
 Relational Calculus,Visual Query

Languages, and Deductive Databases

Chapter 13

2

SQL and Relational Calculus

• Although relational algebra is useful in the

analysis of query evaluation, SQL is

actually based on a different query

language: relational calculus

• There are two relational calculi:

– Tuple relational calculus (TRC)

– Domain relational calculus (DRC)

3

Tuple Relational Calculus

• Form of query:

 {T | Condition(T)}

– T is the target – a variable that ranges over

tuples of values

– Condition is the body of the query

• Involves T (and possibly other variables)

• Evaluates to true or false if a specific tuple is

substituted for T

4

Tuple Relational Calculus: Example

• When a concrete tuple has been substituted
for T:
– Teaching(T) is true if T is in the relational

instance of Teaching

– T.Semester = ‘F2000’ is true if the semester
attribute of T has value F2000

– Equivalent to:

{T | Teaching(T) AND T.Semester = ‘F2000’}

SELECT *

FROM Teaching T

WHERE T.Semester = ‘F2000’

5

Relation Between SQL and TRC

• Target T corresponds to SELECT list: the query
result contains the entire tuple

• Body split between two clauses:

– Teaching(T) corresponds to FROM clause

– T.Semester = ‘F2000’ corresponds to WHERE clause

{T | Teaching(T) AND T.Semester = ‘F2000’}

SELECT *

FROM Teaching T

WHERE T.Semester = ‘F2000’

6

Query Result

• The result of a TRC query with respect to a

given database is the set of all choices of

tuples for the variable T that make the query

condition a true statement about the

database

7

Query Condition
• Atomic condition:

– P(T), where P is a relation name

– T.A oper S.B or T.A oper const, where T and S are

relation names, A and B are attributes and oper is a

comparison operator (e.g., =, ,<, >, , etc)

• (General) condition:

– atomic condition

– If C1 and C2 are conditions then C1 AND C2 ,

 C1 OR C2, and NOT C1 are conditions

– If R is a relation name, T a tuple variable, and C(T)

is a condition that uses T, then T R (C(T)) and

TR (C(T)) are conditions

8

Bound and Free Variables

• X is a free variable in the statement C1: “X is in CS305”

(this might be represented more formally as C1(X))

– The statement is neither true nor false in a particular state of

the database until we assign a value to X

• X is a bound (or quantified) variable in the statement

C2: “there exists a student X such that X is in CS305”

(this might be represented more formally as

 X S (C2(X))

 where S is the set of all students)
• This statement can be assigned a truth value for any particular state of

the database

9

Bound and Free Variables in TRC Queries

• Bound variables are used to make assertions about
tuples in database (used in conditions)

• Free variables designate the tuples to be returned by
the query (used in targets)

 {S | Student(S) AND ( TTranscript
 (S.Id = T.StudId AND T.CrsCode = ‘CS305’)) }

– When a value is substituted for S the condition has value
true or false

• There can be only one free variable in a condition
(the one that appears in the target)

10

Example

• Returns the set of all course tuples
corresponding to the courses that have been
taken by every student

{ E | Course(E) AND

 SStudent (

  TTranscript (

 T.StudId = S.Id AND

 T. CrsCode = E.CrsCode

)
)
 }

11

TRC Syntax Extension

• We add syntactic sugar to TRC, which
simplifies queries and makes the syntax even
closer to that of SQL

 {S.Name, T.CrsCode | Student (S) AND Transcript (T)

 AND … }

instead of

 {R | SStudent (R.Name = S.Name)

 AND TTranscript (R.CrsCode = T.CrsCode)

 AND …}

where R is a new tuple variable with attributes Name and CrsCode

12

Relation Between TRC and SQL (cont’d)

• List the names of all professors who have
taught MGT123

– In TRC:

 {P.Name | Professor(P) AND TTeaching

 (P.Id = T.ProfId AND T.CrsCode = ‘MGT123’) }

– In SQL:

 SELECT P.Name

 FROM Professor P, Teaching T

 WHERE P.Id = T.ProfId AND T.CrsCode = ‘MGT123’

The Core SQL is merely a syntactic sugar on top of TRC

13

What Happened to Quantifiers in SQL?

• SQL has no quantifiers: how come? Because it uses

conventions:

– Convention 1. Universal quantifiers are not allowed (but SQL:1999

introduced a limited form of explicit )

– Convention 2. Make existential quantifiers implicit: Any tuple

variable that does not occur in SELECT is assumed to be implicitly

quantified with 

• Compare:

 {P.Name | Professor(P) AND TTeaching … }

and

 SELECT P.Name

 FROM Professor P, Teaching T

 … … …

Implicit

 T

14

• SQL uses a subset of TRC with simplifying
conventions for quantification

• Restricts the use of quantification and negation (so
TRC is more general in this respect)

• SQL uses aggregates, which are absent in TRC
(and relational algebra, for that matter). But
aggregates can be added to TRC

• SQL is extended with relational algebra operators
(MINUS, UNION, JOIN, etc.)

