Relational Normalization Theory

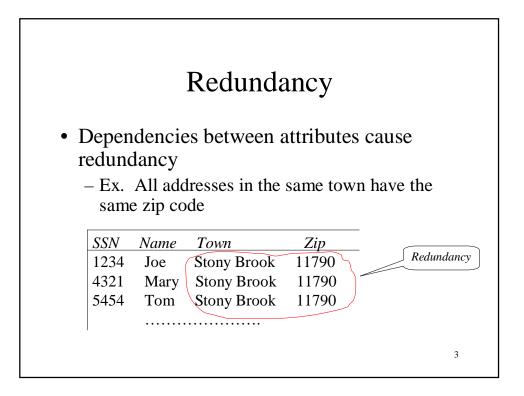
Chapter 6

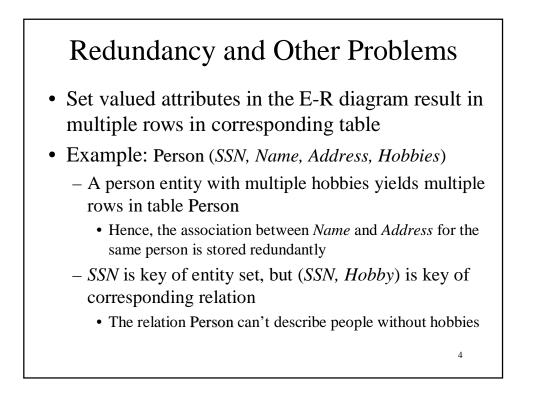
1

2

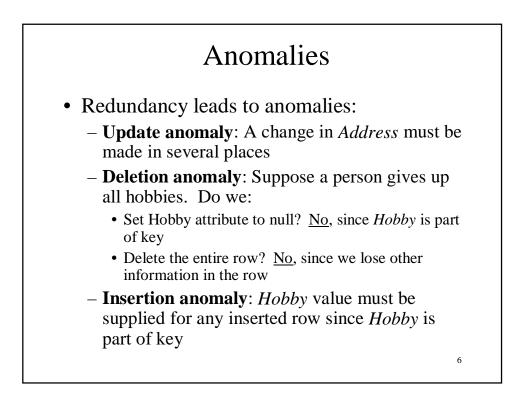
Limitations of E-R Designs

- Provides a set of guidelines, does not result in a unique database schema
- Does not provide a way of evaluating alternative schemas
- Normalization theory provides a mechanism for analyzing and refining the schema produced by an E-R design



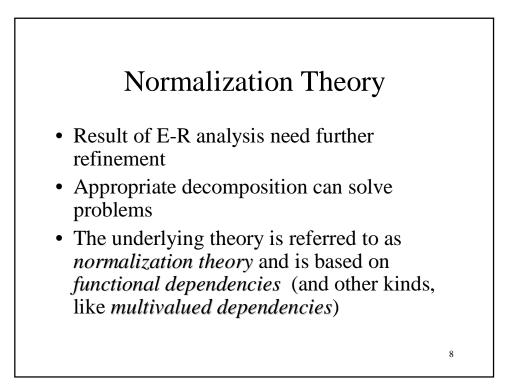


ER Model		Examp	ole		
	SSN Nar	ne Addres	s Hobby	,	
	1111 Jo				
Relational Mc	del			, ,	
	SSN Nar	ne Addres	s Hobby	_	
	1111 Jo	e 123 M	ain biking		
	1111 Jo	e 123 M	ain hiking		
				Redundancy	5



Decomposition

- **Solution**: use two relations to store Person information
 - -Person1 (SSN, Name, Address)
 - Hobbies (SSN, Hobby)
- The decomposition is more general: people with hobbies can now be described
- No update anomalies:
 - Name and address stored once
 - A hobby can be separately supplied or deleted

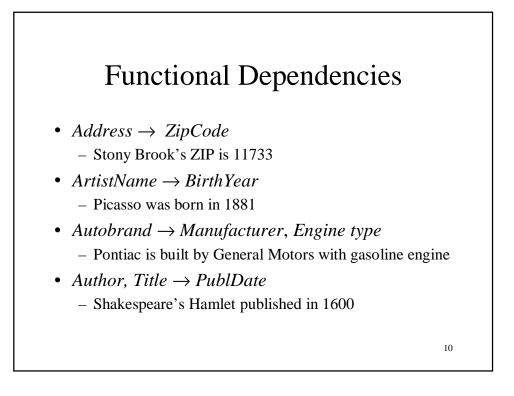


Functional Dependencies

- **Definition:** A *functional dependency* (FD) on a relation schema **R** is a <u>constraint</u> $X \rightarrow Y$, where X and Y are subsets of attributes of **R**.
- Definition: An FD X → Y is *satisfied* in an instance r of R if for <u>every</u> pair of tuples, t and s: if t and s agree on all attributes in X then they must agree on all attributes in Y
 - Key constraint is a special kind of functional dependency: all attributes of relation occur on the right-hand side of the FD:

