
1

1

Relational Normalization Theory

Chapter 6

2

Limitations of E-R Designs

• Provides a set of guidelines, does not result
in a unique database schema

• Does not provide a way of evaluating
alternative schemas

• Normalization theory provides a mechanism
for analyzing and refining the schema
produced by an E-R design

2

3

Redundancy

• Dependencies between attributes cause
redundancy
– Ex. All addresses in the same town have the

same zip code

SSN Name Town Zip
1234 Joe Stony Brook 11790
4321 Mary Stony Brook 11790
5454 Tom Stony Brook 11790

………………….

Redundancy

4

Redundancy and Other Problems

• Set valued attributes in the E-R diagram result in
multiple rows in corresponding table

• Example: PersonPerson (SSN, Name, Address, Hobbies)

– A person entity with multiple hobbies yields multiple
rows in table PersonPerson

• Hence, the association between Name and Address for the
same person is stored redundantly

– SSN is key of entity set, but (SSN, Hobby) is key of
corresponding relation

• The relation PersonPerson can’t describe people without hobbies

3

5

Example

SSN Name Address Hobby

1111 Joe 123 Main biking
1111 Joe 123 Main hiking

…………….

SSN Name Address Hobby

1111 Joe 123 Main {biking, hiking}

ER Model

Relational Model

Redundancy

6

Anomalies

• Redundancy leads to anomalies:
– Update anomaly: A change in Address must be

made in several places
– Deletion anomaly: Suppose a person gives up

all hobbies. Do we:
• Set Hobby attribute to null? No, since Hobby is part

of key
• Delete the entire row? No, since we lose other

information in the row

– Insertion anomaly: Hobby value must be
supplied for any inserted row since Hobby is
part of key

4

7

Decomposition

• Solution: use two relations to store PersonPerson
information
–– Person1Person1 (SSN, Name, Address)
–– HobbiesHobbies (SSN, Hobby)

• The decomposition is more general: people
with hobbies can now be described

• No update anomalies:
– Name and address stored once
– A hobby can be separately supplied or

deleted

8

Normalization Theory

• Result of E-R analysis need further
refinement

• Appropriate decomposition can solve
problems

• The underlying theory is referred to as
normalization theorynormalization theory and is based on
functional dependenciesfunctional dependencies (and other kinds,
like multivaluedmultivalued dependenciesdependencies)

5

9

Functional Dependencies

• Definition: A functional dependencyfunctional dependency (FD) on a
relation schema R is a constraint X → Y, where X
and Y are subsets of attributes of R.

• Definition: An FD X → Y is satisfiedsatisfied in an
instance r of R if for every pair of tuples, t and
s: if t and s agree on all attributes in X then they
must agree on all attributes in Y
– Key constraint is a special kind of functional

dependency: all attributes of relation occur on the
right-hand side of the FD:

• SSN → SSN, Name, Address

10

Functional Dependencies

• Address → ZipCode
– Stony Brook’s ZIP is 11733

• ArtistName → BirthYear
– Picasso was born in 1881

• Autobrand → Manufacturer, Engine type
– Pontiac is built by General Motors with gasoline engine

• Author, Title → PublDate
– Shakespeare’s Hamlet published in 1600

6

11

Functional Dependency - Example

• Consider a brokerage firm that allows multiple clients to
share an account, but each account is managed from a
single office and a client can have no more than one
account in an office

–– HasAccountHasAccount (AcctNum, ClientId, OfficeId)
• keys are (ClientId, OfficeId), (AcctNum, ClientId)

– Client, OfficeId → AcctNum

– AcctNum → OfficeId
• Thus, attribute values need not depend only on key values

12

Entailment, Closure, Equivalence

• Definition: If F is a set of FDs on schema R and f is
another FD on R, then F entailsentails f if every instance r of
R that satisfies every FD in F also satisfies f
– Ex: F = {A → B, B→ C} and f is A → C

• If Town → Zip and Zip → AreaCode then Town → AreaCode

• Definition: The closureclosure of F, denoted F+, is the set of
all FDs entailed by F

• Definition: F and G are equivalentequivalent if F entails G and G
entails F

7

13

Entailment (cont’d)
• Satisfaction, entailment, and equivalence are semantic

concepts – defined in terms of the actual relations in the
“ real world.”
– They define what these notions are, not how to compute them

• How to check if F entails f or if F and G are
equivalent?
– Apply the respective definitions for all possible relations?