– This is just more syntactic sugar, but it makes queries
easier to write

Relation Between TRC and SQL (cont’d)

15

More on Quantification

• Adjacent existential quantifiers and adjacent

universal quantifiers commute:

– TTranscript (T1Teaching (…)) is same as

T1Teaching (TTranscript (…))

• Adjacent existential and universal quantifiers do

not commute:

– TTranscript (T1Teaching (…)) is different

from T1 Teaching (TTranscript (…))

16

More on Quantification (con’t)

• A quantifier defines the scope of the quantified variable
(analogously to a begin/end block):

 TR1 (U(T) AND TR2 (V(T)))

 is the same as:

 TR1 (U(T) AND SR2 (V(S)))

• Universal domain: Assume a domain, U, which is a

union of all other domains in the database. Then,

instead of T  U and S  U we simply write

T and  T

17

Views in TRC

• Problem: List students who took a course from every

professor in the Computer Science Department

• Solution:

– First create view: All CS professors

 CSProf = {P.ProfId | Professor(P) AND P.DeptId = ‘CS’}

– Then use it

{S. Id | Student(S) AND

 PCSProf TTeaching RTranscript (

 AND P. Id = T.ProfId AND S.Id = R.StudId AND

 T.CrsCode = R.CrsCode AND T.Semester = R.Semester

) }

18

Queries with Implication

• Did not need views in the previous query, but doing it
without a view has its pitfalls: need the implication 
(if-then):

{S. Id | Student(S) AND

 PProfessor (

 P.DeptId = ‘CS’ 

 T1Teaching R  Transcript (

 P.Id = T1.ProfId AND S.Id = R.Id

 AND T1.CrsCode = R.CrsCode

 AND T1.Semester = R.Semester
)
)
 }

• Why P.DeptId = ‘CS’  … and not P.DeptId = ‘CS’ AND … ?
• Read those queries aloud (but slowly) in English and try to understand!

19

More complex SQL to TRC Conversion

• Using views, translation between complex SQL
queries and TRC is direct:

 SELECT R1.A, R2.C

 FROM Rel1 R1, Rel2 R2

 WHERE condition1(R1, R2) AND

 R1.B IN (SELECT R3.E

 FROM Rel3 R3, Rel4 R4

 WHERE condition2(R2, R3, R4))

versus:

 {R1.A, R2.C | Rel1(R1) AND Rel2(R2) AND condition1(R1, R2)

 AND R3Temp (R1.B = R3.E AND R2.C = R3.C

 AND R2.D = R3.D) }

 Temp = {R3.E, R2.C, R2.D | Rel2(R2) AND Rel3(R3)

 AND R4Rel4 (condition2(R2, R3, R4))}

TRC view

corresponds

to subquery

20

Domain Relational Calculus (DRC)

• A domain variable is a variable whose value is

drawn from the domain of an attribute

– Contrast this with a tuple variable, whose value is an

entire tuple

– Example: The domain of a domain variable Crs

might be the set of all possible values of the

CrsCode attribute in the relation Teaching

21

Queries in DRC

• Form of DRC query:

 {X1 , …, Xn | condition(X1 , …, Xn) }

• X1 , …, Xn is the target: a list of domain variables.

• condition(X1 , …, Xn) is similar to a condition in TRC;
uses free variables X1 , …, Xn.

– However, quantification is over a domain

• X Teaching.CrsCode (… … …)

– i.e., there is X in Teaching.CrsCode, such that condition is true

• Example: {Pid, Code | Teaching(Pid, Code, ‘F1997’)}

– This is similar to the TRC query:

 {T | Teaching(T) AND T.Semester = ‘F1997’}

22

Query Result

• The result of the DRC query

 {X1 , …, Xn | condition(X1 , …, Xn) }

 with respect to a given database is the set

of all tuples (x1 , …, xn) such that, for i =

1,…,n, if xi is substituted for the free

variable Xi , then condition(x1 , …, xn) is a

true statement about the database

– Xi can be a constant, c, in which case xi = c

23

Examples

• List names of all professors who taught MGT123:

 {Name | Id Dept (Professor(Id, Name, Dept) AND

 Sem (Teaching(Id, ‘MGT123’, Sem)))}

– The universal domain is used to abbreviate the query

– Note the mixing of variables (Id, Sem) and constants (MGT123)

• List names of all professors who ever taught Ann

{Name | Pid Dept (

 Professor(Pid, Name, Dept) AND

 Crs Sem Grd Sid Add Stat (

 Teaching(Pid, Crs, Sem) AND

 Transcript(Sid, Crs, Sem, Grd) AND

 Student(Sid, ‘Ann’, Addr, Stat)

)) }

Lots of  – a

hallmark of DRC.

Conventions like

in SQL can be used

to shorten queries

24

Relation Between Relational Algebra,
TRC, and DRC

• Consider the query {T | NOT Q(T)}: returns the set of

all tuples not in relation Q

– If the attribute domains change, the result set changes as well

– This is referred to as a domain-dependent query

• Another example: {T| S (R(S)) \/ Q(T)}

– Try to figure out why this is domain-dependent

• Only domain-independent queries make sense, but

checking domain-independence is undecidable

– But there are syntactic restrictions that guarantee domain-

independence

25

Relation Between Relational Algebra,

TRC, and DRC (cont’d)

• Relational algebra (but not DRC or TRC) queries

are always domain-independent (prove by

induction!)