9

• $SSN \rightarrow SSN$, Name, Address

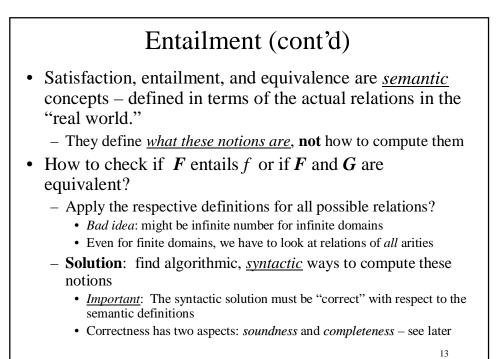


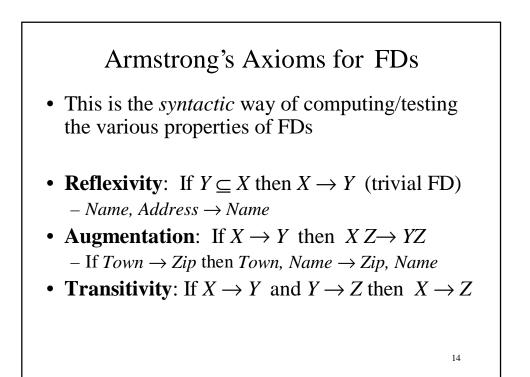
Functional Dependency - Example

- Consider a brokerage firm that allows multiple clients to share an account, but each account is managed from a single office and a client can have no more than one account in an office
 - HasAccount (AcctNum, ClientId, OfficeId)
 - keys are (ClientId, OfficeId), (AcctNum, ClientId)
 - Client, OfficeId \rightarrow AcctNum
 - AcctNum \rightarrow OfficeId
 - Thus, attribute values need not depend only on key values

11

<section-header>
Entailment, Closure, Equivalence
Definition: If *F* is a set of FDs on schema **R** and *f* is another FD on **R**, then *F* entails *f* if every instance **r** of **R** that satisfies every FD in *F* also satisfies *f*.
Ex: *F* = {*A* → *B*, *B* → *C*} and *f* is *A* → *C*.
If Town → Zip and Zip → AreaCode then Town → AreaCode
Definition: The closure of *F*, denoted *F*⁺, is the set of all FDs entailed by *F*.
Definition: *F* and *G* are equivalent if *F* entails *G* and *G* entails *F*.



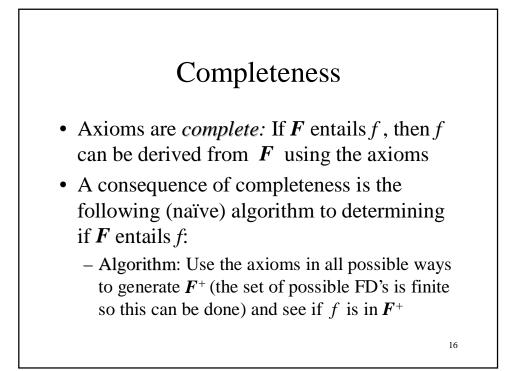


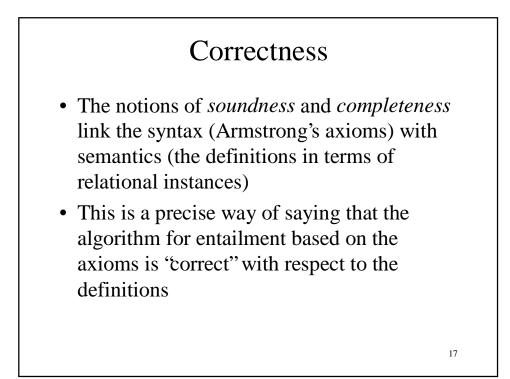
Soundness

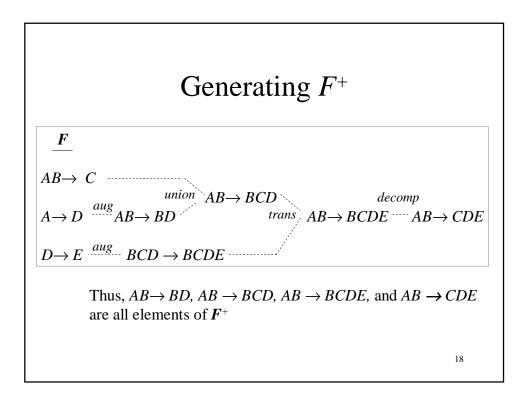
- Axioms are *sound*: If an FD $f: X \rightarrow Y$ can be derived from a set of FDs F using the axioms, then f holds in every relation that satisfies every FD in F.
- Example: Given $X \rightarrow Y$ and $X \rightarrow Z$ then

