Relational Calculus,Visual Query
Languages, and Deductive Databases

Chapter 13

SQL and Relational Calculus

 Although relational algebra is useful in the
analysis of query evaluation, SQL Is
actually based on a different query
language: relational calculus

* There are two relational calculi:
— Tuple relational calculus (TRC)
— Domain relational calculus (DRC)

Tuple Relational Calculus

« Form of query:
{T | Condition(T)}

— T 1s the target — a variable that ranges over
tuples of values

— Condition is the body of the query

* Involves T (and possibly other variables)

 Evaluates to true or false if a specific tuple is
substituted for T

Tuple Relational Calculus: Example

{T | Teaching(T) AND T.Semester = ‘F2000°}

« When a concrete tuple has been substituted
for T.

— Teaching(T) is true if T is in the relational
Instance of Teaching

— T.Semester = ‘F2000’ 1s true if the semester
attribute of T has value F2000

— Equivalent to:

SELECT *
FROM Teaching T
WHERE T.Semester = ‘F2000°

Relation Between SQL and TRC

{T | Teaching(T) AND T.Semester = ‘F2000°}

SELECT *
FROM Teaching T
WHERE T.Semester = ‘F2000’

« Target T corresponds to SELECT list: the query
result contains the entire tuple
» Body split between two clauses:

— Teaching(T) corresponds to FROM clause
— T.Semester = ‘F2000’ corresponds to WHERE clause

Query Result

* The result of a TRC query with respect to a
given database Is the set of all choices of
tuples for the variable T that make the query
condition a true statement about the
database

Query Condition

 Atomic condition:
— P(T), where P is a relation name
— T.A oper S.B or T.A oper const, where T and S are
relation names, A and B are attributes and oper is a
comparison operator (e.g., =, #,<, >, €, etc)
» (General) condition:
— atomic condition
— If C, and C, are conditions then C, AND C,,
C, OR C,, and NOT C, are conditions

— If R isarelation name, T atuple variable, and C(T)
IS a condition that uses T, then vTe R (C(T)) and
dTeR (C(T)) are conditions

Bound and Free Variables

« XIs a free variable in the statement C,: “X s In CS305”
(this might be represented more formally as C,(X))

— The statement is neither true nor false in a particular state of
the database until we assign a value to X

« X s a bound (or quantified) variable in the statement
C,: “there exists a student X such that X is in CS305”
(this might be represented more formally as

IXe S (C,(X))

where S is the set of all students)

 This statement can be assigned a truth value for any particular state of
the database

Bound and Free Variables in TRC Queries

« Bound variables are used to make assertions about
tuples In database (used in conditions)

 Free variables designate the tuples to be returned by
the query (used In targets)

{S | Student(S) AND (3 TeTranscript
(S.1d = T.Studld AND T.CrsCode = ‘CS305%)) }

— When a value iIs substituted for S the condition has value
true or false

» There can be only one free variable in a condition
(the one that appears in the target)

Example

{ E | Course(E) AND
VSeStudent (
3 TeTranscript (
T.Studld =S.Id AND
T. CrsCode = E.CrsCode
)
)
h
 Returns the set of all course tuples

corresponding to the courses that have been
taken by every student

10

TRC Syntax Extension

« We add syntactic sugar to TRC, which
simplifies queries and makes the syntax even
closer to that of SQL

{S.Name, T.CrsCode | Student (S) AND Transcript (T)
AND ...}

Instead of

{R | 3SeStudent (R.Name = S.Name)
AND dTeTranscript (R.CrsCode = T.CrsCode)
AND ...}

where R is a new tuple variable with attributes Name and CrsCode

11

Relation Between TRC and SQL (cont’d)

* List the names of all professors who have
taught MGT123

— In TRC:

{P.Name | Professor(P) AND JTeTeaching
(P.1d = T.Profld AND T.CrsCode = ‘MGT123’) }

— In SQL.:

SELECT P.Name

FROM Professor P, Teaching T
WHERE P.ld = T.Profld AND T.CrsCode = ‘MGT123’

The Core SQL Is merely a syntactic sugar on top of TRC

12

What Happened to Quantifiers in SQL?

« SQL has no guantifiers: how come? Because It uses

conventions:
— Convention 1. Universal quantifiers are not allowed (but SQL:1999
Introduced a limited form of explicit ¥)

— Convention 2. Make existential quantifiers implicit: Any tuple
variable that does not occur in SELECT is assumed to be implicitly

quantified with 3
« Compare:

{P.Name | Professor(P) AND JTeTeaching ...} " molicit
~ Implici
and 3T

13

Relation Between TRC and SQL (cont’d)

« SQL uses a subset of TRC with simplifying
conventions for quantification

 Restricts the use of quantification and negation (so
TRC i1s more general In this respect)

« SQL uses aggregates, which are absent in TRC
(and relational algebra, for that matter). But
aggregates can be added to TRC

« SQL Is extended with relational algebra operators
(MINUS, UNION, JOIN, etc.)

— This Is just more syntactic sugar, but it makes queries
easier to write

14

More on Quantification

 Adjacent existential quantifiers and adjacent
universal quantifiers commute:

— dTeTranscript (3TleTeaching (...)) IS same as
dT1leTeaching (3T eTranscript (...))

