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Relational Normalization Theory

Chapter 6
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Limitations of E-R Designs

• Provides a set of guidelines, does not result 
in a unique database schema

• Does not provide a way of evaluating 
alternative schemas

• Normalization theory provides a mechanism 
for analyzing and refining the schema 
produced by an E-R design
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Redundancy

• Dependencies between attributes cause 
redundancy
– Ex.  All addresses in the same town have the 

same zip code

SSN Name Town Zip
1234     Joe       Stony Brook     11790
4321     Mary    Stony Brook     11790
5454     Tom     Stony Brook     11790

………………….

Redundancy
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Redundancy and Other Problems

• Set valued attributes in the E-R diagram result in 
multiple rows in corresponding table

• Example: PersonPerson (SSN, Name, Address, Hobbies)

– A person entity with multiple hobbies yields multiple 
rows in table PersonPerson

• Hence, the association between Name and Address for the 
same person is stored redundantly

– SSN is key of entity set, but (SSN, Hobby) is key of 
corresponding relation

• The relation PersonPerson can’t describe people without hobbies
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Example

SSN      Name          Address          Hobby

1111    Joe        123 Main     biking
1111    Joe        123 Main     hiking

…………….

SSN     Name          Address              Hobby

1111    Joe        123 Main    {biking, hiking}

ER Model

Relational Model

Redundancy
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Anomalies

• Redundancy leads to anomalies:
– Update anomaly: A change in Address must be 

made in several places
– Deletion anomaly: Suppose a person gives up 

all hobbies.  Do we:
• Set Hobby attribute to null?  No, since Hobby is part 

of key
• Delete the entire row?  No, since we lose other 

information in the row

– Insertion anomaly: Hobby value must be 
supplied for any inserted row since Hobby is 
part of key
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Decomposition

• Solution: use two relations to store PersonPerson
information
–– Person1Person1 (SSN, Name, Address)
–– HobbiesHobbies (SSN, Hobby)

• The decomposition is more general: people 
with hobbies can now be described 

• No update anomalies:
– Name and address stored once
– A hobby  can  be separately supplied or 

deleted

8

Normalization Theory

• Result of E-R analysis need further 
refinement

• Appropriate decomposition can solve 
problems

• The underlying theory is referred to as 
normalization theorynormalization theory and is based on 
functional dependenciesfunctional dependencies (and other kinds, 
like multivaluedmultivalued dependenciesdependencies)
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Functional Dependencies

• Definition: A functional dependencyfunctional dependency (FD) on a 
relation schema R is a constraint X → Y, where X
and Y are subsets of attributes of R.

• Definition: An FD X → Y is satisfiedsatisfied in an 
instance r of  R if for every pair of tuples, t and 
s:  if t and s agree on all attributes in X then they 
must agree on all attributes in Y
– Key constraint is a special kind of functional 

dependency:  all attributes of relation occur on the 
right-hand side of the FD:

• SSN → SSN, Name, Address

10

Functional Dependencies

• Address → ZipCode
– Stony Brook’s ZIP is 11733

• ArtistName → BirthYear
– Picasso was born in 1881

• Autobrand → Manufacturer, Engine type
– Pontiac is built by General Motors with gasoline engine

• Author, Title → PublDate
– Shakespeare’s Hamlet published in 1600
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Functional Dependency - Example

• Consider a brokerage firm that allows multiple clients to 
share an account, but each account is managed from a 
single office and a client can have no more than one 
account in an office

–– HasAccountHasAccount (AcctNum, ClientId, OfficeId)
• keys  are (ClientId, OfficeId),  (AcctNum, ClientId) 

– Client, OfficeId → AcctNum

– AcctNum → OfficeId
• Thus, attribute values need not depend only on key values

12

Entailment, Closure, Equivalence

• Definition: If F is a set of FDs on schema R and f is 
another FD on R, then F entailsentails f if every instance r of 
R that satisfies every FD in F also satisfies f
– Ex: F = {A → B, B→ C} and  f  is A → C

• If Town → Zip and Zip → AreaCode then Town → AreaCode

• Definition: The closureclosure of F, denoted F+, is the set of 
all FDs entailed by F

• Definition: F and G are equivalentequivalent if F entails G and G
entails F
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Entailment (cont’d)
• Satisfaction, entailment, and equivalence are semantic

concepts – defined in terms of the actual relations in the 
“ real world.”  
– They define what these notions are, not how to compute them

• How to check if  F entails f or if F and G are 
equivalent?  
– Apply the respective definitions for all possible relations?