• Bad idea: might be infinite number for infinite domains
• Even for finite domains, we have to look at relations of all arities

– Solution: find algorithmic, syntactic ways to compute these
notions

• Important: The syntactic solution must be “correct” with respect to the
semantic definitions

• Correctness has two aspects: soundnesssoundness and completenesscompleteness – see later

14

Armstrong’s Axioms for FDs

• This is the syntactic way of computing/testing
the various properties of FDs

• Reflexivity: If Y ⊆ X then X → Y (trivial FD)
– Name, Address → Name

• Augmentation: If X → Y then X Z→ YZ
– If Town → Zip then Town, Name → Zip, Name

• Transitivity: If X → Y and Y → Z then X → Z

8

15

Soundness
• Axioms are soundsound: If an FD f: X→ Y can be derived

from a set of FDs F using the axioms, then f holds in
every relation that satisfies every FD in F.

• Example: Given X→ Y and X→ Z then

– Thus, X→ Y Z is satisfied in every relation where both X→ Y
and X→ Z are satisfied

• Therefore, we have derived the union ruleunion rule for FDs: we can take the
union of the RHSs of FDs that have the same LHS

X → XY Augmentation by X
YX → YZ Augmentation by Y
X → YZ Transitivity

16

Completeness

• Axioms are completecomplete: If F entails f , then f
can be derived from F using the axioms

• A consequence of completeness is the
following (naïve) algorithm to determining
if F entails f:
–– AlgorithmAlgorithm: Use the axioms in all possible ways

to generate F+ (the set of possible FD’s is finite
so this can be done) and see if f is in F+

9

17

Correctness

• The notions of soundness and completeness
link the syntax (Armstrong’s axioms) with
semantics (the definitions in terms of
relational instances)

• This is a precise way of saying that the
algorithm for entailment based on the
axioms is “correct” with respect to the
definitions

18

Generating F+

F

AB→ C
AB→ BCD

A→ D AB→ BD AB→ BCDE AB→ CDE

D→ E BCD → BCDE

Thus, AB→ BD, AB → BCD, AB → BCDE, and AB →→ CDE
are all elements of F+

union
aug

trans

aug

decomp

10

19

Attribute Closure

• Calculating attribute closure leads to a more
efficient way of checking entailment

• The attribute closureattribute closure of a set of attributes, X,
with respect to a set of functional dependencies,
F, (denoted X+

F) is the set of all attributes, A,
such that X → A
– X +F1 is not necessarily the same as X +F2 if F1 ≠ F2

• Attribute closure and entailment:
–– AlgorithmAlgorithm: Given a set of FDs, F, then X → Y if and

only if X+
F ⊇ Y

20

Example - Computing Attribute Closure

F: AB → C
A → D
D → E
AC → B

X XF
+

A {A, D, E}
AB {A, B, C, D, E}

(Hence AB is a key)

B {B}
D {D, E}

Is AB → E entailed by F? Yes
Is D→ C entailed by F? No

Result: XF
+ allows us to determine FDs

of the form X → Y entailed by F

11

21

Computation of Attribute Closure X+
F

closure := X; // since X ⊆ X+
F

repeat
old := closure;
if there is an FD Z → V in F such that

Z ⊆ closure and V ⊆ closure
then closure := closure ∪ V

until old = closure

– If T ⊆ closure then X → T is entailed by F

22

Example: Computation of Attribute Closure

AB → C (a)
A → D (b)
D → E (c)
AC → B (d)

Problem: Compute the attribute closure of AB with
respect to the set of FDs :

Initially closure = {AB}
Using (a) closure = {ABC}
Using (b) closure = {ABCD}
Using (c) closure = {ABCDE}

Solution:

12

23

Normal Forms
• Each normal form is a set of conditions on a schema

that guarantees certain properties (relating to
redundancy and update anomalies)

• First normal form (1NF) is the same as the definition
of relational model (relations = sets of tuples; each
tuple = sequence of atomic values)

• Second normal form (2NF) – a research lab accident;
has no practical or theoretical value – won’t discuss

• The two commonly used normal forms are third third
normal formnormal form (3NF) and BoyceBoyce--CoddCodd normal formnormal form
(BCNF)

24

BCNF

• Definition: A relation schema R is in BCNF if
for every FD X→ Y associated with R either

– Y ⊆ X (i.e., the FD is trivial) or
– X is a superkey of R

• Example: Person1Person1(SSN, Name, Address)
– The only FD is SSN → Name, Address

– Since SSN is a key, Person1Person1 is in BCNF

13

25

(non) BCNF Examples

•• PersonPerson (SSN, Name, Address, Hobby)
– The FD SSN → Name, Address does not satisfy

requirements of BCNF
• since the key is (SSN, Hobby)

•• HasAccountHasAccount (AcctNum, ClientId, OfficeId)
– The FD AcctNum→ OfficeId does not satisfy BCNF

requirements
• since keys are (ClientId, OfficeId) and (AcctNum, ClientId);

not AcctNum.

26

Redundancy
• Suppose R has a FD A → B, and A is not a superkey. If an

instance has 2 rows with same value in A, they must also
have same value in B (=> redundancy, if the A-value
repeats twice)

• If A is a superkey, there cannot be two rows with same
value of A
– Hence, BCNF eliminates redundancy

SSN → Name, Address

SSN Name Address Hobby
1111 Joe 123 Main stamps
1111 Joe 123 Main coins

redundancy

14

27

Third Normal Form
• A relational schema R is in 3NF if for

every FD X→ Y associated with R either:

– Y ⊆ X (i.e., the FD is trivial); or

– X is a superkey of R; or

– Every A∈ Y is part of some key of R
• 3NF is weaker than BCNF (every schema

that is in BCNF is also in 3NF)

BCNF
conditions

28

3NF Example

•• HasAccountHasAccount (AcctNum, ClientId, OfficeId)
– ClientId, OfficeId → AcctNum

• OK since LHS contains a key

– AcctNum → OfficeId

• OK since RHS is part of a key

•• HasAccountHasAccount is in 3NF but it might still contain
redundant information due to AcctNum � OfficeId
(which is not allowed by BCNF)

15

29

3NF (Non) Example

•• PersonPerson (SSN, Name, Address, Hobby)

– (SSN, Hobby) is the only key.

– SSN→ Name violates 3NF conditions
since Name is not part of a key and SSN
is not a superkey

30

Decompositions

• Goal: Eliminate redundancy by
decomposing a relation into several
relations in a higher normal form

• Decomposition must be losslesslossless: it must be
possible to reconstruct the original relation
from the relations in the decomposition

• We will see why

16

31

Decomposition
• Schema R = (R, F)

– R is set a of attributes
– F is a set of functional dependencies over R

• Each key is described by a FD

• The decompositiondecomposition of schemaof schema R is a collection of
schemas Ri = (Ri, Fi) where
– R = ∪i Ri for all i (no new attributes)
– Fi is a set of functional dependences involving only

attributes of Ri

– F entails Fi for all i (no new FDs)

• The decomposition of an instancedecomposition of an instance, r, of R is a set
of relations ri = πRi(r) for all i

32

Example Decomposition

Schema (R, F) where
R = {SSN, Name, Address, Hobby}
F = {SSN→ Name, Address}

can be decomposed into
R1 = {SSN, Name, Address}
F1 = {SSN → Name, Address}

and
R2 = {SSN, Hobby}
F2 = { }

17

33

Lossless Schema Decomposition

• A decomposition should not lose information
• A decomposition (R1,…, Rn) of a schema, R, is

losslesslosslessif every valid instance, r, of R can be
reconstructed from its components:

• where each ri = πRi(r)

r = r1 r2 rn……

34

Lossy Decomposition

r ⊆ r1 r2 ... rn

SSN Name Address SSN Name Name Address

1111 Joe 1 Pine 1111 Joe Joe 1 Pine
2222 Alice 2 Oak 2222 Alice Alice 2 Oak
3333 Alice 3 Pine 3333 Alice Alice 3 Pine

r ⊇ r1 r2 rn...

r1 r2r ⊇

The following is always the case (Think why?):

But the following is not always true:

Example:

The tuples (2222, Alice, 3 Pine) and (3333, Alice, 2 Oak) are in the join,
but not in the original

18

35

Lossy Decompositions:
What is Actually Lost?

• In the previous example, the tuples (2222, Alice, 3
Pine) and (3333, Alice, 2 Oak) were gained, not lost!
– Why do we say that the decomposition was lossy?

• What was lost is information:
– That 2222 lives at 2 Oak: In the decomposition, 2222 can

live at either 2 Oak or 3 Pine

– That 3333 lives at 3 Pine: In the decomposition, 3333 can
live at either 2 Oak or 3 Pine

36

Testing for Losslessness

• A (binary) decomposition of R = (R, F)
into R1 = (R1, F1) and R2 = (R2, F2) is
lossless if and only if :
– either the FD

• (R1 ∩ R2) → R1 is in F+

– or the FD
• (R1 ∩ R2) → R2 is in F+

19

37

Example
Schema (R, F) where

R = {SSN, Name, Address, Hobby}
F = {SSN → Name, Address}

can be decomposed into
R1 = {SSN, Name, Address}
F1 = {SSN → Name, Address}

and
R2 = {SSN, Hobby}
F2 = { }

Since R1 ∩ R2 = SSN and SSN → R1 the
decomposition is lossless

38

Intuition Behind the Test for
Losslessness

• Suppose R1 ∩ R2 → R2 . Then a row of r1
can combine with exactly one row of r2 in
the natural join (since in r2 a particular set
of values for the attributes in R1 ∩ R2
defines a unique row)

R1 ∩ R2 R1 ∩ R2

…………. a a ………...
………… a b ………….
………… b c ………….
………… c

r1 r2

20

39

If R1 ∩ R2 → R2 then
card (r1

Proof of Lossless Condition

• r ⊆ r1 r2 – this is true for any decomposition

r2) = card (r1)

But card (r) ≥ card (r1) (since r1 is a projection of r)

and therefore card (r) ≥ card (r1 r2)

Hence r = r1 r2

• r ⊇ r1 r2

(since each row of r1 joins with exactly one row of r2)

40

Dependency Preservation
• Consider a decomposition of R = (R, F) into R1 = (R1,

F1) and R2 = (R2, F2)
– An FD X → Yof F+ is in Fi iff X ∪ Y ⊆ Ri

– An FD, f ∈F+ may be in neither F1, nor F2, nor even
(F1 ∪ F2)

+

• Checking that f is true in r1 or r2 is (relatively) easy
• Checking f in r1 r2 is harder – requires a join
• Ideally: want to check FDs locally, in r1 and r2, and have

a guarantee that every f ∈F holds in r1 r2

• The decomposition is dependency preservingdependency preserving iff the sets
F and F1 ∪ F2 are equivalent: F+ = (F1 ∪ F2)+

– Then checking all FDs in F, as r1 and r2 are updated, can be
done by checking F1 in r1 and F2 in r2

21

41

Dependency Preservation

• If f is an FD in F, but f is not in F1 ∪ F2,
there are two possibilities:
– f ∈ (F1 ∪ F2)+

• If the constraints in F1 and F2 are maintained, f
will be maintained automatically.

– f ∉ (F1 ∪ F2)+

• f can be checked only by first taking the join of r1

and r2. This is costly.