 Adjacent existential and universal quantifiers do
not commute:

— dTeTranscript (VT1leTeaching (...)) Is different
from VT1 eTeaching (3T eTranscript (...))

15

More on Quantification (con’t)

A quantifier defines the scope of the quantified variable
(analogously to a begin/end block):

VTeR1 (U(T) ano ITeR2 (V(T)))
IS the same as:
VTeR1l (U(T) ano 3SeR2 (V(S)))

« Universal domain: Assume a domain, U, which iIs a
union of all other domains in the database. Then,

instead of VT € U and 3S € U we simply write
VTand3T

16

Views in TRC

* Problem: List students who took a course from every
professor in the Computer Science Department

e Solution:

— First create view: All CS professors
CSProf = {P.Profld | Professor(P) AND P.Deptld = ‘CS’}

— Then use It
{S. Id | Student(S) AND

VP eCSProf 3T eTeaching 3ReTranscript (

AND P.Id=T.Profld AND S.Id = R.Studld AND
T.CrsCode = R.CrsCode AND T.Semester = R.Semester

) }

17

Queries with Implication

 Did not need views In the previous query, but doing it
without a view has its pitfalls: need the implication -
(if-then):
{S. Id | Student(S) AND

VP eProfessor (
P.Deptld = ‘CS> -
dT1leTeaching 3R € Transcript (
P.ld = T1.Profld aAnDp S.Id = R.Id
AND T1.CrsCode = R.CrsCode
AND T1.Semester = R.Semester

)
)
k

 Why P.Deptld=“CS’ - ... and not P.Deptld=‘CS’ AND ... ?
Read those queries aloud (but slowly) in English and try to understand!

18

More complex SQL to TRC Conversion

 Using views, translation between complex SQL
queries and TRC is direct:

SELECT R1.A, R2.C
FROM Rell R1, Rel2

WHERE condition1(R1, R2) AND TRC view
R1.BIN (SELECT R3.E corresponds
FROM Rel3 R3, Rel4 R4 to subquery

WHERE condition2(R2, R3,R4)) J ..

VErsus:

AND JR3eTemp “(R1.B =R3.E AND R2.C =R3.C
AND R2.D=R3.D)}

Temp = {R3.E, R2.C, R2.D | Rel2(R2) AND Rel3(R3)
AND JR4eRel4 (condition2(RZ, R3, R4))}
19

Domalin Relational Calculus (DRC)

A domain variable is a variable whose value Is
drawn from the domain of an attribute

— Contrast this with a tuple variable, whose value is an
entire tuple

— Example: The domain of a domain variable Crs
might be the set of all possible values of the
CrsCode attribute in the relation Teaching

20

Queries In DRC

Form of DRC query:

{X,, ..., X, | condition(X,, ..., X,) }
Xy, ..., X, Is the target: a list of domain variables.
condition(X,, ..., X;) Is similar to a condition in TRC;

uses free variables Xy, weer Xy
— However, quantification is over a domain

« 31X eTeaching.CrsCode (...)
— 1.e., there is X in Teaching.CrsCode, such that condition is true

Example: {Pid, Code | Teaching(Pid, Code, ‘F1997°)}

— This is similar to the TRC query:
{T | Teaching(T) AND T.Semester = ‘F1997’}

21

Query Result

* The result of the DRC query
{X{, ..., X, | condition(X,, ..., X,) }

with respect to a given database is the set
of all tuples (x,, ..., x,,) such that, for 1 =
1,...,n, If X; Is substituted for the free
variable X; , then condition(x,, ..., x,,) IS a
true statement about the database

— X; can be a constant, c, in which case x; =c¢

22

Examples

 List names of all professors who taught MGT123:

{Name | 31d 3Dept (Professor(ld, Name, Dept) AND
4Sem (Teaching(ld, ‘MGT123’, Sem)))}

— The universal domain is used to abbreviate the query
— Note the mixing of variables (I1d, Sem) and constants (MGT123)

 List names of all professors who ever taught Ann

{Name | 3Pid 3Dept (
" Professor(Pid, Name, Dept) AND

o3 ..~ 3Crs3Sem 3Grd 3Sid JAdd 3Stat (
ga”maf'ﬁ of DI_F;C- Teaching(Pid, Crs, Sem) AND
in°§5i”i'§r? be sed Transcript(Sid, Crs, Sem, Grd) AND
to shorten queries Student(Sid, ‘Ann’, Addr, Stat)

)})

Relation Between Relational Algebra,
TRC, and DRC

« Consider the query {T | NoT Q(T)}: returns the set of
all tuples not in relation Q
— If the attribute domains change, the result set changes as well
— This is referred to as a domain-dependent query

» Another example: {T| VS (R(S)) V Q(T)}
— Try to figure out why this is domain-dependent

* Only domain-independent queries make sense, but
checking domain-independence is undecidable

— But there are syntactic restrictions that guarantee domain-
Independence

24

Relation Between Relational Algebra,
TRC, and DRC (cont’d)

 Relational algebra (but not DRC or TRC) queries
are always domain-independent (prove by
Induction!)