• Bad idea: might be infinite number for infinite domains
• Even for finite domains, we have to look at relations of all arities

– Solution:  find algorithmic, syntactic ways to compute these 
notions

• Important:  The syntactic solution must be “correct” with respect to the 
semantic definitions

• Correctness has two aspects: soundnesssoundness and completenesscompleteness – see later

14

Armstrong’s Axioms for FDs

• This is the syntactic way of computing/testing 
the various properties of FDs

• Reflexivity:  If Y ⊆ X then X → Y  (trivial FD)
– Name, Address → Name

• Augmentation:  If X → Y  then X Z→ YZ
– If Town → Zip then Town, Name → Zip, Name

• Transitivity: If X → Y  and Y → Z then  X → Z
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Soundness
• Axioms are soundsound: If an FD  f: X→ Y can be derived 

from a set of FDs F using the axioms, then  f holds in 
every relation that satisfies every FD in F.

• Example: Given  X→ Y and  X→ Z then

– Thus,  X→ Y Z is satisfied in every relation where both X→ Y 
and  X→ Z are satisfied

• Therefore, we have derived the union ruleunion rule for FDs: we can take the 
union of the RHSs of FDs that have the same LHS

X → XY      Augmentation by X
YX → YZ    Augmentation by Y
X → YZ       Transitivity

16

Completeness

• Axioms are completecomplete: If F entails f , then f 
can be derived from F using the axioms

• A consequence of completeness is the 
following (naïve) algorithm to determining 
if F entails f: 
–– AlgorithmAlgorithm: Use the axioms in all possible ways 

to generate F+ (the set of possible FD’s is finite 
so this can be done) and see if  f  is in F+



9

17

Correctness

• The notions of soundness and completeness
link the syntax (Armstrong’s axioms) with 
semantics (the definitions in terms of 
relational instances)

• This is a precise way of saying that the 
algorithm for entailment based on the 
axioms is “correct” with respect to the 
definitions

18

Generating F+

F

AB→ C
AB→ BCD        

A→ D        AB→ BD                                 AB→ BCDE      AB→ CDE

D→ E           BCD → BCDE

Thus, AB→ BD, AB → BCD, AB → BCDE, and AB →→ CDE 
are all elements of F+

union
aug

trans

aug

decomp



10

19

Attribute Closure

• Calculating attribute closure leads to a more 
efficient way of checking entailment

• The attribute closureattribute closure of a set of attributes,  X, 
with respect to a set of functional dependencies, 
F, (denoted X+

F) is the set of all attributes,  A, 
such that X → A
– X +F1 is not necessarily the same as X +F2 if F1 ≠ F2

• Attribute closure and entailment: 
–– AlgorithmAlgorithm: Given a set of FDs, F, then X → Y if and 

only if  X+
F ⊇ Y

20

Example - Computing Attribute Closure

F: AB → C            
A → D
D → E
AC → B

X                 XF
+

A            {A, D, E}
AB         {A, B, C, D, E}

(Hence AB is a key)

B            {B}
D            {D, E}

Is  AB → E entailed by F?    Yes
Is  D→ C  entailed by F?      No

Result:  XF
+ allows us to determine FDs

of the form X → Y entailed by F
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Computation of Attribute Closure  X+
F

closure := X;               // since X ⊆ X+
F

repeat
old := closure;
if there is an FD  Z → V in F such that  

Z ⊆ closure and V ⊆ closure
then closure := closure ∪ V

until old = closure

– If T ⊆ closure then X → T is entailed by F

22

Example: Computation of Attribute Closure

AB → C    (a)         
A → D      (b)
D → E      (c)
AC → B    (d)

