Query Processing: The Basics

Chapter 10

External Sorting

» Sorting is used in implementing many relational
operations
» Problem:
— Relations aretypically large, do not fit in main memory
— So cannot use traditional in-memory sorting algorithms

» Approach used:
— Combine in-memory sorting with clever techniques aimed at
minimizing 1/0
— 1/0 costs dominate => @4 of sorting algorithm is measured
in the number of page transfers

External Sorting (cont’d)

» External sorting has two main components:

— Computation involved in sorting records in
buffers in main memory

— /0O necessary to move records between mass
store and main memory

Simple Sort Algorithm

* M = number of main memory page buffers
* F = number of pagesin fileto be sorted
» Typical agorithm has two phases:

— Partial sort phase: sort M pages at atime; creae F/M
sorted runs on mass gore, cost = 2F

I original file

CeJlee]iio]ls Jii[ma][eafi[7e] |

l éartiany sorted ﬁlgélﬂ
el Erles]i[ee [uafi[7] |
N

Examplee M=2,F=7

Simple Sort Algorithm

— Merge Phase: merge all runs into asingle run
using M-1 buffers for input and 1 output buffer
* Merge step: divide runsinto groups of size M-1 and
merge each group into arun; cost = 2F
each step reduces number of runs by a factor of M-1

- Buffer

M es [T
— >
buffer L
Input
—
. . . F = \ e PV - Output n
. i i burffer

- Input
T | butferML

Merge: An Example

. Inpuruns i Outputrun |

,,,,,,,,,,,,,,,,,,,,,,,,,,,,

’ 1 2H3 SHG 7H 1015‘
Crl[os] | [a »
A A A
Cinpibites o b
(S : :;0utputbuffer

Simple Sort Algorithm

¢ Cost of merge phase:
— (FIM)/(M-1)k runs after k merge steps

— [Log .1 (F/M)merge steps needed to merge an
initial set of F/M sorted runs

— cost = 2F Log ,.1(F/M) U= 2F(Log y,.,F -1)
» Total cost = cost of partial sort phase + cost
of mergephase = 2F Log \,..F

Duplicate Elimination

* A mgor step in computing projection,
union, and difference relational operators
 Algorithm:
— Sort

— At the last stage of the merge step eliminate
duplicates on the fly

— No additional cost (with respect to sorting) in
terms of 1/O

Duplicate elimination During Merge

| Inputruns | | Lastkey used | [outputrun |
A A A TR
[2][sm] A—
A A A
Key 3 ignored: duplicate
77777777777 ra Key 5 ignored: duplicate
nputbuffers |l e
__Output buffer g
Sort-Based Projection

 Algorithm:
— Sort rows of relation at cost of 2F Log \,4F

— Eliminate unwanted columns in partial sort
phase (no additional cost)

— Eliminate duplicates on completion of last
merge step (no additional cost)

» Cost: the cost of sorting

10

Hash-Based Projection

* Phasel:
— Input rows
— Project out columns

— Hash remaining columns using a hash function with range 1...M-1
creating M-1 buckets on disk

~ Cost=2F

* Phase2:
— Sort each bucket to eliminate duplicates
— Cost (assuming a bucket fitsin M-1 buffer pages) = 2F

e Total cost = 4F
M pages /E——~

Tnput hash Hash
Lnput file T buffer | function table

\C| . Buckar M |

_ Buffer | -

ComPUting Selection G(attr op value)

* Noindex on attr:

— If rows are not sorted on attr:

 Scan all data pages to find rows satisfying selection
condition

* Cost=F
— If rows are sorted on attr and op is =, >, < then:

» Usehinary search (at log, F) to locate first data
page containing row in which (attr = value)

« Scan further to get all rows satisfying (attr op value)
 Cost =log, F + (cost of scan)

12

Computing Seledion O, op vaiue

» Clustered B*treeindex on attr (for “=" or range seach):

— Locaefirst index entry corresponding to arow in which
(attr = value). Cost = depth of tree

— Rows sttisfying condition padked in sequencein
successve data pages; scan those pages.
Cost: number of pages occupied by qualifying rows

B* tree
oo index entries
(containing rows)
that satisfy
condition

13

Computing Seledion O op vaiue

» Unclustered B* treeindex on attr (for “=" or range seach):