 TRC, DRC, and relational algebra are equally
expressive for domain-independent queries

— Proving that every domain-independent TRC/DRC
query can be written in the algebra is somewhat hard

— We will show the other direction: that algebraic queries
are expressible in TRC/DRC

25

Relationship between Algebra, TRC, DRC

Algebra: ocongition(R)
TRC: {T| R(T) anp Condition,}
DRC: {X,,.... X | R(X,...,X,) AND Condition, }

Let Condition be A=B anp C=‘Joe’. Why Condition,
and Condition,?

— Because TRC, DRC, and the algebra have slightly different
syntax:

Condition, iIs T.A=T.B AND T.C=Joe’
Condition, would be A=B AND C=*Joe’
(possibly with different variable names)

26

Relationship between Algebra, TRC, DRC

Algebra: magc(R)
TRC: {T.AT.B,T.C|R(T)}
DRC: {AB,C|3D3E... R(AB,CDE,...)}

Algebra: R x S

TRC: {TAT.B,T.C,V.D,V.E | R(T) anp S(V) }
DRC: {AB,C,D,E|R(A,B,C) anD S(D,E) }

27

Relationship between Algebra, TRC, DRC

Algebra: RuU S
RC.: {T|R(T)orS(T)}
DRC: {AB,C|R(A,B,C)or S(AB,C)}

Algebra: R—S
TRC: {T|R(T) AND NOT S(T)}
DRC: {AB,C|R(A,B,C) AnD NOT S(A,B,C) }

28

QBE: Query by Example

Declarative query language, like SQL
Based on DRC (rather than TRC)
Visual

Other visual query languages (MS Access,
Paradox) are just incremental improvements

29

QBE Examples

Print all professors’ names in the MGT department

Professor

Id

Name

Deptld

[Operator “Print{

P._John

Same, but print all attributes

MGT

Targetlist “example”

variable

|

Professor

Id

Name

Deptld

P.

 Literals that start with “ ” are variables.

MGT

30

Joins In QBE

« Names of professors who taught MGT123 in any semester
except Fall 2002

Simple conditions placed
directly in columns

Professor Id| Name Deptld
~123| P._John

Teaching | Profld | CrsCode Semester
123 | MGT123 | <> °F2002°

31

Condition Boxes

« Some conditions are too complex to be placed directly
In table columns

" Gr=‘A’ oR Gr="B’

« Students who took CS532 & got Aor B

Transcript | Studld | CrsCode Semester | Grade
P. CS532 _Gr
Conditions

32

Aggregates, Updates, etc.

« Has aggregates (operators like AvG, COUNT),
grouping operator, etc.
» Has update operators

« To create a new table (like SQL’s CREATE TABLE),
simply construct a new template:

HasTaught | Professor Student
l. 123456789 | 567891012

33

< T @ C O

D+t OT C

query
target

A Complex Insert Using a Query

Transcript | Studld | CrsCode Semester | Grade
5678 | (CSh32 52002
Teaching | Profld | CrsCode Semester
12345 | (CS532 52002
HasTaught | Professor Student
l. 12345 5678
HasTaught | Professor Student
P.

34

Connection to DRC

« Obvious: just a graphical representation of DRC

« Uses the same convention as SQL.: existential
guantifiers (3) are omitted

Transcript | Studld | CrsCode Semester | Grade
123 | (CS532 F2002 A

11

Transcript(X, Y, ‘F2002°, ‘A’)

35

Pitfalls: Negation

 List all professors who didn’t teach anything in S2002:
Professor Id| Name Deptid
123] P
Teaching | Profld | CrsCode Semester
- 123 52002

* Problem: What is the quantification of CrsCode?
{Name | 31d 3Deptld 3CrsCode (Professor(ld,Name,Deptlid) AND

or

{Name | 31d IDeptld VCrsCode (Professor(ld,Name,Deptid) AND

« The intended result!

NOT Teaching(ld,CrsCode,’S2002)) }

» Not what was intended(!!), but what the convention about implicit
quantification says

Negation Pitfall: Resolution

» QBE changed its convention:

» Variables that occur only in a negated table are implicitly
quantified with V instead of 3

 For instance: CrsCode in our example. Note: 123 (which
corresponds to Id in DRC formulation) is quantified with 3,
because it also occurs in the non-negated table Professor

o Still, problems remain! Is it
{Name | 3l1d 3Deptld VYCrsCode (Professor(ld,Name,Deptld) AND ...}

or
{Name | VCrsCode 31d IDeptld (Professor(ld,Name,Deptld) AND ...}

Not the same query!
— QBE decrees that the 3-prefix goes first

37

d1d IDeptld VCrsCode VS. VCrsCode F1d dDeptld

... that professor (Id)
IS not teaching that
ourse(CrsCode)

... for every
course

... exists
a professor
such that

Names
such that

{Name | 1d 3Deptld YCrsCode (| Professor(ld,Name,Deptld)