42

Example
Schema (R, F) where

R = {SSN, Name, Address, Hobby}
F = {SSN → Name, Address}

can be decomposed into
R1 = {SSN, Name, Address}
F1 = {SSN → Name, Address}

and
R2 = {SSN, Hobby}
F2 = { }

Since F = F1 ∪ F2 the decomposition is
dependency preserving

22

43

Example

• Schema: (ABC; F) , F = {A
�

B, B � C, C � B}
• Decomposition:

– (AC, F1), F1 = {A � C}
• Note: A � C ∉ F, but in F+

– (BC, F2), F2 = {B � C, C � B}

• A
�

B ∉ (F1 ∪ F2), but A
�

B ∈ (F1 ∪ F2)
+.

– So F+ = (F1 ∪ F2)+ and thus the decompositions is
still dependency preserving

Example
•• HasAccountHasAccount (AcctNum, ClientId, OfficeId)

f1: AcctNum → OfficeId
f2: ClientId, OfficeId → AcctNum

• Decomposition:
R1 = (AcctNum, OfficeId; {AcctNum → OfficeId})
R2 = (AcctNum, ClientId; {})

• Decomposition is lossless:
R1 ∩ R2= {AcctNum} and AcctNum → OfficeId

• In BCNF

• Not dependency preserving: f2 ∉ (F1 ∪ F2)+

•• HasAccountHasAccount does not have BCNF decompositions that are both
lossless and dependency preserving! (Check, eg, by enumeration)

• Hence: BCNF+lossless+dependency preserving decompositions
are not always achievable!

23

45

BCNF Decomposition Algorithm

Input: R = (R; F)

Decomp := R
while there is S = (S; F’) ∈ Decomp and S not in BCNF do

Find X → Y ∈ F’ that violates BCNF // X isn’ t a superkeyin S
Replace S in Decomp with S1 = (XY; F1), S2 = (S - (Y - X); F2)
// F1 = all FDs of F’ involving only attributes of XY
// F2 = all FDs of F’ involving only attributes of S - (Y - X)

end
return Decomp

46

Simple Example
•• HasAccountHasAccount :

(ClientId, OfficeId, AcctNum)

(ClientId , AcctNum)

BCNF (only trivial FDs)

• Decompose using AcctNum→ OfficeId :

(OfficeId, AcctNum)

BCNF: AcctNum is key
FD: AcctNum → OfficeId

ClientId,OfficeId → AcctNum
AcctNum → OfficeId

24

47

A Larger Example
Given: R = (R; F) where R = ABCDEGHK and

F = {ABH→ C, A→ DE, BGH→ K, K→ ADH, BH→ GE}
step 1: Find a FD that violates BCNF

Not ABH → C since (ABH)+ includes all attributes
(BH is a key)

A → DE violates BCNF since A is not a superkey (A+ =ADE)
step 2: Split R into:

R1 = (ADE, F1={A→ DE })
R2 = (ABCGHK; F1={ABH→C, BGH→K, K→AH, BH→G})
Note 1: R1 is in BCNF
Note 2: Decomposition is lossless since A is a key of R1.

Note 3: FDs K → D and BH → E are not in F1 or F2. But
both can be derived from F1∪ F2

(E.g., K→ A and A→ D implies K→ D)
Hence, decomposition is dependency preserving.

48

Example (con’t)

Given: R2 = (ABCGHK; {ABH→C, BGH→K, K→AH, BH→G})
step 1: Find a FD that violates BCNF.

Not ABH → C or BGH → K, since BH is a key of R2
K→ AH violates BCNF since K is not a superkey (K+ =AH)

step 2: Split R2 into:
R21 = (KAH, F21={K → AH})
R22 = (BCGK; F22={})

Note 1: Both R21 and R22 are in BCNF.
Note 2: The decomposition is lossless (since K is a key of R21)
Note 3: FDs ABH→ C, BGH→ K, BH→ G are not in F21

or F22 , and they can’t be derived from F1 ∪ F21 ∪ F22 .
Hence the decomposition is not dependency-preserving

25

49

Properties of BCNF Decomposition Algorithm

Let X → Y violate BCNF in R = (R,F) and R1 = (R1,F1),

R2 = (R2,F2) is the resulting decomposition. Then:

• There are fewer violations of BCNF in R1 and R2 than
there were in R
– X → Y implies X is a key of R1

– Hence X → Y ∈ F1 does not violate BCNF in R1 and, since
X → Y ∉F2, does not violate BCNF in R2 either

– Suppose f is X � → Y � and f ∈ F doesn’t violate BCNF in R.
If f ∈ F1 or F2 it does not violate BCNF in R1 or R2 either
since X � is a superkey of R and hence also of R1 and R2 .