• TRC, DRC, and relational algebra are equally

expressive for domain-independent queries

– Proving that every domain-independent TRC/DRC

query can be written in the algebra is somewhat hard

– We will show the other direction: that algebraic queries

are expressible in TRC/DRC

26

Relationship between Algebra, TRC, DRC

• Algebra: Condition(R)

• TRC: {T | R(T) AND Condition1}

• DRC: {X1,…,Xn | R(X1,…,Xn) AND Condition2 }

• Let Condition be A=B AND C=‘Joe’. Why Condition1
and Condition2?

– Because TRC, DRC, and the algebra have slightly different
syntax:

 Condition1 is T.A=T.B AND T.C=‘Joe’

 Condition2 would be A=B AND C=‘Joe’

 (possibly with different variable names)

27

Relationship between Algebra, TRC, DRC

• Algebra: A,B,C(R)

• TRC: {T.A,T.B,T.C | R(T)}

• DRC: {A,B,C | D E… R(A,B,C,D,E,…) }

• Algebra: R  S

• TRC: {T.A,T.B,T.C,V.D,V,E | R(T) AND S(V) }

• DRC: {A,B,C,D,E | R(A,B,C) AND S(D,E) }

28

Relationship between Algebra, TRC, DRC

• Algebra: R  S

• TRC: {T | R(T) OR S(T)}

• DRC: {A,B,C | R(A,B,C) OR S(A,B,C) }

• Algebra: R – S

• TRC: {T | R(T) AND NOT S(T)}

• DRC: {A,B,C | R(A,B,C) AND NOT S(A,B,C) }

29

QBE: Query by Example

• Declarative query language, like SQL

• Based on DRC (rather than TRC)

• Visual

• Other visual query languages (MS Access,

Paradox) are just incremental improvements

30

QBE Examples

Professor Id Name DeptId

Professor Id Name DeptId

P._John MGT

P. MGT

Print all professors’ names in the MGT department

Same, but print all attributes

Operator “Print”
Targetlist “example”

variable

• Literals that start with “_” are variables.

31

Joins in QBE

Professor Id Name DeptId

_123 P._John

Teaching ProfId CrsCode Semester

_123 MGT123

• Names of professors who taught MGT123 in any semester

 except Fall 2002

< > ‘F2002’

Simple conditions placed
directly in columns

32

Condition Boxes

• Some conditions are too complex to be placed directly

 in table columns

Transcript StudId CrsCode Semester Grade

P. CS532 _Gr

Conditions

_Gr = ‘A’ OR _Gr = ‘B’

• Students who took CS532 & got A or B

33

Aggregates, Updates, etc.

• Has aggregates (operators like AVG, COUNT),

grouping operator, etc.

• Has update operators

• To create a new table (like SQL’s CREATE TABLE),

simply construct a new template:

HasTaught Professor Student

I. 123456789 567891012

34

A Complex Insert Using a Query

Teaching ProfId CrsCode Semester

HasTaught Professor Student

I. _12345 _5678

HasTaught Professor Student

P.

Transcript StudId CrsCode Semester Grade

_5678 _CS532 _S2002

_S2002 _CS532 _12345

q
u
e
r
y

query
target

u
p
d
a
t
e

35

Connection to DRC

• Obvious: just a graphical representation of DRC

• Uses the same convention as SQL: existential

quantifiers () are omitted

Transcript StudId CrsCode Semester Grade

_123 _CS532 F2002 A

Transcript(X, Y, ‘F2002’, ‘A’)

36

Pitfalls: Negation
• List all professors who didn’t teach anything in S2002:

Professor Id Name DeptId

_123 P.

Teaching ProfId CrsCode Semester

_123 S2002 

• Problem: What is the quantification of CrsCode?

 {Name | Id DeptId CrsCode (Professor(Id,Name,DeptId) AND

 NOT Teaching(Id,CrsCode,’S2002’)) }

• Not what was intended(!!), but what the convention about implicit
quantification says

 or

 {Name | Id DeptId CrsCode (Professor(Id,Name,DeptId) AND ……}

• The intended result!

37

Negation Pitfall: Resolution

• QBE changed its convention:
• Variables that occur only in a negated table are implicitly

quantified with  instead of 

• For instance: CrsCode in our example. Note: _123 (which
corresponds to Id in DRC formulation) is quantified with ,
because it also occurs in the non-negated table Professor

• Still, problems remain! Is it
{Name | Id DeptId CrsCode (Professor(Id,Name,DeptId) AND …}

or

{Name | CrsCode Id DeptId (Professor(Id,Name,DeptId) AND …}

Not the same query!