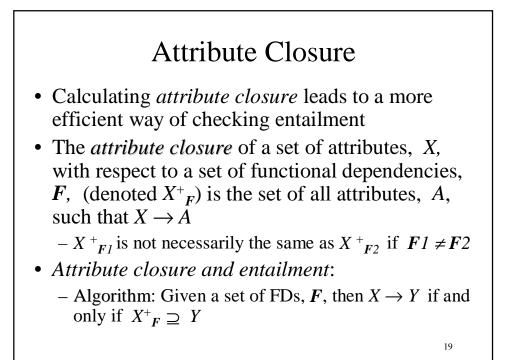
$X \rightarrow XY$	Augmentation by X
$YX \rightarrow YZ$	Augmentation by Y
$X \to YZ$	Transitivity

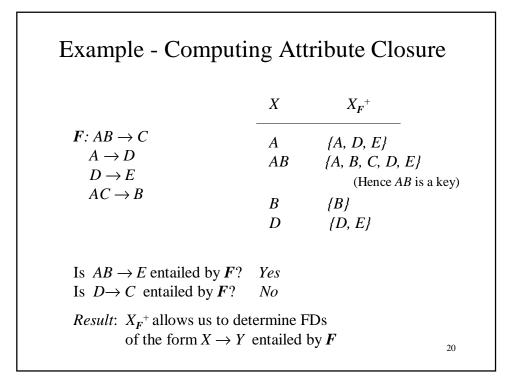
- Thus, $X \rightarrow YZ$ is satisfied in every relation where both $X \rightarrow Y$ and $X \rightarrow Z$ are satisfied
 - Therefore, we have derived the *union rule* for FDs: we can take the union of the RHSs of FDs that have the same LHS









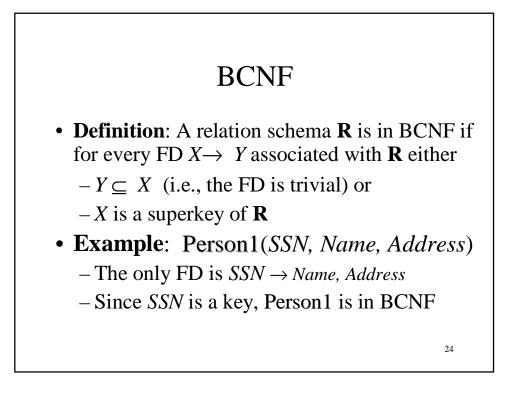


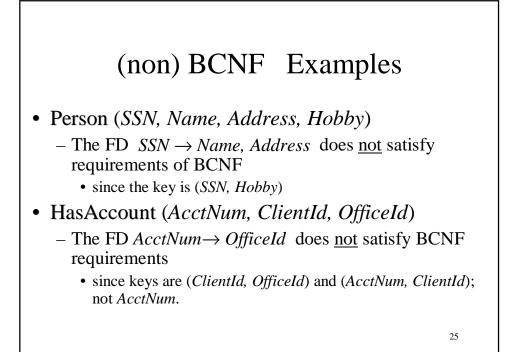
Computation of Attribute Closure X^+_F $closure := X; \quad // since X \subseteq X^+_F$ **negeat** old := closure; **if** there is an FD $Z \rightarrow V$ in F such that $Z \subseteq closure$ **and** $V \not\subseteq closure$ **then** $closure := closure \cup V$ **until** old = closure- If $T \subseteq closure$ then $X \rightarrow T$ is entailed by F

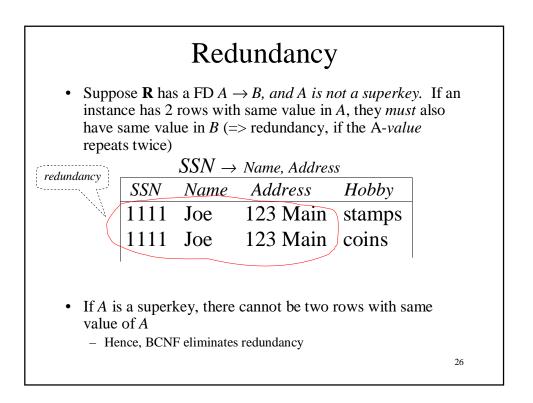
<section-header><text><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block>