— Locaefirst index entry corresponding to arow in which (attr
= value).
Cost = depth of tree

— Index entries with pointersto rows stisfying condition are
padked in sequencein successive index pages

» Scan entries and sort record Ids to identify table data pages
with qualifying rows

Any page that has at least one such row must be fetched
once

 Cost: number of rowsthat satisfy seledion condition

14

Unclustered B* Tree Index

index entries (containing
row lds) that satisfy
condition
} data page
"« 7
\ ; 7bﬁiai.twa’,7
file

B Tree

15

Computing Selection o4, = yvaue

» Hash index on attr (for “=" search only):

— Hash onvalue. Cost = 1.2

* 1.2—typical average cost of hashing (> 1 dueto possible overflow
chains)

* Findsthe (unique) bucket containing all index entries satisfying selection
condition

e Clustered index —al qualifying rows packed in the bucket (afew pages)
Cost: number of pages occupies by the bucket

¢ Unclustered index — sort row ldsin theindex entries to identify data
pages with qualifying rows
Each page containing at least one such row must be fetched once
Cost: min(number of qualifying rows in bucket, number of pagesin file)

16

ComPUting Selection G(attr = value)

» Unclustered hash index on attr (for equality search)

T

buckets

data pages

17

Access Path

» Access path isthe notion that denotes algorithm +
data structure used to locate rows satisfying some
condition

* Examples:
— File scan: can be used for any condition

— Hash: equality search; all search key attributes of hash
index are specified in condition

— B* tree: equality or range search; a prefix of the search
key attributes are specified in condition
« B* tree supports a variety of access paths
— Binary search: Relation sorted on a sequence of

attributes and some prefix of that sequence is specified
in condition

18

Access Paths Supported by B* tree

» Example: Given aB* treewhose seach key isthe
sequence of attributes a2, al, a3, a4

— Accesspath for seaCh 0,155 mo a2=3 a0 az=x (R): find
first entry having a2=3 ano a1>5 anp a3=‘X" and scan
leaves from there until entry havingaz>3 or a3 #‘x'.
Seled satisfying entries

— Accesspath for seaCh 0 45— o 3> (R): locae first
entry having a2=3 and scan leaves until entry having
aZ2>3. Seled satisfying entries

— Accesspath for seach 0 41.5m0 a3 =x (R): Scanof R

19

Choasing an Access Path

Seledivity of an access path = number of pages
retrieved using that path

If several accesspaths suppat aquery, DBMS
chooses the one with lowest seledivity

Size of domain of attribute is an indicator of the
seledivity of seach conditions that involve that
attribute

Example: O CrsCode='CS305 Anp Grade='B’ (Transcript)
— aB* tree with search key CrsCode has lower seledivity
than aB* treewith seach key Grade

20

10

Computing Joins
* The cost of joining two relations makes the
choice of ajoin agorithm crucial

» Simple block-nested loops join agorithm
for computing r <7 ,_g S

foreach page p, inr do
foreach page p.insdo

output p, < a=g Ps

21

Block-Nested Loops Join

« If B, and 3, are the number of pagesinr and s,

the cost of algorithm s | Number of scansof |

»»»»»»»»»»» . relation S

—If r and s have 103 pages each,
cost is 103 + 103* 103

— Choose smaller relation for the outer loop:
* 1TB, <Bs then B, + 0B < Bs+ B, TR

22

11

Block-Nested Loops bin

i Number of scans |

e Costcan be reduced to eI ofrelation s

by using M buffer pages instead of 1.

r
Input buffer for T

‘ r-a8
s | | . Ou lp ut buffer /
Input buffer for

23

Block-Nested Loop |l ustrated

r
LT [[] Qj ri=<s
A 4 A S (TTTTTT1]
N\
> 1 O =
AAA ..and soon
".'ﬁb&’b&%& for s Outpt
——————————————————————————— buffer

24

12

Index-Nested Loop Join r = ,_5S

» Use anindex on s with search key B (instead of
scanning s) to find rows of sthat match t,

— Cost = B, +7, U+

cost of outputting final result

e e avg cost of retrieving all

. Numberof " § rowsin s that match t,
i rowsinr SR

— Effective if number of rows of sthat match tuplesinr is
small (i.e., w issmall) and index is clustered

foreach tuplet, in r do {
use index to find all tuplest.in ssatisfying t,.A=t..B;
output (t,, t.)