... exists
a professor

‘NOT Teaching(Id,CrsCode,’82002’)|}

{Name | VCrsCode dld 9Deptld (| Professor(ld,Name,Deptld) | AND

‘ NOT Teaching(Id,CrsCode,’82002’I}

Names
such that

For every
course

—

... who (Id) is not
teaching that
course(CrsCode) 38

Microsoft Access

Microsoft Access

File Edit VUiew Insert Tools Window Help
Dez|d] S|y % el | o 8| sa- | >fmml o &
5 Course-Prof : Select Query _ 0] x|
Professor Teaching Course ﬂ
y — | P |~ |CisCode
Name CrsCode EFIEI Mame
Deptld Semostor Descr

L |

Field: | CrsMame > | Hame Semester |
Table: | Course Professor Teaching |
Total: [E ROrESEIon Expression Where

Sort:
S hiow:]
Criteria; "F1995"
ar: -
<« | »

39

PC Databases

A spruced up version of QBE (better interface)
« Be aware of implicit quantification
« Beware of negation pitfalls

40

Deductive Databases

« Motivation: Limitations of SQL
* Recursion in SQL:1999

« Datalog — a better language for complex
queries

41

Limitations of SQL

« Given a relation Prereq with attributes Crs and PreCrs,
list the set of all courses that must be completed prior
to enrolling in CS632

— The set Prereq ,, computed by the following expression,
contains the immediate and once removed (i.e. 2-step
prerequisites) prerequisites for all courses:

TcCrs, PreCrs ((Prereq > PreCrs=Crs PI’GYGC])[CI’S, Pl, C2’ PreCrs]

U Prereq

— In general, Prereq; contains all prerequisites up to those that
are 1-1 removed for all courses:

TCCrs, PreCrs ((Prereq > PreCrs=Crs Prereqi—l)[ch’ Pl, CZ, PI’GCI’S]

U Prereq;_q
42

Limitations of SQL (con’t)

» Question: We can compute o cse30-(Prereq;)
to get all prerequisites up to those that are 1-1
removed, but how can we be sure that there are
not additional prerequisites that are 1 removed?

« Answer: When you reach a value of 1 such that
Prereq; = Prereq;,,; you’ve got them all. This 1s
referred to as a stable state

* Problem: There’s no way of doing this within
relational algebra, DRC, TRC, or SQL (this Is
not obvious and not easy to prove)

43

Recursion in SQL:1999

 Recursive gueries can be formulated using a
recursive view:

CREATE RECURSIVE VIEW IndirectPrereq (Crs, PreCrs) AS
(3) { SELECT * FROM Prereq

UNION

SELECT P.Crs, I.PreCrs
(b) { FROM Prereq P, IndirectPrereq |

WHERE P.PreCrs = 1.Crs

(@) IS a non-recursive subguery — it cannot refer to
the view being defined

— Starts recursion off by introducing the base case — the
set of direct prerequisites

44

Recursion 1n SQL:1999 (cont’d)

CREATE RECURSIVE VIEW IndirectPrereq (Crs, PreCrs) AS
SELECT * FROM Prereq
UNION
SELECT P.Crs, I.PreCrs
{FROM Prereq P, IndirectPrereq |
WHERE P.PreCrs = 1.Crs

 (b) contains recursion — this subquery refers to the
view being defined.

— This i1s a declarative way of specifying the iterative
process of calculating successive levels of indirect
prerequisites until a stable point is reached

45

Recursion in SQL:1999

» The recursive view can be evaluated by computing
successive approximations

— IndirectPrereq;, , Is obtained by taking the union of
IndirectPrereq; with the result of the query

SELECT P.Crs, |.PreCrs

FROM Prereq P, IndirectPrereq; |
WHERE P.PreCrs =1.Crs

— Successive values of IndirectPrereq; are computed until a
stable state Is reached, i.e., when the result of the query
(IndirectPrereq;,,) Is contained in IndirectPrereq;

46

Recursion in SQL:1999

 Also provides the wiTH construct, which does not require
VIEWS.

« Can even define mutually recursive queries:

WITH

RECURSIVE OddPrereq(Crs, PreCrs) AS
(SELECT * FROM Prereq)
UNION
(SELECT P.Crs, E.PreCrs
FROM Prereq P, EvenPrereq E
WHERE P.PreCrs=E.Crs)),
RECURSIVE EvenPrereq(Crs, PreCrs) AS
(SELECT P.Crs, O.PreCrs
FROM Prereq P, OddPrereq O
WHERE P.PreCrs =0.Crs)
SELECT * FROM OddPrereq

47

Datalog

Rule-based query language

Easier to use, more modular than SQL
Much easier to use for recursive queries
Extensively used in research

Partial implementations of Datalog are used
commercially

W3C is standardizing a version of Datalog for the
Semantic Web

— RIF-BLD: Basic Logic Dialect of the Rule Interchange
Format http://www.w3.org/TR/rif-bld/

48

Basic Syntax

Rule:
head : - body.

Query:

2 - body.
body: any DRC expression without the
quantifiers.

* AND is often written as ‘,” (without the quotes)
* OR i1s often written as “;’

head: a DRC expression of the form R(t,,...,t,),
where t; Is either a constant or a variable; R is a
relation name.

body Ina rule and in a query has the same syntax.