50

Properties of BCNF Decomposition Algorithm

• A BCNF decomposition is not necessarily
dependency preserving

• But always lossless:
since R1 ∩ R2 = X, X → Y, and R1 = XY

• BCNF+lossless+dependency preserving is
sometimes unachievable (recall HasAccountHasAccount)

26

51

Third Normal Form

• Compromise – Not all redundancy
removed, but dependency preserving
decompositions are always possible (and, of
course, lossless)

• 3NF decomposition is based on a minimal
cover

52

Minimal Cover
• A minimal coverminimal cover of a set of dependencies, F, is a set of

dependencies, U, such that:
– U is equivalent to F (F+ = U+)

– All FDs in U have the form X → A where A is a single
attribute

– It is not possible to make U smaller (while preserving
equivalence) by

• Deleting an FD

• Deleting an attribute from an FD (either from LHS or RHS)

– FDs and attributes that can be deleted in this way are called
redundantredundant

27

53

Computing Minimal Cover
• Example: F = {ABH → CK, A → D, C → E,

BGH → L, L → AD, E → L, BH → E}

• step 1: Make RHS of each FD into a single attribute
– Algorithm: Use the decomposition inference rule for FDs
– Example: L → AD replaced by L → A, L → D ; ABH → CK by

ABH →C, ABH →K

• step 2: Eliminate redundant attributes from LHS.
– Algorithm: If FD XB → A ∈ F (where B is a single attribute)

and X → A is entailed by F, then B was unnecessary
– Example: Can an attribute be deleted from ABH → C ?

• Compute AB+
F, AH+

F, BH+
F.

• Since C ∈ (BH)+
F , BH → C is entailed by F and A is redundant in

ABH → C.

54

Computing Minimal Cover (con’t)

• step 3: Delete redundant FDs from F
– Algorithm: If F – {f} entails f, then f is redundant

• If f is X → A then check if A ∈ X+
F-{f}

– Example: BGH → L is entailed by E → L, BH → E,
so it is redundant

• Note: The order of steps 2 and 3 cannot be
interchanged!! See the textbook for a
counterexample

28

55

Synthesizing a 3NF Schema

• step 1: Compute a minimal cover, U, of F. The
decomposition is based on U, but since U+ = F+

the same functional dependencies will hold
– A minimal cover for

F={ABH→CK, A→D, C→E, BGH→L, L→AD,
E→ L, BH → E}

is

U={BH→C, BH→K, A→D, C→E, L→A, E→L}

Starting with a schema R = (R, F)

56

Synthesizing a 3NF schema (con’t)

• step 2: Partition U into sets U1, U2, … Un

such that the LHS of all elements of Ui are the
same
– U1 = {BH → C, BH → K}, U2 = {A → D},

U3 = {C → E}, U4 = {L → A}, U5 = {E → L}

29

57

Synthesizing a 3NF schema (con’t)

• step 3: For each Ui form schema Ri = (Ri, Ui),
where Ri is the set of all attributes mentioned in
Ui

– Each FD of U will be in some Ri. Hence the
decomposition is dependency preserving

– R1 = (BHCK; BH→C, BH→ K), R2 = (AD; A→D),
R3 = (CE; C → E), R4 = (AL; L→A),
R5 = (EL; E → L)

58

Synthesizing a 3NF schema (con’t)

• step 4: If no Ri is a superkey of R, add schema R0 =
(R0,{}) where R0 is a key of R.
– R0 = (BGH, {})

• R0 might be needed when not all attributes are necessarily contained
in R1∪R2 …∪Rn

– A missing attribute, A, must be part of all keys
(since it’s not in any FD of U, deriving a key constraint from U
involves the augmentation axiom)

• R0 might be needed even if all attributes are accounted for in R1∪R2
…∪Rn

– Example: (ABCD; {A
�

B, C
�

D}).
Step 3 decomposition: R1 = (AB; {A

�
B}), R2 = (CD; {C

�
D}).