} %

Sort-Merge Join r ~1,.;S

sort r on A;

sort s on B;

while !eof(r) and !eof(s) do {
Scan r and s concurrently until t,.A=t_.B=c;
Output 0 ,_(r)*0g_.(9)

}

GAzc(r)

Op=c (9 2%

13

Join During Merge Illustrated

3 09 873 57 11
uu v

>
o e
°
o
el
»
»

873 575757

A d 4 A AadN
<]~ SR

~T T -
OT T W
OT T B+
AT T W

v vvv v vv/ 777 225500

B |lpp r s tt uuu X
E |40 9 7 25 250 0

/
S

[X g S

27

Cost of Sort-Merge Join

 Cost of sorting assuming M buffers:

2B 10g .1 By + 2Bsl0g 1 Bs
» Cost of merging:
— Scanning o,_(r) and o;_.(s) can be combined with the last step
of sorting of r and s --- costs nothing
— Cog of g,_(r)x0;-. () depends on whether o,_(r) can fit in the
buffer
* If yes, this sep costs 0

* Inno, each g,_(r)xa,-. () is computed using block-nested join, so the
cost isthe cost of thejoin. (Think why indexed methods or sort-merge
are inapplicableto Cartesian product.)

» Cost of outputting the final result depends on the size of the
result

28

14

Hash-Join r =<1 ,_;S

* Sep 1: Hashr on A and s on B into the same set of
buckets

» Sep 2: Since matching tuples must be in same
bucket, read each bucket in turn and output the
result of the join

e Cost: 3 (B, +B,) + cost of output of final result

— assuming each bucket fits in memory

29
r
Input Buffer for r | 1 || 1] (P
CH \—> s T AT MPIsy
- N\ / S .
Hash : Hash : \’x
/ Function . Table . Buckets
s — : e »
r, A r — (D
Input Buffer for s e T s A > s,
el e > .. 4
- Stage1™ Stage 2"
30

15

Star Joins

°r Ncondl IHDQ condp **- Ncondn I’n

— Eadh cond; involvesonly the atributes of r; and r

I
ry
L cond, cond P ‘
. :",1'-:::/ 2 | Sar
; Sate!llte i iionnsnsszTTIII relation
. relations | [T Sereeiemeen .
conds cond, '3
lg cond,
Iy
31
COURSE TEACHING
CrsCode Deptld CrsName | Description Profld CrsCode Semester
TRANSCRIPT
Studld ‘ CrsCode Semester Grade
STUDENT
Id ’ Name Status ‘ Address
32

16

Computing Star Joins

* Usejoinindex (Chapter 11)
—Scan r and thejoinindex {<r,r,,...,r.>} (whichis
a set of tuples of rids) in one scan
— Retrieve matching tuplesin r,,...,r,
— Output result

33

Computing Star Joins

 Usehitmapindices (Chapter 11)
— Useone bitmapped joinindex, J, per ead partial join
r N condj ri

— Reall: J isaset of <v, bitmap>, wherevisanridof a
tupleinr; and bitmap has 1 in k-th position iff k-th tuple
of r joinswith the tuple pointed to by v

1. ScanJ and logically OR all bitmaps. Weget al ridsinr
that join withr,

2. Now logically AND the resulting bitmaps for J, ..., J..

3. Result: asubset of r, which contains all tuples that can
possibly be in the star join
« Rationale: only afew such tuples survive, so can use indexed loops

34

17

Choosing Indices

 DBMSs may allow user to specify
— Type (hash, B* tree) and search key of index
— Whether or not it should be clustered

» Using information about the frequency and type of
gueries and size of tables, designer can use cost
estimates to choose appropriate indices

» Several commercial systems have tools that
suggest indices
— Simplifies job, but index suggestions must be verified

Choosing Indices — Example

* If afrequently executed query that involves selection or a
join and has alarge result set, use a clustered B* tree
Index

Example: Retrieve all rows of Transcript for Sudid

* If afrequently executed query is an equality search and

has a small result set, an unclustered hash index is best

— Since only one clustered index on atable is possible,
choosing unclustered allows a different index to be
clustered

Example: Retrieve all rows of Transcript for (Sudid, CrsCode)

36

18