– QBE decrees that the -prefix goes first

Id DeptId CrsCode VS. CrsCode Id DeptId

 {Name | Id DeptId CrsCode (Professor(Id,Name,DeptId) AND

 NOT Teaching(Id,CrsCode,’S2002’) }

 {Name | CrsCode Id DeptId (Professor(Id,Name,DeptId) AND

 NOT Teaching(Id,CrsCode,’S2002’) }

38

Names

such that

Names

such that

… exists

a professor

such that

… for every

course

… exists

a professor

… that professor (Id)

is not teaching that

course(CrsCode)

For every

course

… who (Id) is not

teaching that

course(CrsCode)

39

Microsoft Access

40

PC Databases

• A spruced up version of QBE (better interface)

• Be aware of implicit quantification

• Beware of negation pitfalls

41

Deductive Databases

• Motivation: Limitations of SQL

• Recursion in SQL:1999

• Datalog – a better language for complex

queries

42

Limitations of SQL

• Given a relation Prereq with attributes Crs and PreCrs,
list the set of all courses that must be completed prior
to enrolling in CS632

– The set Prereq 2, computed by the following expression,
contains the immediate and once removed (i.e. 2-step
prerequisites) prerequisites for all courses:

– In general, Prereqi contains all prerequisites up to those that
are i-1 removed for all courses:

Crs, PreCrs ((Prereq PreCrs=Crs Prereq)[Crs, P1, C2, PreCrs]

  Prereq

Crs, PreCrs ((Prereq PreCrs=Crs Prereqi-1)[Crs, P1, C2, PreCrs]

  Prereqi-1

43

Limitations of SQL (con’t)

• Question: We can compute Crs=‘CS632’(Prereqi)
to get all prerequisites up to those that are i-1
removed, but how can we be sure that there are
not additional prerequisites that are i removed?

• Answer: When you reach a value of i such that
Prereqi = Prereqi+1 you’ve got them all. This is
referred to as a stable state

• Problem: There’s no way of doing this within
relational algebra, DRC, TRC, or SQL (this is
not obvious and not easy to prove)

44

Recursion in SQL:1999

• Recursive queries can be formulated using a

recursive view:

• (a) is a non-recursive subquery – it cannot refer to

the view being defined

– Starts recursion off by introducing the base case – the

set of direct prerequisites

CREATE RECURSIVE VIEW IndirectPrereq (Crs, PreCrs) AS

SELECT * FROM Prereq

UNION

SELECT P.Crs, I.PreCrs

FROM Prereq P, IndirectPrereq I

WHERE P.PreCrs = I.Crs

(a)

(b)

45

Recursion in SQL:1999 (cont’d)

• (b) contains recursion – this subquery refers to the

view being defined.

– This is a declarative way of specifying the iterative

process of calculating successive levels of indirect

prerequisites until a stable point is reached

CREATE RECURSIVE VIEW IndirectPrereq (Crs, PreCrs) AS

SELECT * FROM Prereq

UNION

SELECT P.Crs, I.PreCrs

FROM Prereq P, IndirectPrereq I

WHERE P.PreCrs = I.Crs

(b)

46

Recursion in SQL:1999

• The recursive view can be evaluated by computing

successive approximations

– IndirectPrereqi+1 is obtained by taking the union of

IndirectPrereqi with the result of the query

 SELECT P.Crs, I.PreCrs

 FROM Prereq P, IndirectPrereqi I

 WHERE P.PreCrs = I.Crs

– Successive values of IndirectPrereqi are computed until a

stable state is reached, i.e., when the result of the query

(IndirectPrereqi+1) is contained in IndirectPrereqi

47

Recursion in SQL:1999

• Also provides the WITH construct, which does not require

views.

• Can even define mutually recursive queries:

 WITH

 RECURSIVE OddPrereq(Crs, PreCrs) AS

 (SELECT * FROM Prereq)

 UNION

 (SELECT P.Crs, E.PreCrs

 FROM Prereq P, EvenPrereq E

 WHERE P.PreCrs=E.Crs)),

 RECURSIVE EvenPrereq(Crs, PreCrs) AS

 (SELECT P.Crs, O.PreCrs

 FROM Prereq P, OddPrereq O

 WHERE P.PreCrs = O.Crs)

 SELECT * FROM OddPrereq

48

Datalog

• Rule-based query language

• Easier to use, more modular than SQL

• Much easier to use for recursive queries

• Extensively used in research

• Partial implementations of Datalog are used
commercially

• W3C is standardizing a version of Datalog for the
Semantic Web

– RIF-BLD: Basic Logic Dialect of the Rule Interchange
Format http://www.w3.org/TR/rif-bld/

49

Basic Syntax

• Rule:
head :- body.

• Query:
?- body.

• body: any DRC expression without the
quantifiers.

• AND is often written as ‘,’ (without the quotes)

• OR is often written as ‘;’

• head: a DRC expression of the form R(t1,…,tn),
where ti is either a constant or a variable; R is a
relation name.

• body in a rule and in a query has the same syntax.

50

Basic Syntax (cont’d)

NameSem(?Name,?Sem) :- Prof(?Id,?Name,?Dept), Teach(?Id,’MGT123’,?Sem).

?- NameSem(?Name,?Sem).

