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Query Processing: The Basics

Chapter 10
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External Sorting

• Sorting is used in implementing many relational 
operations

• Problem: 
– Relations are typically large, do not fit in main memory

– So cannot use traditional in-memory sorting algorithms

• Approach used:
– Combine in-memory sorting with clever techniques aimed at 

minimizing I/O

– I/O costs dominate => cost of sorting algorithm is measured 
in the number of page transfers
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External Sorting (cont’d)

• External sorting has two main components:
– Computation involved in sorting records in 

buffers in main memory

– I/O necessary to move records between mass 
store and main memory
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Simple Sort Algorithm
• M = number of main memory page buffers
• F = number of pages in file to be sorted
• Typical algorithm has two phases:

– Partial sort phase: sort M pages at a time; create F/M 
sorted runsruns on mass store, cost = 2F

Example:  M = 2, F = 7
run

Original file

Partially sorted file

5      3 2      6 1    10  15     7 20   11 8     4 7     5

2      3 5      6 1      7  10   15 4     8 11  20 5     7
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Simple Sort Algorithm
– Merge Phase: merge all runs into a single run 

using M-1 buffers for input and 1 output buffer
• Merge step: divide runs into groups of size M-1 and 
merge each group into a run; cost = 2F

each step reduces number of runs by a factor of   M-1

M pages
Buffer
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Merge: An Example

2      3 5      6

1      7  10   15

Input buffers
Output buffer

1      2  3      5 6      7 10   15

2 3

1 7

5 6

10 15

1 23 56 710 15

Output runInput runs
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Simple Sort Algorithm

• Cost of merge phase:  
– (F/M)/(M-1)k runs after k merge steps

– Log M-1(F/M) merge steps needed to merge an 
initial set of F/M sorted runs

– cost =  2F Log M-1(F/M)  ≈ 2F(Log M-1F -1)

• Total cost = cost of partial sort phase + cost 
of merge phase ≈ 2F Log M-1F
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Duplicate Elimination

• A major step in computing projection, 
union, and difference relational operators

• Algorithm:
– Sort

– At the last stage of the merge step eliminate 
duplicates on the fly

– No additional cost (with respect to sorting) in 
terms of I/O
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Duplicate elimination During Merge

2      3 5      6

1      3  5   15

Input buffers
Output buffer

1      2  3      5 6     15

2 3

1 3

5 6

5 15

1 23 56 15

Output runInput runs Last key used

1215356

Key 3 ignored: duplicate

Key 5 ignored: duplicate
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Sort-Based Projection

• Algorithm:
– Sort rows of relation at cost of  2F Log M-1F

– Eliminate unwanted columns in partial sort 
phase (no additional cost)

– Eliminate duplicates on completion of last 
merge step (no additional cost)

• Cost: the cost of sorting
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Hash-Based Projection
• Phase 1:

– Input rows
– Project out columns
– Hash remaining columns using a hash function with range 1…M-1 

creating  M-1 buckets on disk
– Cost = 2F

• Phase 2:
– Sort each bucket to eliminate duplicates
– Cost (assuming a bucket fits in  M-1 buffer pages)  =  2F

• Total cost = 4F

M pages

Buffer
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Computing Selection σ(attr op  value)

• No index on attr:
– If rows are not sorted on attr:

• Scan all data pages to find rows satisfying  selection 
condition

• Cost = F

– If rows are sorted on attr and op is  =, >, <  then: 
• Use binary search (at log2 F ) to locate first data 

page containing row in which (attr = value)

• Scan further to get all rows satisfying  (attr op value)

• Cost = log2 F + (cost of scan)
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Computing Selection σ(attr op  value)

• Clustered B+ tree index on attr (for “=” or range search):

– Locate first  index entry corresponding to a row in which  
(attr = value).  CostCost = depth of tree

– Rows satisfying condition packed in  sequence in 
successive data pages; scan those pages.

CostCost:  number of pages occupied by quali fying rows

B+ tree
index entries
(containing rows)
that satisfy
condition
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Computing Selection σ(attr op  value)

• Unclustered B+ tree index on attr (for “=” or range search):

– Locate first  index entry corresponding to a row in which (attr
= value).  