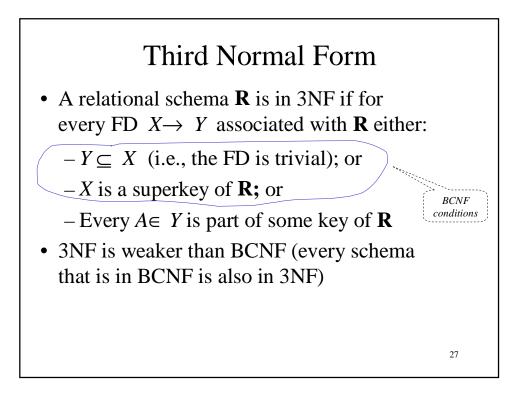
Normal Forms

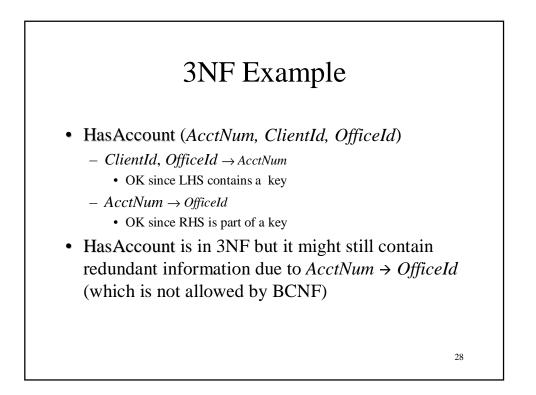
- Each normal form is a set of conditions on a schema that guarantees certain properties (relating to redundancy and update anomalies)
- First normal form (1NF) is the same as the definition of relational model (relations = sets of tuples; each tuple = sequence of atomic values)
- Second normal form (2NF) a research lab accident; has no practical or theoretical value won't discuss
- The two commonly used normal forms are *third normal form* (3NF) and *Boyce-Codd normal form* (BCNF)





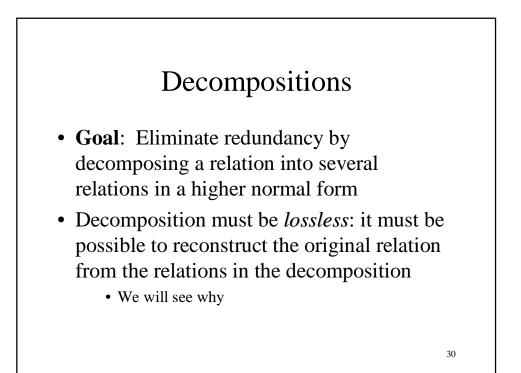






3NF (Non) Example

- Person (SSN, Name, Address, Hobby)
 - -(SSN, Hobby) is the only key.
 - $-SSN \rightarrow Name$ violates 3NF conditions since *Name* is not part of a key and *SSN* is not a superkey

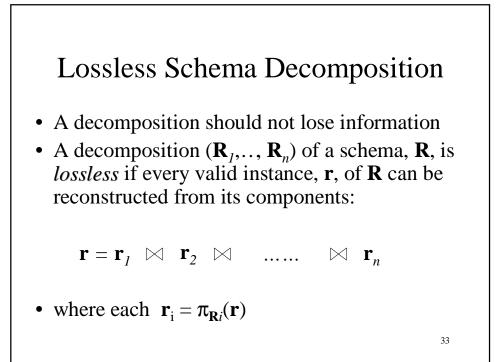


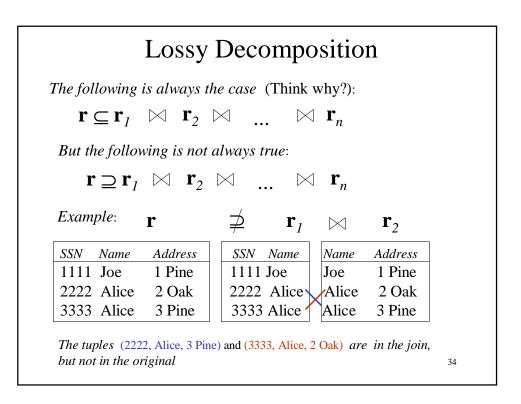
Decomposition

- Schema $\mathbf{R} = (R, F)$
 - -R is set a of attributes
 - -F is a set of functional dependencies over R
 - Each key is described by a FD
- The *decomposition of schema* R is a collection of schemas R_i = (R_i, F_i) where
 - $-R = \bigcup_i R_i$ for all *i* (no new attributes)
 - F_i is a set of functional dependences involving only attributes of R_i
 - $-\mathbf{F}$ entails \mathbf{F}_i for all i (no new FDs)
- The *decomposition of an instance*, **r**, of **R** is a set of relations **r**_i = π_{Ri}(**r**) for all *i*

31

Example Decomposition Schema (R, F) where $R = \{SSN, Name, Address, Hobby\}$ $F = \{SSN \rightarrow Name, Address\}$ can be decomposed into $R_1 = \{SSN, Name, Address\}$ $F_1 = \{SSN \rightarrow Name, Address\}$ and $R_2 = \{SSN, Hobby\}$ $F_2 = \{\}$





Lossy Decompositions: What is Actually Lost?