Answers:

 ?Name = kifer

 ?Sem = F2005

 ?Name = lewis

 ?Sem = F2004

 … … …

Derived relation;

Like a database view

Base relation, if never

occurs in a rule head

51

Basic Syntax (cont’d)

• Datalog’s quantification of variables

– Like in SQL and QBE: implicit

– Variables that occur in the rule body, but not in

the head are viewed as being quantified with 

– Variables that occur in the head are like target

variables in SQL, QBE, and DRC

52

Basic Semantics

NameSem(?Name,?Sem) :- Prof(?Id,?Name,?Dept), Teach(?Id,’MGT123’,?Sem).

?- NameSem(?Name, ?Sem).

The easiest way to explain the semantics is to use DRC:

 NameSem = {Name,Sem| Id Dept (Prof(Id,Name,Dept) AND

 Teaching(Id, ‘MGT123’, Sem)) }

53

Basic Semantics (cont’d)

• Another way to understand rules:

NameSem(?Name,?Sem) :- Prof(?Id,?Name,?Dept), Teach(?Id,’MGT123’,?Sem).

 (bob, F2002) (1111, bob, CS) and (1111, MGT123, F2002)

If these tuples exist

Then this one must also exist

As in DRC, join is indicated

by sharing variables







54

Union Semantics of Multiple Rules

• Consider rules with the same head-predicate:

 NameSem(?Name,?Sem) :- Prof(?Id,?Name,?Dept), Teach(?Id,’MGT123’,?Sem).

 NameSem(?Name,?Sem) :- Prof(?Id,?Name,?Dept), Teach(?Id,’CS532’,?Sem).

• Semantics is the union:

 NameSem = {Name, Sem| Id Dept (

 (Prof(Id,Name,Dept) AND Teaching(Id, ‘MGT123’, Sem))

 OR (Prof(Id,Name,Dept) AND Teaching(Id, ‘CS532’, Sem))

) }

 Equivalently:

 NameSem = {Name, Sem| Id Dept (

 Prof(Id,Name,Dept) AND

 (Teaching(Id, ‘MGT123’, Sem) OR Teaching(Id, ‘CS532’, Sem))

) }

• Above rules can also be written in one rule:

 NameSem(?Name,?Sem) :- Prof(?Id,?Name,?Dept),

 (Teach(?Id,’MGT123’,?Sem) ; Teach(?Id,’CS532’,?Sem)).

by distributivity

55

Recursion

• Recall: DRC cannot express transitive closure

• SQL was specifically extended with recursion

to capture this (in fact, by mimicking Datalog)

• Example of recursion in Datalog:

IndirectPrereq(?Crs,?Pre) :- Prereq(?Crs,?Pre).

IndirectPrereq(?Crs,?Pre) :-

 Prereq(?Crs,?Intermediate),

 IndirectPrereq(?Intermediate,?Pre).

56

Semantics of Recursive Datalog

Without Negation

• Positive rules

– No negation (not) in the rule body

– No disjunction in the rule body

• The last restriction does not limit the expressive power: H :-

(B;C) is equivalent to H :- B and H :- C because

– H :- B is H or not B

– Hence

» H or not (B or C) is equivalent to the pair of formulas

 H or not B

 and

 H or not C.

57

Semantics of Negation-free Datalog (cont’d)

• A Datalog rule

 HeadRelation(HeadVars) :- Body

 can be represented in DRC as

HeadRelation = {HeadVars | BodyOnlyVars Body}

• We call this the DRC query corresponding to

the above Datalog rule

58

Semantics of Negation-free Datalog -

An Algorithm

• Semantics can be defined completely
declaratively, but we will define it using an
algorithm

• Input: A set of Datalog rules without

 negation + a database

• The initial state of the computation:

– Base relations – have the content assigned to
them by the database

– Derived relations – initially empty

59

Semantics of Negation-free Datalog -

An Algorithm (cont’d)

1. CurrentState := InitialDBState

2. For each derived relation R, let r1,…,rk be all the rules that
have R in the head

• Evaluate the DRC queries that correspond to each ri

• Assign the union of the results from these queries to R

3. NewState := the database where instances of all derived
relations have been replaced as in Step 2 above

4. if CurrentState = NewState

 then Stop: NewState is the stable state that represents the

 meaning of that set of Datalog rules on the given DB

 else CurrentState := NewState; Goto Step 2.

60

Semantics of Negation-free Datalog - An
Algorithm (cont’d)

• The algorithm always terminates:
– CurrentState constantly grows (at least, never shrinks)

• Because DRC expressions of the form

 Vars (A and/or B and/or C …)

 which have no negation, are monotonic: if tuples are added to the database, the
result of such a DRC query grows monotonically

– It cannot grow indefinitely (Why?)