CostCost = depth of tree

– Index entries with pointers to rows satisfying condition are 
packed in sequence in successive index pages

• Scan entries and sort record Ids to identify table data pages 
with qualifying rows

Any page that has at least one such row must be fetched 
once.

•• CostCost: number of rowsthat satisfy selection condition
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Unclustered B+ Tree Index

index entries (containing
row Ids) that satisfy
condition

data page

Data 
file

B+ Tree
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Computing Selection σ(attr =  value)

• Hash index on attr (for “=” search only):
– Hash on value. CostCost ≈ 1.2

• 1.2 – typical average cost of hashing  (> 1 due to possible overflow 
chains) 

• Finds the (unique) bucket containing all index entries satisfying selection 
condition

• Clustered index – all qualifying rows packed in the bucket (a few pages)

CostCost: number of pages occupies by the bucket

• Unclustered index – sort row Ids in the index entries to identify data 
pages with qualifying rows

Each page containing at least one such row must be fetched once

CostCost: min(number of qualifying rows in bucket, number of pages in file)
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Computing Selection σ(attr =  value)

• Unclustered hash index on attr (for equality search)

buckets

data pages
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Access Path
•• Access pathAccess path is the notion that denotes algorithm + 

data structure used to locate rows satisfying some 
condition

• Examples:
– File scan:  can be used for any condition
– Hash:  equality search;  all search key attributes of hash 

index are specified in condition
– B+ tree:  equality or range search; a prefix of the search 

key attributes are specified in condition
• B+ tree supports a variety of access paths

– Binary search:  Relation sorted on a sequence of 
attributes and some prefix of that sequence is specified 
in condition
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Access Paths Supported by B+ tree

• Example: Given a B+ tree whose search key is the 
sequence of attributes a2, a1, a3, a4

– Access path for search σa1>5 AND a2=3 AND a3=‘x’ (R): find 
first entry having a2=3 AND a1>5 AND a3=‘x’ and scan 
leaves from there until entry having a2>3 or a3 ≠ ‘x’ .  
Select satisfying entries

– Access path for search σ a2=3 AND a3 >‘x’ (R):  locate first 
entry having a2=3 and scan leaves until entry having 
a2>3.  Select satisfying entries

– Access path for search σ a1>5 AND a3 =‘x’ (R):  Scan of R
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Choosing an Access Path

•• SelectivitySelectivity of an access path = number of pages 
retrieved using that path

• If several access paths support a query, DBMS 
chooses the one with lowest selectivity

• Size of domain of attribute is an indicator of the 
selectivity of search conditions that involve that 
attribute

• Example:  σ CrsCode=‘CS305’ AND Grade=‘B’ (TranscriptTranscript)

– a B+ tree with search key CrsCode has lower selectivity 
than a B+ tree with search key Grade
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Computing Joins
• The cost of joining two relations makes the 

choice of a join algorithm crucial
•• SimpleSimple blockblock--nested loopsnested loops join algorithm 

for computing  r A=B s

foreach page pr in r do
foreach page ps in s do

output pr  A=B  ps
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Block-Nested Loops Join

• If βr and βs are the number of pages in r and s, 
the cost of algorithm is 

βr +  βr ∗ βs  +  cost of outputting final result

– If  r and  s have 103 pages each,

cost is 103 + 103 * 103

– Choose smaller relation for the outer loop:
• If βr < βs then βr + βr∗ βs <  βs + βr∗ βs

Number of scans of 
relation s
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Block-Nested Loops Join

• Cost can be reduced to 

βr +  (βr/(M-2))  ∗ βs + cost of outputting final result

by using M buffer pages instead of 1.