49

Basic Syntax (cont’d)

__

Derived relation;
Like a database view

NameSem(?Name,?Sem) : — Prof(?1d,”Name,?Dept), Teach(?1d,"MGT123’,?Sem).
?— NameSem(?Name,?Sem).

Answers:

?Name = kifer
?Sem = F2005

Base relation, if never
occurs in a rule head

?Name = lewis
?Sem = F2004

50

Basic Syntax (cont’d)

» Datalog’s quantification of variables
— Like in SQL and QBE: implicit

— Variables that occur in the rule body, but not in
the head are viewed as being quantified with 3

— Variables that occur in the head are like target
variables in SQL, QBE, and DRC

o1

Basic Semantics

NameSem(?Name,?Sem) : - Prof(?1d,?Name,?Dept), Teach(?1d,"MGT123’,?Sem).
?—- NameSem(?Name, ?Sem).

The easiest way to explain the semantics is to use DRC:

NameSem = {Name,Sem| 31d 3Dept (Prof(ld,Name,Dept) AND
Teaching(ld, ‘MGT123’, Sem)) }

52

Basic Semantics (cont’d)

- Another way to understand rules: - Asin DRC, join i indicatec

_____ i by sharlng variables
NameSem(?Name,?Sem) : - Prof(?ld ’?Name ,?Dept), Teach(’?ld ’MGT123 ,7Sem).
,,,,, W UJUJ
(bob onoz) (1111, bob, CS) and (1111, MGT123, onoz)

Seo o

53

Union Semantics of Multiple Rules

« Consider rules with the same head-predicate:
NameSem(?Name,?Sem) : - Prof(?ld,?”Name,?Dept), Teach(?1d,"MGT123’,7Sem).
NameSem(?Name,?Sem) : — Prof(?1d,?Name,?Dept), Teach(?1d,”CS532’,?Sem).

« Semantics is the union:

NameSem = {Name, Sem| 31d 3Dept (
(Prof(ld,Name,Dept) AND Teaching(ld, ‘MGT123’, Sem))
OR (Prof(ld,Name,Dept) AND Teaching(ld, ‘CS532°, Sem))

)} T
Equivalenty: T __by distributivity

NameSem = {Name, Sem| 3ld 3Dept (\

Prof(ld,Name,Dept) AND v
(Teaching(ld, ‘MGT123’, Sem) OR Teaching(ld, ‘CS532°, Sem))
) } s
« Above rules can also be written in one rule: ,

NameSem(?Name,?Sem) : — Prof(?1d,?Name,?Dept),
»

(Teach(?1d,"MGT123’,?Sem) ; Teach(?1d,”CS532°,?Sem)).
54

~
~
N

Recursion

» Recall: DRC cannot express transitive closure

» SQL was specifically extended with recursion
to capture this (in fact, by mimicking Datalog)

« Example of recursion in Datalog:

IndirectPrereq(?Crs,?Pre) : — Prereq(?Crs,?Pre).

IndirectPrereq(?Crs,?Pre) : -
Prereq(?Crs,?Intermediate),

IndirectPrereq(?Intermediate,?Pre).

95

Semantics of Recursive Datalog
Without Negation

 Positive rules
— No negation (not) in the rule body

— No disjunction in the rule body
 The last restriction does not limit the expressive power: H : -
(B;C) isequivalentto H : - B and H : - C because
— H:-Bis HornotB
— Hence
» Hornot (BorC) isequivalentto the pair of formulas
H or not B
and
H or not C.

56

Semantics of Negation-free Datalog (cont’d)

« A Datalog rule
HeadRelation(HeadVars) : — Body

can be represented in DRC as
HeadRelation = {HeadVars | 3BodyOnlyVars Body}

» We call this the DRC query corresponding to
the above Datalog rule

S7

Semantics of Negation-free Datalog -
An Algorithm

« Semantics can be defined completely
declaratively, but we will define it using an
algorithm

 Input: A set of Datalog rules without
negation + a database

 The Initial state of the computation:

— Base relations — have the content assigned to
them by the database

— Derived relations — initially empty

58

1.

Semantics of Negation-free Datalog -
An Algorithm (cont’d)

CurrentState := InitialDBState

For each derived relation R, let r,,...,r, be all the rules that
have R in the head

Evaluate the DRC queries that correspond to each r;
Assign the union of the results from these queries to R

NewsState := the database where instances of all derived
relations have been replaced as in Step 2 above

If CurrentState = NewState

then Stop: NewsState is the stable state that represents the
meaning of that set of Datalog rules on the given DB

else CurrentState : = NewState;, Goto Step 2.