Lossy! Need to add (AC; { }), for losslessness

– Step 4 guarantees lossless decomposition.

30

59

BCNF Design Strategy

• The resulting decomposition, R0, R1, … Rn , is
– Dependency preserving (since every FD in U is a FD of

some schema)
– Lossless (although this is not obvious)
– In 3NF (although this is not obvious)

• Strategy for decomposing a relation
– Use 3NF decomposition first to get lossless,

dependency preserving decomposition
– If any resulting schema is not in BCNF, split it using

the BCNF algorithm (but this may yield a non-
dependency preserving result)

60

Normalization Drawbacks

• By limiting redundancy, normalization helps
maintain consistency and saves space

• But performance of querying can suffer because
related information that was stored in a single
relation is now distributed among several

• Example: A join is required to get the names and
grades of all students taking CS305 in S2002.

SELECT S.Name, T.Grade
FROM StudentStudent S, TranscriptTranscript T
WHERE S.Id = T.StudId AND

T.CrsCode = ‘CS305’ AND T.Semester = ‘S2002’

31

61

Denormalization
• Tradeoff: Judiciously introduce redundancy to improve

performance of certain queries
• Example: Add attribute Name to TranscriptTranscript

– Join is avoided
– If queries are asked more frequently than TranscriptTranscript

is modified, added redundancy might improve
average performance

– But, TranscriptTranscript
��

is no longer in BCNF since key is
(StudId, CrsCode, Semester) and StudId → Name

SELECT T.Name, T.Grade
FROM TranscriptTranscript

��

T
WHERE T.CrsCode = ‘CS305’ AND T.Semester = ‘S2002’

62

Fourth Normal Form

• Relation has redundant data
• Yet it is in BCNF (since there are no non-trivial FDs)

• Redundancy is due to set valued attributes (in the E-R
sense), not because of the FDs

SSN PhoneN ChildSSN

111111 123-4444 222222
111111 123-4444 333333
111111 321-5555 222222
111111 321-5555 333333
222222 987-6666 444444
222222 777-7777 444444
222222 987-6666 555555
222222 777-7777 555555

redundancy
PersonPerson

32

63

Multi-Valued Dependency

• Problem: multi-valued (or binary join) dependency
– Definition: If every instance of schema R can be (losslessly)

decomposed using attribute sets (X, Y) such that:

r = π X (r) π Y (r)

then a multimulti--valued dependencyvalued dependency
R = π X (R) π Y (R)

holds in r

Ex: PersonPerson=πSSN,PhoneN (PersonPerson) π SSN,ChildSSN (PersonPerson)

64

Fourth Normal Form (4NF)

• A schema is in fourth normal formfourth normal form (4NF) if
for every multi-valued dependency

R = X Y
in that schema, either:

- X ⊆ Y or Y ⊆ X (trivial case); or
- X ∩ Y is a superkey of R (i.e., X ∩ Y→ R)

33

65

Fourth Normal Form (Cont’d)

• Intuition: if X ∩ Y→ R, there is a unique row
in relation r for each value of X ∩ Y (hence
no redundancy)
– Ex: SSN does not uniquely determine PhoneN or

ChildSSN, thus PersonPerson is not in 4NF.

• Solution: Decompose R into X and Y
– Decomposition is lossless – but not necessarily

dependency preserving (since 4NF implies BCNF
– next)

66

4NF Implies BCNF
• Suppose R is in 4NF and X → Y is an FD.

– R1 = XY, R2 = R – Y is a lossless decomposition of R

– Thus R has the multi-valued dependency:

R = R1 R2

– Since R is in 4NF, one of the following must hold :
– XY⊆ R – Y (an impossibility)
– R – Y ⊆ XY (i.e., R = XY and X is a superkey)
– XY ∩ R – Y (= X) is a superkey

– Hence X → Y satisfies BCNF condition