Number of scans 
of relation s

24

Block-Nested Loop Illustrated

Output 
buffer

s

r

Input buffer for s

Input buffer for r

… and so on

r s
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Index-Nested Loop Join  r A=B s

• Use an index on s with search key B (instead of 
scanning s) to find rows of s that match tr
–– Cost Cost =  βr + τr ∗ ω + cost of outputting final result

– Effective if number of rows of s that match tuples in r is 
small (i.e., ω is small) and index is clustered

foreach tuple tr in  r do  {
use index to find all tuples ts in s satisfying tr.A=ts.B;
output (tr, ts) 

}

Number of 
rows in r

avg cost of retrieving all 
rows in  s that match  tr
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Sort-Merge Join  r A=B s

sort r on  A;
sort s on  B;
while !eof(r) and !eof(s) do {

Scan r and s concurrently until tr.A=ts.B=c;
Output σA=c(r)×σB=c (s) 

}

r

s

××

σB=c (s) 

σA=c(r)
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Join During Merge Illustrated

1  3
p  p

r

s

D
A

B
E

p   p
4   0

0   9
q   q

r
9

8  7  3
s   s  s

s
7

t  t
2  5

u  u  u
2  5  0

5  7
u  u

1  1
v  v

x
0

1  3  1  3
p  p  p  p
p  p  p  p
4  0  0  4

8  7  3
s  s  s
s  s  s
7  7  7

5  7  5  7  5  7
u  u  u  u  u  u
u  u  u  u  u  u
2  2  5  5  0  0

r A=B s
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Cost of Sort-Merge Join
•• CostCost of sorting assuming M buffers: 

2 βr log M-1 βr +  2 βs log M-1 βs

•• CostCost of merging:
– Scanning σA=c(r) and σB=c (s) can be combined with the last step 

of sorting of r and s --- costs nothing
– Cost of σA=c(r)×σB=c (s) depends on whether σA=c(r) can fit in the 

buffer
• If yes, this step costs 0 
• In no, each σA=c(r)×σB=c (s) is computed using block-nested join, so the 

cost is the cost of the join.  (Think why indexed methods or sort-merge 
are inapplicable to Cartesian product.)

• Cost of  outputting the final result depends on the size of the 
result



15

29

Hash-Join  r A=B s

• Step 1: Hash r on A and s on B into the same set of 
buckets

• Step 2: Since matching tuples must be in same 
bucket, read each bucket in turn and output the 
result of the join

•• CostCost:: 3 (βr + βs ) + cost of output of final result
– assuming each bucket fits in memory

30

Hash Join
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Star Joins

• r cond1
r1 cond2

…        condn
rn

– Each  cond i involves only the attributes of  ri and  r

r

r1

r2

r3

r4

r5

cond1 cond2

cond3

cond4

cond5

Star 
relationSatellite 

relations

32

Star Join
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Computing Star Joins

• Use join index  join index  (Chapter 11)
– Scan  r and the join index { <r,r1,…,rn>} (which is 

a set of tuples of rids) in one scan

– Retrieve matching tuples in  r1,…,rn

– Output result
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Computing Star Joins

• Use bitmap indicesbitmap indices (Chapter 11)
– Use one bitmapped join index,  Ji ,  per each partial join

r condi ri

– Recall :  Ji is a set of  <v, bitmap>,  where v is an rid of a 
tuple in ri and  bitmap has 1 in k-th position iff k-th tuple
of  r joins with the tuple pointed to by v

1. Scan Ji and logically OR all bitmaps.  We get all rids in r
that join with ri

2. Now logically AND the resulting bitmaps for J1, …, Jn.
3. Result: a subset of   r, which contains all tuples that can 

possibly be in the star join 
• Rationale: only a few such tuples survive, so can use indexed loops
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Choosing Indices

• DBMSs may allow user to specify 
– Type (hash, B+ tree) and search key of index
– Whether or not it should be clustered

• Using information about the frequency and type of 
queries and size of tables, designer can use cost 
estimates to choose appropriate indices

• Several commercial systems have tools that 
suggest indices
– Simplifies job, but index suggestions must be verified
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Choosing Indices – Example

• If a frequently executed query that involves selection or a 
join and has a large result set, use a clustered B+ tree 
index

Example:   Retrieve all rows of TranscriptTranscript for StudId

• If a frequently executed query is an equality search and 
has a small result set, an unclustered hash index is best

– Since only one clustered index on a table is possible, 
choosing unclustered allows a different index to be 
clustered

Example:   Retrieve all rows of TranscriptTranscript for (StudId, CrsCode)