59

Semantics of Negation-free Datalog - An
Algorithm (cont’d)

The algorithm always terminates:

— CurrentState constantly grows (at least, never shrinks)
« Because DRC expressions of the form
dVars (A and/or B and/or C ...)

which have no negation, are monotonic: if tuples are added to the database, the
result of such a DRC query grows monotonically

— It cannot grow indefinitely (Why?)
Complexity: number of steps is polynomial in the size of the DB (if
the ruleset is fixed)
— D —number of constants in DB;
N — sum of all arities
— Can’t take more than DN iterations
— Each iteration can produce at most DN tuples

» Hence, the number of steps is O(DN * DN)

60

EXpressivity

 Recursive Datalog can express queries that
cannot be done in DRC (e.g., transitive
closure) — recall recursive SQL

« DRC can express queries that cannot be
expressed in Datalog without negation (e.g.,
complement of a relation or set-difference
of relations)

 Datalog with negation is strictly more
expressive than DRC

61

Negation in Datalog

 Uses of negation in the rule body:
— Simple uses: For set difference

— Complex cases: When the (relational algebra)
division operator is needed

« EXpressing division is hard, as in SQL, since no
explicit universal quantification

62

Negation (cont’d)

 Find all students who took a course from every professor
Answer(?Sid) : - Student(?Sid, ?Name, ?Addr),
not DidNotTakeAnyCourseFromSomeProf(?Sid).

DidNotTakeAnyCourseFromSomeProf(?Sid) : -
Professor(?Pid,?”Pname,?Dept),
Student(?Sid,”Name,?Addr),
not HasTaught(?Pid,?Sid).

HasTaught(?Pid,?Sid) : - Teaching(?Pid,?Crs,?Sem),

Transcript(?Sid,?Crs,?Sem,?Grd).

?— Answer(?Sid).

 Not as straightforward as in DRC, but still quite logical!

63

Negation Pitfalls: Watch Your Variables

« Has problem similar to the wrong choice of operands in
relational division

« Consider: Find all students who have passed all courses
that were taught in spring 2006

7tstudld, CrsCode,Grade (GGrade;é F’ (Transcrlpt)) / Tcrscode (O-Semester= 'S2006° (TeaChmg)

)

Versus
7Z'Studld, CrsCode (GGrade,—é ‘F’ (Transcript)) / TlcrsCode (GSemesterZ ‘§2006° (TeaChing))

Which is correct? Why?

64

Negation Pitfalls (cont’d)

Consider a reformulation of: Find all students who took a course from
every professor

Answer(?Sid) : EI'?PId 3?Name
== Student(?Sld ?Name, ?Addr),

[Implied \f:// Professor(?Pid,?”Pname,?Dept),

| quantification | not ProfWhoDidNotTeachStud(?Sid, 7P|d) *——___

'\\ iswrong! 4= e T TN

ProfWhoDidNotTeachStud(?Sid, ?Pld) \\\\\\ ™\

Professor(?Pid,?Pname,?Dept), TS \

! Student(?Sid,?Name,?Addr), RN)

! not HasTaught(?Pid,?Sid). - .

; HasTaught(?Pid. 2Sid) <~ ;I;)he only real differences compared

2— Answer(?Sid). DidNotTakeAnyCourseFromSomeProf

 What’s wrong?
So, the answer will consist of students who were taught by

\ some professor
65

—_—— - —

Negation and a Pitfall: Another Example

» Negation can be used to express containment: Students who took every
course taught by professor with Id 1234567 in spring 2006.

— DRC
{Name | VCrs3Grade3Sid
(Student(Sid, Name),

(Teaching(1234567,Crs,’S2006)
=> Transcript(Sid,Crs,’S2006’,Grade)))}

— Datalog
Answer(?Name) : - Student(?Sid,”Name),

not DidntTakeS2006CrsFrom1234567(?Sid).
DidntTakeS2006CrsFrom1234567(?Sid) : -
Teaching(1234567,?Crs,’S2006”), not F60kS2006Course(?Sid,?Crs):

e ——

f— -_—
—— — —— _——

— Pitfall: Transcript(?Sid,?Crs,”’S2006’,?Grade) here-“won’t do because of

J?Grade !
66

Negation and Recursion

« What Is the meaning of a ruleset that has recursion
through not?

 Already saw this in recursive SQL — same Issue

OddPrereq(?X,?Y) : - Prereq(?X,?Y).
OddPrereq(?X,?Y) : - Prereq(?X,?Z), EvenPrereq(?Z,?Y),
not EvenPrereq(?X,?Y).

EvenPrereq(?X,?Y) : — Prereq(?X,?Z), OddPrereq(?Z,?Y).
?— OddPrereq(?X,?Y).
* Problem:

— Computing OddPrereq depends on knowing the complement of
EvenPrereq

— To know the complement of EvenPrereq, need to know EvenPrereq
— To know EvenPrereq, need to compute OddPrereq first!

67

Negation Through Recursion (cont’d)

 The algorithm for positive Datalog wont work
with negation in the rules:

— For convergence of the computation, it relied on the
monotonicity of the DRC queries involved

— But with negation in DRC, these queries are no
longer monotonic:
Query = {X | P(X) and not Q(X)}
P(a), P(b), P(c); Q(a) => Query result: {b,c}
Add Q(b) => Query result shrinks: just {c}

68

Positive
arcs
-

Dependency graph

“Well-behaved” Negation

* Negation 1s “well-behaved” if there 1s no

recursion through it

P(?X,2Y) - Q(?X,?2),

not R(?X,?Y).

Q(?X,2Y) :- P(?X,2Z), R(?X,2Y).

R(?X,2Y) :- S(?X,22), R(?Z,?V),
R(2X,2Y) :- V(2X,?2).

not T(?V,?Y).