- In the previous example, the tuples (2222, Alice, 3 Pine) and (3333, Alice, 2 Oak) were *gained*, not lost!
 - Why do we say that the decomposition was lossy?
- What was lost is *information*:
 - That 2222 lives at 2 Oak: In the decomposition, 2222 can live at either 2 Oak or 3 Pine
 - That 3333 lives at 3 Pine: *In the decomposition, 3333 can live at either 2 Oak or 3 Pine*

35

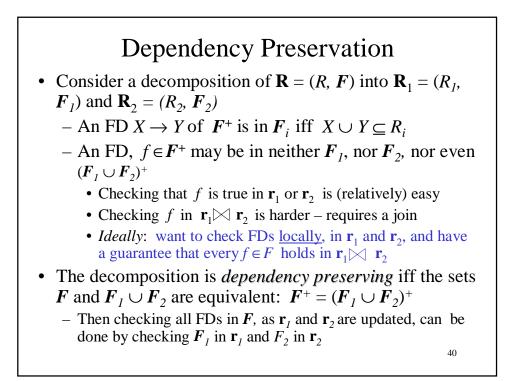
Testing for Losslessness • A (binary) decomposition of $\mathbf{R} = (R, F)$ into $\mathbf{R}_1 = (R_1, F_1)$ and $\mathbf{R}_2 = (R_2, F_2)$ is lossless *if and only if*: - either the FD $\cdot (R_1 \cap R_2) \rightarrow R_1$ is in F^+ - or the FD $\cdot (R_1 \cap R_2) \rightarrow R_2$ is in F^+

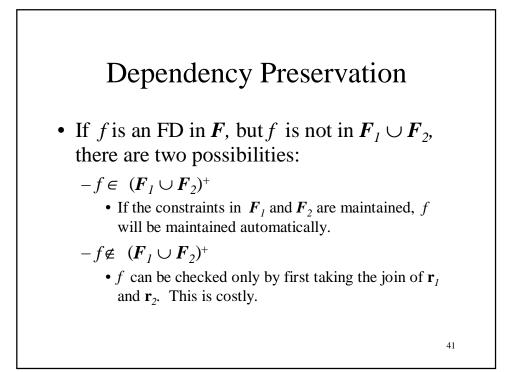
Example

Schema (R, F) where $R = \{SSN, Name, Address, Hobby\}$ $F = \{SSN \rightarrow Name, Address\}$ can be decomposed into $R_1 = \{SSN, Name, Address\}$ $F_1 = \{SSN \rightarrow Name, Address\}$ and $R_2 = \{SSN, Hobby\}$ $F_2 = \{\}$ Since $R_1 \cap R_2 = SSN$ and $SSN \rightarrow R_1$ the decomposition is lossless

<text>

Proof of Lossless Condition • $\mathbf{r} \subseteq \mathbf{r}_{1} \bowtie \mathbf{r}_{2}$ - this is true for any decomposition • $\mathbf{r} \supseteq \mathbf{r}_{1} \bowtie \mathbf{r}_{2}$ If $R_{1} \cap R_{2} \rightarrow R_{2}$ then $card(\mathbf{r}_{1} \bowtie \mathbf{r}_{2}) = card(\mathbf{r}_{1})$ (since each row of r_{1} joins with exactly one row of r_{2}) But $card(\mathbf{r}) \ge card(\mathbf{r}_{1})$ (since \mathbf{r}_{1} is a projection of \mathbf{r}) and therefore $card(\mathbf{r}) \ge card(\mathbf{r}_{1} \bowtie \mathbf{r}_{2})$ Hence $\mathbf{r} = \mathbf{r}_{1} \bowtie \mathbf{r}_{2}$





Example Schema (R, F) where $R = \{SSN, Name, Address, Hobby\}$ $F = \{SSN \rightarrow Name, Address\}$ can be decomposed into $R_1 = \{SSN, Name, Address\}$ $F_1 = \{SSN \rightarrow Name, Address\}$ and $R_2 = \{SSN, Hobby\}$ $F_2 = \{\}$ Since $F = F_1 \cup F_2$ the decomposition is dependency preserving