• Complexity: number of steps is polynomial in the size of the DB (if
the ruleset is fixed)
– D – number of constants in DB;

 N – sum of all arities

– Can’t take more than DN iterations

– Each iteration can produce at most DN tuples

 Hence, the number of steps is O(DN * DN)

61

Expressivity

• Recursive Datalog can express queries that

cannot be done in DRC (e.g., transitive

closure) – recall recursive SQL

• DRC can express queries that cannot be

expressed in Datalog without negation (e.g.,

complement of a relation or set-difference

of relations)

• Datalog with negation is strictly more

expressive than DRC

62

Negation in Datalog

• Uses of negation in the rule body:

– Simple uses: For set difference

– Complex cases: When the (relational algebra)

division operator is needed

• Expressing division is hard, as in SQL, since no

explicit universal quantification

63

Negation (cont’d)

• Find all students who took a course from every professor
Answer(?Sid) :- Student(?Sid, ?Name, ?Addr),

 not DidNotTakeAnyCourseFromSomeProf(?Sid).

DidNotTakeAnyCourseFromSomeProf(?Sid) :-

 Professor(?Pid,?Pname,?Dept),

 Student(?Sid,?Name,?Addr),

 not HasTaught(?Pid,?Sid).

HasTaught(?Pid,?Sid) :- Teaching(?Pid,?Crs,?Sem),

 Transcript(?Sid,?Crs,?Sem,?Grd).

?- Answer(?Sid).

• Not as straightforward as in DRC, but still quite logical!

64

Negation Pitfalls: Watch Your Variables

• Has problem similar to the wrong choice of operands in

relational division

• Consider: Find all students who have passed all courses

that were taught in spring 2006

 StudId, CrsCode,Grade (Grade ‘F’ (Transcript)) / CrsCode (Semester=‘S2006’ (Teaching)

)

 versus
 StudId, CrsCode (Grade ‘F’ (Transcript)) / CrsCode (Semester=‘S2006’ (Teaching))

 Which is correct? Why?

65

Negation Pitfalls (cont’d)

• Consider a reformulation of: Find all students who took a course from
every professor

Answer(?Sid) :-

 Student(?Sid, ?Name, ?Addr),

 Professor(?Pid,?Pname,?Dept),

 not ProfWhoDidNotTeachStud(?Sid,?Pid).

ProfWhoDidNotTeachStud(?Sid,?Pid) :-

 Professor(?Pid,?Pname,?Dept),

 Student(?Sid,?Name,?Addr),

 not HasTaught(?Pid,?Sid).

HasTaught(?Pid,?Sid) :- … … …

?- Answer(?Sid).

• What’s wrong?

• So, the answer will consist of students who were taught by
some professor

The only real differences compared

to
DidNotTakeAnyCourseFromSomeProf

?Pid ?Name

Implied

quantification

is wrong!

66

Negation and a Pitfall: Another Example

• Negation can be used to express containment: Students who took every

course taught by professor with Id 1234567 in spring 2006.

– DRC

{Name | CrsGradeSid

 (Student(Sid, Name),

 (Teaching(1234567,Crs,’S2006’)

 => Transcript(Sid,Crs,’S2006’,Grade)))}

– Datalog
Answer(?Name) :- Student(?Sid,?Name),

 not DidntTakeS2006CrsFrom1234567(?Sid).

DidntTakeS2006CrsFrom1234567(?Sid) :-

 Teaching(1234567,?Crs,’S2006’), not TookS2006Course(?Sid,?Crs).

TookS2006Course(?Sid,?Crs) :- Transcript(?Sid,?Crs,’S2006’,?Grade).

– Pitfall: Transcript(?Sid,?Crs,’S2006’,?Grade) here won’t do because of

?Grade !

67

Negation and Recursion

• What is the meaning of a ruleset that has recursion
through not?

• Already saw this in recursive SQL – same issue

 OddPrereq(?X,?Y) :- Prereq(?X,?Y).

 OddPrereq(?X,?Y) :- Prereq(?X,?Z), EvenPrereq(?Z,?Y),

 not EvenPrereq(?X,?Y).

 EvenPrereq(?X,?Y) :- Prereq(?X,?Z), OddPrereq(?Z,?Y).

 ?- OddPrereq(?X,?Y).

• Problem:

– Computing OddPrereq depends on knowing the complement of
EvenPrereq

– To know the complement of EvenPrereq, need to know EvenPrereq

– To know EvenPrereq, need to compute OddPrereq first!

68

Negation Through Recursion (cont’d)

• The algorithm for positive Datalog wont work

with negation in the rules:

– For convergence of the computation, it relied on the

monotonicity of the DRC queries involved

– But with negation in DRC, these queries are no

longer monotonic:

Query = {X | P(X) and not Q(X)}

P(a), P(b), P(c); Q(a) => Query result: {b,c}

Add Q(b) => Query result shrinks: just {c}

69

“Well-behaved” Negation

• Negation is “well-behaved” if there is no
recursion through it

P(?X,?Y) :- Q(?X,?Z), not R(?X,?Y).

Q(?X,?Y) :- P(?X,?Z), R(?X,?Y).

R(?X,?Y) :- S(?X,?Z), R(?Z,?V), not T(?V,?Y).

R(?X,?Y) :- V(?X,?Z).

P

Q

–

S T

–

Dependency graph

Evaluation method for P:
1. Compute T , then its complement, not T

2. Compute R using the Negation-free

 Datalog algorithm. Treat not T as base

relation

3. Compute not R

4. Compute Q and P using Negation-free

Datalog algorithm. Treat not R as base

R

V

Negative

arcs

Negative

arcs

Positive

arcs

Positive

arcs

70

“Ill-behaved” Negation
• What was wrong with the even/odd

prerequisites example?