P
i Negative
\ --___-_—:::::_'_'_';\7_ _//_ESEF_C_S____ 1.
/ Rg IIII:/,]
S/ '\ ;
T
’ 4.

Evaluation method for P:

Compute T, then its complement, not T
Compute R using the Negation-free
Datalog algorithm. Treat not T as base
relation

Compute not R

Compute Q and P using Negation-free
Datalog algorithm. Treat not R as base

69

“Ill-behaved” Negation

« What was wrong with the even/odd
prerequisites example?

OddPrereq(?X,?Y) : — Prereq(?X,?Y).
OddPrereq(?X,?Y) : - Prereq(?X,?Z), EvenPrereq(?Z,?Y),

not EvenPrereq(?X,?Y).
EvenPrereq(?X,?Y) : - Prereq(?X,?Z), OddPrereq(?Z,?Y).

e ——_——————

OddPrereq » EvenPrereq

~.

Prereq

—_—————- — ——— - ——— —_—_——— - ——

Dependency graph

70

Dependency Graph for a Ruleset R

e Nodes: relation names in R

* ArCS:
—1if P(...) :=...,Q(...), ... isin R thenthe
dependency graph has a positivearc Q ————- >R
—1f P(...) : = ...,notQ(...), ... 1sin R thenthe

dependency graph has a negative arc
Q ——=--> R (marked with the minus sign)

71

Strata In a Dependency Graph

« A stratum is a positively strongly connected
component, I.e., a subset of nodes such that:
— No negative paths among any pair of nodes in the set

— Every pair of nodes has a positive path connecting them
(i.e., a----> b and b----> a)

———————————

72

Stratification

 Partial order on the strata: if there is a path from a
node In a stratum, =, to a stratum ¢, then &t < .

(Are m < ¢ and ¢ < « possible together?)

- Stratification: any total order of the strata that Is
consistent with the above partial order.

———————————

P
/ b T] AT
T | \ A possible stratification:
Qe SN P
N Another stratification:

{ S ,:'I l’i T /\,‘ TC51 TC4) TC3) Tcz) Tc]_

73

Stratifiable Rulesets

* This 1s what we meant earlier by “well-behaved”
rulesets

e A ruleset is stratifiable if it has a stratification

 Easy to prove (see the book):

— A ruleset Is stratifiable iff its dependency graph has
no negative cycles (or if there are no cycles, positive
or negative, among the strata of the graph)

74

Partitioning of a Ruleset According to Strata

 LetRbearulesetandletn,,n,,...,n, bea
stratification
« Then the rules of R can be partitioned into

subsets Q,, Q,, ..., Q,, where each Q; includes
exactly those rules whose head relations belong to

75

N

Evaluation of a Stratifiable Ruleset, R

Partition the relations of R Into strata

Stratify (order)
Partition the ruleset according to the strata into the subsets Q. ,

Qy,Qz, ..., Q
Evaluate

a. Evaluate the lowest stratum, Q,, using the negation-free algorithm

b. Evaluate the next stratum, Q,, using the results for Q, and the algorithm
for negation-free Datalog
— If relation P is defined in Q, and used in Q,, then treat P as a base relation in Q,

— If not P occurs in Q,, then treat it as a new base relation, NotP, whose extension
Is the complement of P (which can be computed, since P was computed earlier,
during the evaluation of Q,)

c. Do the same for Q, using the results from the evaluation of Q,, etc.

76

Unstratified Programs

 Truth be told, stratification is not needed to
evaluate Datalog rulesets. But this becomes
a rather complicated stuff, which we won’t
touch. (Refer to the bibliographic notes, If
Interested.)

77

The Flora-2 Datalog System

We will use Flora-2 for Project 1

Download: http://flora.sourceforge.net/ (take the
latest release for your OS, currently 1.2)

— Can also use Ergo Suite from
coherentknowledge.com/free-trial — has IDE and other

bells & whistles.
Not just a Datalog system — it is a complete

programming language, called Rulelog, which
nappens to support Datalog

Has a number of extensions, some of which you
need to know about for the project

78

Differences

Variables: as in this lecture (start with a ?)

Each occurrence of a singleton symbol ? Or ?_is treated as a new variable,
which was never seen before:

— Example: p(?,abc), q(cde,?) — the two ?’s are treated as completely different
variables

— But the two occurrences of ? xyz in p(?xyz,abc), g(cde,?xyz) refer to the same
variable

Relation names and constants:

— Alphanumeric starting with a letter:
« Example: Abc, aBC123, abc_123, John
— orenclosed in single quotes
« Example: 'abc &% (, foobarl'
 Note: abc and ‘'abc' refer to the same thing

And: comma (,) or \and
Or: semicolon (;) or \or

79

Differences (cont’d)

» Negation: called \naf (negation as failure)

— Note: Flora-2 also has \neg, but it’s a different thing — don’t
use!

— Use instead:
... :— ..., \naf foobar(?X), \naf(abc(?X,?Y),cde(?Y)).
 All variables under the scope of \naf must also occur In
the body of the rule in other non-negated relations:
something : — p(?X), \naf foobar(?X,?Y), q(?Y), ...
— If not, that variable is implicitly existentially
quantified and will likely have undefined truth value:
somethingelse: - p(?X,?Z), \naf foobar(?X,?Y), ...