Example

- Schema: (ABC; F), $F = \{A \rightarrow B, B \rightarrow C, C \rightarrow B\}$
- Decomposition:
 (AC, F₁), F₁ = {A→C}
 Note: A→C ∉ F, but in F⁺
 (BC, F₂), F₂ = {B→ C, C→ B}
- $A \rightarrow B \notin (F_1 \cup F_2)$, but $A \rightarrow B \in (F_1 \cup F_2)^+$. - So $F^+ = (F_1 \cup F_2)^+$ and thus the decompositions is still dependency preserving

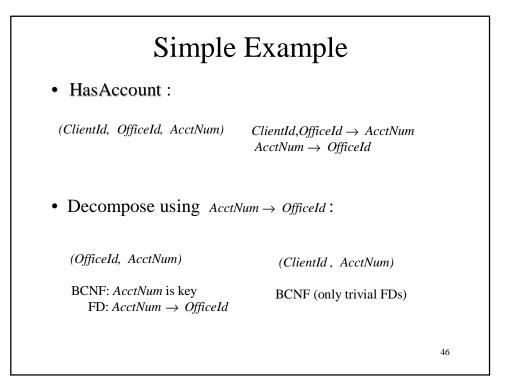
43

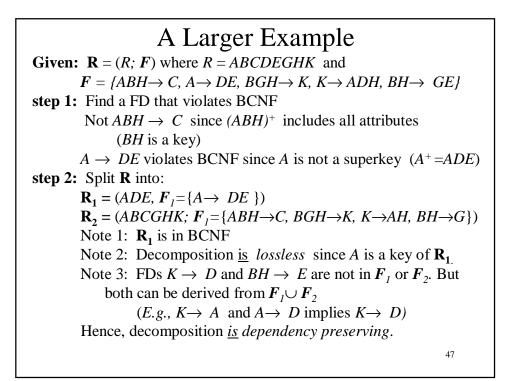
Example

- HasAccount (AcctNum, ClientId, OfficeId) $f_1: AcctNum \rightarrow OfficeId$ $f_2: ClientId, OfficeId \rightarrow AcctNum$
- Decomposition: $R_1 = (AcctNum, OfficeId; \{AcctNum \rightarrow OfficeId\})$ $R_2 = (AcctNum, ClientId; \{\})$
- Decomposition <u>is</u> lossless: $R_1 \cap R_2 = \{AcctNum\} \text{ and } AcctNum \rightarrow OfficeId$
- In BCNF
- <u>Not</u> dependency preserving: $f_2 \notin (\mathbf{F}_1 \cup \mathbf{F}_2)^+$
- HasAccount *does not* have BCNF decompositions that are both lossless and dependency preserving! (Check, eg, by enumeration)
- Hence: BCNF+lossless+dependency preserving decompositions are not always achievable!

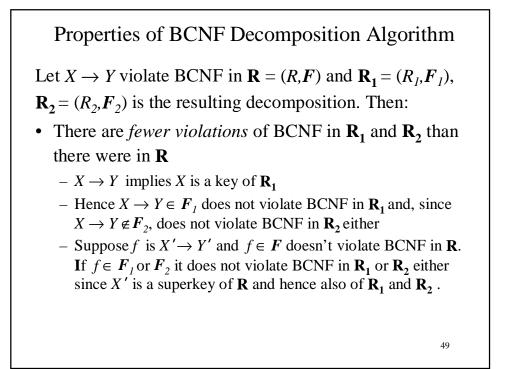
BCNF Decomposition Algorithm

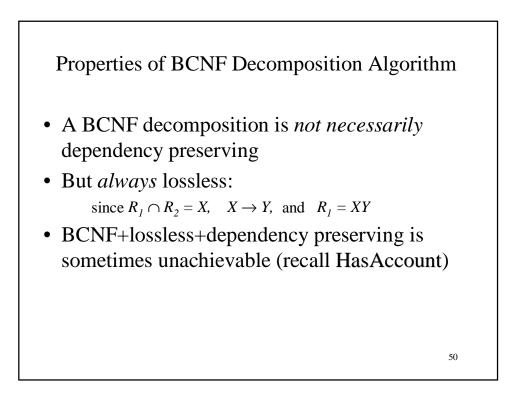
Input: $\mathbf{R} = (R; F)$ *Decomp* := \mathbf{R} **while** there is $\mathbf{S} = (S; F') \in Decomp$ and \mathbf{S} not in BCNF **do** Find $X \to Y \in F'$ that violates BCNF // X isn't a superkey in \mathbf{S} Replace \mathbf{S} in *Decomp* with $\mathbf{S}_1 = (XY; F_1)$, $\mathbf{S}_2 = (S - (Y - X); F_2)$ // $F_1 = all FDs of F'$ involving only attributes of XY // $F_2 = all FDs of F'$ involving only attributes of S - (Y - X)end return *Decomp*





