucial
•• SimpleSimple blockblock--nested loopsnested loops join algorithm

for computing r A=B s

foreach page pr in r do
foreach page ps in s do

output pr A=B ps

22

Block-Nested Loops Join

• If βr and βs are the number of pages in r and s,
the cost of algorithm is

βr + βr ∗ βs + cost of outputting final result

– If r and s have 103 pages each,

cost is 103 + 103 * 103

– Choose smaller relation for the outer loop:
• If βr < βs then βr + βr∗ βs < βs + βr∗ βs

Number of scans of
relation s

12

23

Block-Nested Loops Join

• Cost can be reduced to

βr + (βr/(M-2)) ∗ βs + cost of outputting final result

by using M buffer pages instead of 1.

Number of scans
of relation s

24

Block-Nested Loop Illustrated

Output
buffer

s

r

Input buffer for s

Input buffer for r

… and so on

r s

13

25

Index-Nested Loop Join r A=B s

• Use an index on s with search key B (instead of
scanning s) to find rows of s that match tr
–– Cost Cost = βr + τr ∗ ω + cost of outputting final result

– Effective if number of rows of s that match tuples in r is
small (i.e., ω is small) and index is clustered

foreach tuple tr in r do {
use index to find all tuples ts in s satisfying tr.A=ts.B;
output (tr, ts)

}

Number of
rows in r

avg cost of retrieving all
rows in s that match tr

26

Sort-Merge Join r A=B s

sort r on A;
sort s on B;
while !eof(r) and !eof(s) do {

Scan r and s concurrently until tr.A=ts.B=c;
Output σA=c(r)×σB=c (s)

}

r

s

××

σB=c (s)

σA=c(r)

14

27

Join During Merge Illustrated

1 3
p p

r

s

D
A

B
E

p p
4 0

0 9
q q

r
9

8 7 3
s s s

s
7

t t
2 5

u u u
2 5 0

5 7
u u

1 1
v v

x
0

1 3 1 3
p p p p
p p p p
4 0 0 4

8 7 3
s s s
s s s
7 7 7

5 7 5 7 5 7
u u u u u u
u u u u u u
2 2 5 5 0 0

r A=B s

28

Cost of Sort-Merge Join
•• CostCost of sorting assuming M buffers:

2 βr log M-1 βr + 2 βs log M-1 βs

•• CostCost of merging:
– Scanning σA=c(r) and σB=c (s) can be combined with the last step

of sorting of r and s --- costs nothing
– Cost of σA=c(r)×σB=c (s) depends on whether σA=c(r) can fit in the

buffer
• If yes, this step costs 0
• In no, each σA=c(r)×σB=c (s) is computed using block-nested join, so the

cost is the cost of the join. (Think why indexed methods or sort-merge
are inapplicable to Cartesian product.)

• Cost of outputting the final result depends on the size of the
result

15

29

Hash-Join r A=B s

• Step 1: Hash r on A and s on B into the same set of
buckets

• Step 2: Since matching tuples must be in same
bucket, read each bucket in turn and output the
result of the join

•• CostCost:: 3 (βr + βs) + cost of output of final result
– assuming each bucket fits in memory

30

Hash Join

16

31

Star Joins

• r cond1
r1 cond2

… condn
rn

– Each cond i involves only the attributes of ri and r

r

r1

r2

r3

r4

r5

cond1 cond2

cond3

cond4

cond5

Star
relationSatellite

relations

32

Star Join

17

33

Computing Star Joins

• Use join index join index (Chapter 11)
– Scan r and the join index { <r,r1,…,rn>} (which is

a set of tuples of rids) in one scan

– Retrieve matching tuples in r1,…,rn

– Output result

34

Computing Star Joins

• Use bitmap indicesbitmap indices (Chapter 11)
– Use one bitmapped join index, Ji , per each partial join

r condi ri

– Recall : Ji is a set of <v, bitmap>, where v is an rid of a
tuple in ri and bitmap has 1 in k-th position iff k-th tuple
of r joins with the tuple pointed to by v

1. Scan Ji and logically OR all bitmaps. We get all rids in r
that join with ri

2. Now logically AND the resulting bitmaps for J1, …, Jn.
3. Result: a subset of r, which contains all tuples that can

possibly be in the star join
• Rationale: only a few such tuples survive, so can use indexed loops

18

35

Choosing Indices

• DBMSs may allow user to specify
– Type (hash, B+ tree) and search key of index
– Whether or not it should be clustered

• Using information about the frequency and type of
queries and size of tables, designer can use cost
estimates to choose appropriate indices

• Several commercial systems have tools that
suggest indices
– Simplifies job, but index suggestions must be verified

36

Choosing Indices – Example

• If a frequently executed query that involves selection or a
join and has a large result set, use a clustered B+ tree
index

Example: Retrieve all rows of TranscriptTranscript for StudId

• If a frequently executed query is an equality search and
has a small result set, an unclustered hash index is best

– Since only one clustered index on a table is possible,
choosing unclustered allows a different index to be
clustered

Example: Retrieve all rows of TranscriptTranscript for (StudId, CrsCode)