 OddPrereq(?X,?Y) :- Prereq(?X,?Y).

 OddPrereq(?X,?Y) :- Prereq(?X,?Z), EvenPrereq(?Z,?Y),

 not EvenPrereq(?X,?Y).

 EvenPrereq(?X,?Y) :- Prereq(?X,?Z), OddPrereq(?Z,?Y).

OddPrereq EvenPrereq

Prereq

-

Dependency graph

Cycle through negation in

dependency graph

71

Dependency Graph for a Ruleset R

• Nodes: relation names in R

• Arcs:

– if P(…) :- …, Q(…), … is in R then the

dependency graph has a positive arc Q -----> R

– if P(…) :- …, not Q(…), … is in R then the

dependency graph has a negative arc

 Q -----> R (marked with the minus sign) -

72

Strata in a Dependency Graph

• A stratum is a positively strongly connected
component, i.e., a subset of nodes such that:

– No negative paths among any pair of nodes in the set

– Every pair of nodes has a positive path connecting them
(i.e., a----> b and b----> a)

Q

–

S T

–

R

V

P

Strata

73

Stratification

• Partial order on the strata: if there is a path from a
node in a stratum, , to a stratum φ, then  < φ.

 (Are  < φ and φ <  possible together?)

• Stratification: any total order of the strata that is
consistent with the above partial order.

Q

–

S T

–

R

V

P

1
2

3

4
5

A possible stratification:

 3 , 5 , 4 , 2 , 1

Another stratification:

 5 , 4 , 3 , 2 , 1

74

Stratifiable Rulesets

• This is what we meant earlier by “well-behaved”

rulesets

• A ruleset is stratifiable if it has a stratification

• Easy to prove (see the book):

– A ruleset is stratifiable iff its dependency graph has

no negative cycles (or if there are no cycles, positive

or negative, among the strata of the graph)

75

Partitioning of a Ruleset According to Strata

• Let R be a ruleset and let 1 , 2 , … , n be a

stratification

• Then the rules of R can be partitioned into

subsets Q1 , Q2 , …, Qn, where each Qi includes

exactly those rules whose head relations belong to i

76

Evaluation of a Stratifiable Ruleset, R

1. Partition the relations of R into strata

2. Stratify (order)

3. Partition the ruleset according to the strata into the subsets Q1 ,
Q2 , Q3 , …, Qn

4. Evaluate

a. Evaluate the lowest stratum, Q1, using the negation-free algorithm

b. Evaluate the next stratum, Q2, using the results for Q1 and the algorithm
for negation-free Datalog

– If relation P is defined in Q1 and used in Q2, then treat P as a base relation in Q2

– If not P occurs in Q2, then treat it as a new base relation, NotP, whose extension
is the complement of P (which can be computed, since P was computed earlier,
during the evaluation of Q1)

c. Do the same for Q3 using the results from the evaluation of Q2, etc.

77

Unstratified Programs

• Truth be told, stratification is not needed to

evaluate Datalog rulesets. But this becomes

a rather complicated stuff, which we won’t

touch. (Refer to the bibliographic notes, if

interested.)

78

The Flora-2 Datalog System

• We will use Flora-2 for Project 1

• Download: http://flora.sourceforge.net/ (take the

latest release for your OS, currently 1.2)

– Can also use Ergo Suite from

coherentknowledge.com/free-trial – has IDE and other

bells & whistles.

• Not just a Datalog system – it is a complete

programming language, called Rulelog, which

happens to support Datalog

• Has a number of extensions, some of which you

need to know about for the project

79

Differences

• Variables: as in this lecture (start with a ?)

• Each occurrence of a singleton symbol ? Or ?_ is treated as a new variable,
which was never seen before:
– Example: p(?,abc), q(cde,?) – the two ?’s are treated as completely different

variables

– But the two occurrences of ? xyz in p(?xyz,abc), q(cde,?xyz) refer to the same
variable

• Relation names and constants:
– Alphanumeric starting with a letter:

• Example: Abc, aBC123, abc_123, John

– or enclosed in single quotes
• Example: 'abc &% (, foobar1'

• Note: abc and 'abc' refer to the same thing

• And: comma (,) or \and

• Or: semicolon (;) or \or

80

Differences (cont’d)

• Negation: called \naf (negation as failure)
– Note: Flora-2 also has \neg, but it’s a different thing – don’t

use!

– Use instead:
 … :- …, \naf foobar(?X), \naf(abc(?X,?Y),cde(?Y)).

• All variables under the scope of \naf must also occur in
the body of the rule in other non-negated relations:

something :- p(?X), \naf foobar(?X,?Y), q(?Y), …

– If not, that variable is implicitly existentially
quantified and will likely have undefined truth value:

somethingelse:- p(?X,?Z), \naf foobar(?X,?Y), …

81

Overview of Installation

• Windows: download the installer, double-click,
follow the prompts

• Linux/Mac:

 Download the flora2.run file, put it where appropriate,
then type

 sh flora2.run

 then follow the prompts.