80

Overview of Installation

« Windows: download the installer, double-click,
follow the prompts
e Linux/Mac:

Download the flora2.run file, put it where appropriate,
then type

sh flora2.run
then follow the prompts.

« Consult i
for the details, if necessary.

81

http://flora.sourceforge.net/installation.html

Use of Flora-2

Put your ruleset and data in a file with extension .flr
p(?X) : - q(?X,?). /larule
q(1,a). //afact
q(2,a).

q(b,c).
?2- p(?X). [/l aquery (starts with a ?-)

Don’t forget: all rules, queries, and facts end with a period (.)
Comments: /*...*/ or //.... (like in Java/C++)
Type

.../flora2/runflora (Linux/Mac)

...\flora2\runflora (Windows)

where ... 1s the path to the download directory
In Windows, you will also see a desktop icon, which you can double-click.

You will see a prompt
flora2 ?-
and are now ready to type in queries

82

Use of Flora-2 (cont’d)

 Loading your program, myprog.flr

flora2 ?- [myprog]. //or

flora2 ?- ['H:/abc/cde/myprog’]. // note: / even in windows (or \\)
Flora-2 will compile myprog.flr (if necessary) and
load it. Now you can type further queries. E.g.:

flora2 ?- p(?X).

flora2 ?- p(1).

etc.

83

Some Useful Built-Ins

write(?X)@\io — write whatever ?X is bound to

writeln(?X)@\io — write then put newline

« E.g., write(‘Hello World”)@\io.
« ?7X = ‘Hello World’, writeln(?X)@\io.

nl@\io — output newline

Equality, comparison: =, >, <, >=, =<
Inequality: !=

Lexicographic comparison: @>, @<

You might need more, so take a look at the manual, if
necessary.
http://flora.sourceforge.net/docs/floraManual.pdf

— You should need very little additional info from that manual,
If at all.

84

http://flora.sourceforge.net/docs/floraManual.pdf

Arithmetics

* |f you need it: use the builtin \is

p(1). p(2).
q(?X) :- p(?Y), ?X \is 2Y*2.

Now q(2), q(4) will become true.

* Note:
q(2*?X) :- p(?X).

will not do what you might think it would do.

It will make g(2*1) and q(2*2) true,

where 2*1 and 2*2 are expressions, not numbers.

2*1 # 2 and 2*2 # 4 (no need to get into all that now)

85

Some Useful Tricks

* Flora-2 returns all answers to queries:

flora2 2- q(?X).
IX=2

2X=4

Yes

flora2 2 -

« Anonymous variables: start with a ? . Used to avoid
printing answers for some vars. Eg.,

p(1,2). a(2,3).
p(2,5). a(5,7).
p(a,b). q(c,d).
flora2 ?- p(?X,?Y), q(?Y,?Z). V5. flora2 ?- p(?X,?_Y), q(?_VY,?2).

?X=1 ?7X=1
?Y =2 ?Z=3
?Z=3

?7X=2
?X=2 =7
?Y =5

?2Z=1

Usetul Tricks (cont’d)

« More on anonymous variables:
P(?X,?Y) - q(?Y,?Z,7W), r(?2).
— Will issue 3 warnings:
a) Head-only variable ?X

b) Singleton variable ?X
c) Singleton variable ?W

— Don’t 1ignore these warnings!!

« Use anonymous vars to pacify the compiler:

pP(?_X,?Y) - q(?Y,?Z2,? W), r(?2).

87

Aggregate Functions

 func{Resultvar[GroupVari,...,GroupVarN] | condition }
— func can be avg, min, max, sum, count, some others

emp(John,CS,100). emp(Mary,CS,200).
emp(Bob,EE,75). emp(Hugh,EE,160). emp(Ugo,EE,300).
emp(Alice,Bi0,200).

Ny
T2s
T2
S
~~~~~
N

?X =150.0000 S

?Dept = CS I

72X = 178.3333 Anonymous — don t
i want in answers
?Dept = EE \

?X =200.0000
?Dept = Bio

88



Quantifiers

 Supports explicit quantifiers: exist and

forall. Also some, exists, all, each.

?- Student(?Stud,? Name,? Addr) \and
forall(?Prof)”exist(?Crs,?Sem,?Grd)"\(
Teaching(?Prof,?Crs,?Sem) ~~>
Transcript(?Stud,?Crs,?Sem,?Grd)

).

« Students (?Stud) who took a course from
every teaching professor

89



Quantifiers (cont’d)

« Students (?Stu) who took a course from every CS prof:

?- Student(?Stu,? _Name,? Addr) \and
forall(?Prof)”exist(?Crs,?Sem,?Grd)”\(
Professor(?Prof,CS) ~~> RS |
Teaching(?Prof,2Crs,?Sem), '
Transcript(?Stu,?Crs,?Sem,?Grd)

Slightly different from the previous query because this implies that every
professor must have taught something. E.g., excludes some research or visiting
professors.

90