<section-header><text><text><text><equation-block><text><text><text>





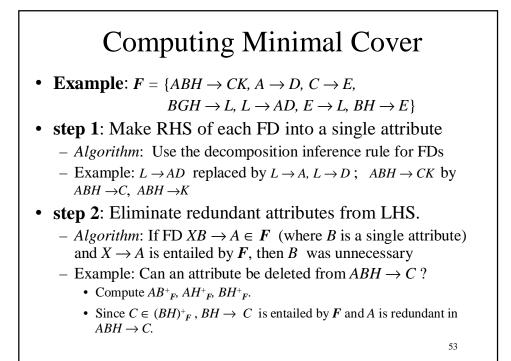
Third Normal Form

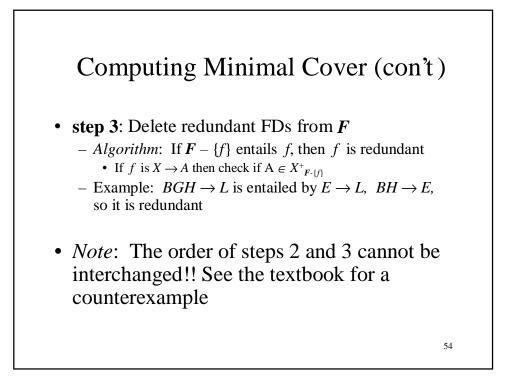
- Compromise Not all redundancy removed, but dependency preserving decompositions are <u>always</u> possible (and, of course, lossless)
- 3NF decomposition is based on a *minimal cover*

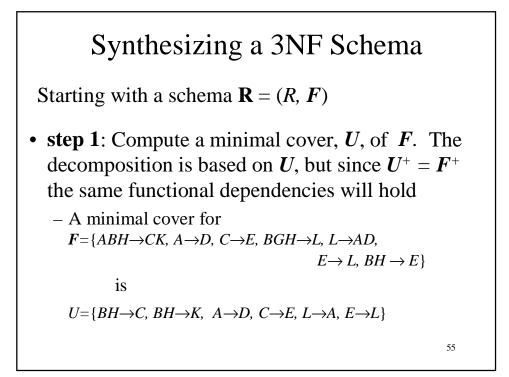
51

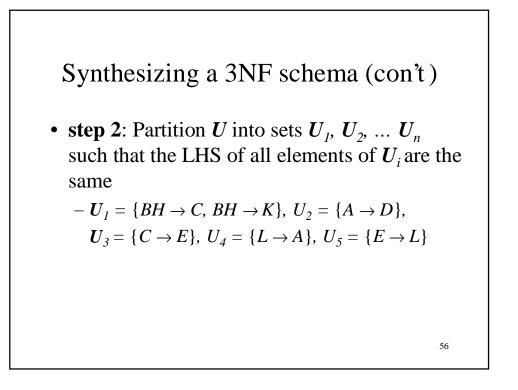
Minimal Cover

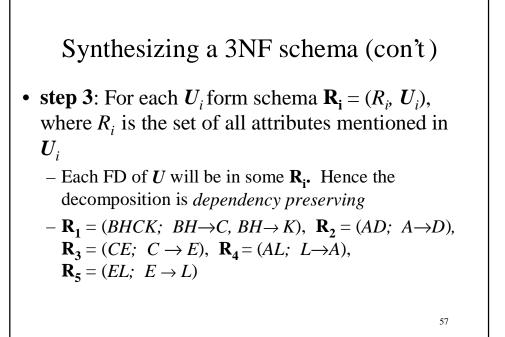
- A *minimal cover* of a set of dependencies, *F*, is a set of dependencies, *U*, such that:
 - *U* is equivalent to F ($F^+ = U^+$)
 - All FDs in U have the form $X \to A$ where A is a single attribute
 - It is not possible to make U smaller (while preserving equivalence) by
 - Deleting an FD
 - Deleting an attribute from an FD (either from LHS or RHS)
 - FDs and attributes that can be deleted in this way are called *redundant*