• Consult http://flora.sourceforge.net/installation.html
for the details, if necessary.

http://flora.sourceforge.net/installation.html

82

Use of Flora-2

• Put your ruleset and data in a file with extension .flr
p(?X) :- q(?X,?). // a rule

q(1,a). // a fact

q(2,a).

q(b,c).

?- p(?X). // a query (starts with a ?-)

• Don’t forget: all rules, queries, and facts end with a period (.)

• Comments: /*…*/ or //.... (like in Java/C++)

• Type
…/flora2/runflora (Linux/Mac)

…\flora2\runflora (Windows)

 where … is the path to the download directory

In Windows, you will also see a desktop icon, which you can double-click.

• You will see a prompt

 flora2 ?-

 and are now ready to type in queries

83

Use of Flora-2 (cont’d)

• Loading your program, myprog.flr
flora2 ?- [myprog]. // or

flora2 ?- [‘H:/abc/cde/myprog’]. // note: / even in windows (or \\)

 Flora-2 will compile myprog.flr (if necessary) and

load it. Now you can type further queries. E.g.:

flora2 ?- p(?X).

flora2 ?- p(1).

etc.

84

Some Useful Built-ins
• write(?X)@\io – write whatever ?X is bound to

• writeln(?X)@\io – write then put newline
• E.g., write(‘Hello World’)@\io.

• ?X = ‘Hello World’, writeln(?X)@\io.

• nl@\io – output newline

• Equality, comparison: =, >, <, >=, =<

• Inequality: !=

• Lexicographic comparison: @>, @<

• You might need more, so take a look at the manual, if
necessary:

 http://flora.sourceforge.net/docs/floraManual.pdf

– You should need very little additional info from that manual,
if at all.

http://flora.sourceforge.net/docs/floraManual.pdf

85

Arithmetics

• If you need it: use the builtin \is
p(1). p(2).

q(?X) :- p(?Y), ?X \is ?Y*2.

Now q(2), q(4) will become true.

• Note:

 q(2*?X) :- p(?X).

will not do what you might think it would do.

It will make q(2*1) and q(2*2) true,

where 2*1 and 2*2 are expressions, not numbers.

2*1 ≠ 2 and 2*2 ≠ 4 (no need to get into all that now)

86

Some Useful Tricks
• Flora-2 returns all answers to queries:

 flora2 ?- q(?X).

 ?X = 2

 ?X = 4
 Yes
 flora2 ?-

• Anonymous variables: start with a ?_. Used to avoid
printing answers for some vars. Eg.,

 p(1,2). q(2,3).

 p(2,5). q(5,7).

 p(a,b). q(c,d).

flora2 ?- p(?X,?Y), q(?Y,?Z). Vs. flora2 ?- p(?X,?_Y), q(?_Y,?Z).

?X = 1 ?X=1

?Y = 2 ?Z=3

?Z = 3

 ?X=2

?X = 2 ?Z=7

?Y = 5

?Z = 7

Useful Tricks (cont’d)

• More on anonymous variables:

 p(?X,?Y) :- q(?Y,?Z,?W), r(?Z).

– Will issue 3 warnings:

a) Head-only variable ?X

b) Singleton variable ?X

c) Singleton variable ?W

– Don’t ignore these warnings!!

• Use anonymous vars to pacify the compiler:

 p(?_X,?Y) :- q(?Y,?Z,?_W), r(?Z).

87

Aggregate Functions
• func{ResultVar[GroupVar1,…,GroupVarN] | condition }

– func can be avg, min, max, sum, count, some others

emp(John,CS,100). emp(Mary,CS,200).

emp(Bob,EE,75). emp(Hugh,EE,160). emp(Ugo,EE,300).

emp(Alice,Bio,200).

?- ?X = avg{?Sal[?Dept] | emp(?_Emp, ?Dept, ?Sal)}.

?X = 150.0000

?Dept = CS

?X = 178.3333

?Dept = EE

?X = 200.0000

?Dept = Bio

88

Anonymous – don’t

want in answers

Quantifiers

• Supports explicit quantifiers: exist and

forall. Also some, exists, all, each.
?- Student(?Stud,?_Name,?_Addr) \and

 forall(?Prof)^exist(?Crs,?Sem,?Grd)^(

 Teaching(?Prof,?Crs,?Sem) ~~>

 Transcript(?Stud,?Crs,?Sem,?Grd)

).

• Students (?Stud) who took a course from

every teaching professor

89

Quantifiers (cont’d)

• Students (?Stu) who took a course from every CS prof:

?- Student(?Stu,?_Name,?_Addr) \and

 forall(?Prof)^exist(?Crs,?Sem,?Grd)^(

 Professor(?Prof,CS) ~~>

 Teaching(?Prof,?Crs,?Sem),

 Transcript(?Stu,?Crs,?Sem,?Grd)

).

 Slightly different from the previous query because this implies that every

professor must have taught something. E.g., excludes some research or visiting

professors.

90

implication