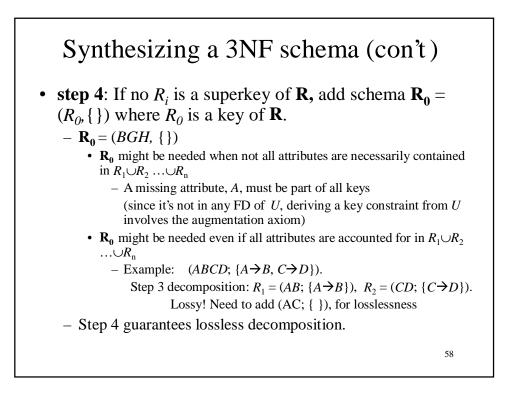












BCNF Design Strategy

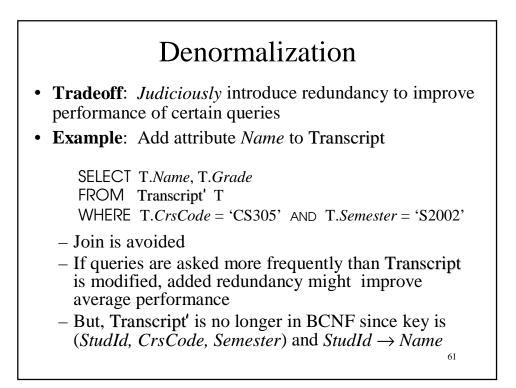
• The resulting decomposition, **R**₀, **R**₁, ... **R**_n, is

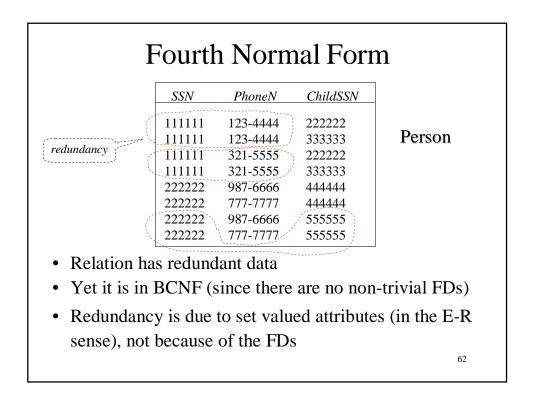
- Dependency preserving (since every FD in U is a FD of some schema)
 - Lossless (although this is not obvious)
 - In 3NF (although this is not obvious)
- Strategy for decomposing a relation
 - Use 3NF decomposition first to get lossless, dependency preserving decomposition
 - If any resulting schema is not in BCNF, split it using the BCNF algorithm (but this may yield a nondependency preserving result)

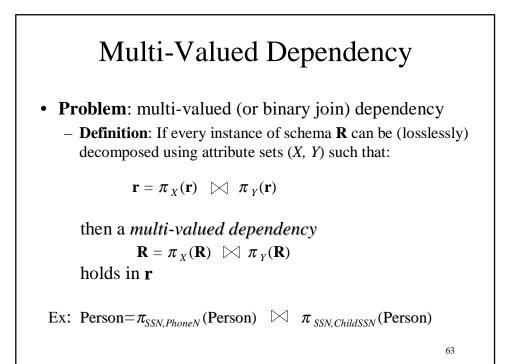
Normalization Drawbacks
By limiting redundancy, normalization helps maintain consistency and saves space
But performance of querying can suffer because related information that was stored in a single relation is now distributed among several
Example: A join is required to get the names and grades of all students taking CS305 in S2002.
SELECT S.Name, T.Grade

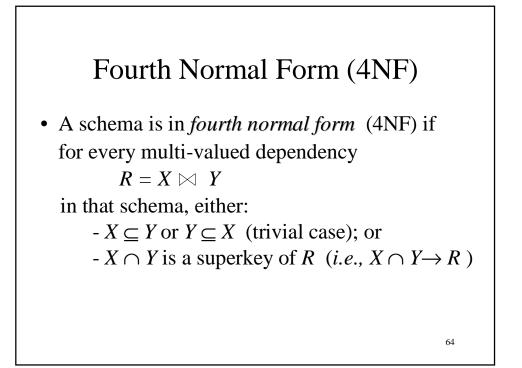
FROM Student S, Transcript T WHERE S.*Id* = T.*StudId* AND T.*CrsCode* = 'CS305' AND T.*Semester* = 'S2002'

60









- *Intuition*: if $X \cap Y \rightarrow R$, there is a unique row in relation **r** for each value of $X \cap Y$ (hence no redundancy)
 - Ex: SSN does not uniquely determine PhoneN or ChildSSN, thus Person is not in 4NF.
- *Solution*: Decompose *R* into *X* and *Y*
 - Decomposition is lossless but not necessarily dependency preserving (since 4NF implies BCNF – next)

65

4NF Implies BCNF

- Suppose *R* is in 4NF and $X \rightarrow Y$ is an FD.
 - -R1 = XY, R2 = R Y is a lossless decomposition of R
 - Thus R has the multi-valued dependency:

$$R = R_1 \bowtie R_2$$

- Since R is in 4NF, one of the following must hold :
 - $-XY \subseteq R Y$ (an impossibility)
 - $R Y \subseteq XY$ (i.e., R = XY and X is a superkey)
 - $-XY \cap R Y$ (= X) is a superkey
- Hence $X \rightarrow Y$ satisfies BCNF condition