Problem: Compute the attribute closure of AB with 
respect to the set of FDs :

Initially closure = {AB}
Using (a) closure = {ABC}
Using (b) closure = {ABCD}
Using (c) closure = {ABCDE}

Solution:
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Normal Forms
• Each normal form is a set of conditions on a schema 

that guarantees certain properties (relating to 
redundancy and update anomalies)

• First normal form (1NF) is the same as the definition 
of relational model (relations = sets of tuples; each 
tuple = sequence of atomic values)

• Second normal form (2NF) – a research lab accident; 
has no practical or theoretical value – won’t discuss

• The two commonly used normal forms are third third 
normal formnormal form (3NF) and BoyceBoyce--CoddCodd normal formnormal form
(BCNF)

24

BCNF

• Definition: A relation schema R is in BCNF if 
for every FD X→ Y associated with R either

– Y ⊆ X (i.e., the FD is trivial) or
– X is a superkey of R

• Example:  Person1Person1(SSN, Name, Address)
– The only FD is SSN → Name, Address

– Since SSN is a key, Person1Person1 is in BCNF
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(non) BCNF   Examples

•• PersonPerson (SSN, Name, Address, Hobby)
– The FD  SSN → Name, Address does not satisfy 

requirements of BCNF 
• since the key is (SSN, Hobby)

•• HasAccountHasAccount (AcctNum, ClientId, OfficeId)
– The FD AcctNum→ OfficeId does not satisfy BCNF 

requirements 
• since keys are (ClientId, OfficeId) and (AcctNum, ClientId); 

not AcctNum.

26

Redundancy
• Suppose R has a FD A → B, and A is not a superkey.  If an 

instance has 2 rows with same value in A, they must also 
have same value in B (=> redundancy, if the A-value
repeats twice)

• If A is a superkey, there cannot be two rows with same 
value of A
– Hence, BCNF eliminates redundancy

SSN → Name, Address

SSN     Name     Address       Hobby
1111   Joe      123 Main   stamps
1111   Joe      123 Main   coins

redundancy
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Third Normal Form
• A relational schema R is in 3NF if for 

every FD  X→ Y  associated with R either:

– Y ⊆ X (i.e., the FD is trivial); or

– X is a superkey of R; or

– Every A∈ Y is part of some key of R
• 3NF is weaker than BCNF (every schema 

that is in BCNF is also in 3NF)

BCNF 
conditions

28

3NF Example

•• HasAccountHasAccount (AcctNum, ClientId, OfficeId)
– ClientId, OfficeId → AcctNum

• OK since LHS contains a  key

– AcctNum → OfficeId

• OK since RHS is part of a key

•• HasAccountHasAccount is in 3NF but it might still contain 
redundant information due to AcctNum � OfficeId
(which is not allowed by BCNF)
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3NF (Non) Example

•• PersonPerson (SSN, Name, Address, Hobby)

– (SSN, Hobby) is the only key.

– SSN→ Name violates 3NF conditions 
since Name is not part of a key and SSN
is not a superkey

30

Decompositions

• Goal:  Eliminate redundancy by 
decomposing a relation into several 
relations in a higher normal form

• Decomposition must be losslesslossless: it must be 
possible to reconstruct the original relation 
from the relations in the decomposition

• We will see why
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Decomposition
• Schema R = (R, F)

– R is set a of attributes
– F is a set of functional dependencies over R

• Each key is described by a FD

• The decompositiondecomposition of schemaof schema R is a collection of 
schemas Ri = (Ri, Fi) where
– R = ∪i Ri for all i (no new attributes)
– Fi is a set of functional dependences involving only 

attributes of  Ri

– F entails Fi for all i  (no new FDs)

• The decomposition of an instancedecomposition of an instance, r, of R is a set 
of relations ri = πRi(r) for all i

32

Example Decomposition

Schema (R, F) where
R = {SSN, Name, Address, Hobby}
F = {SSN→ Name, Address}

can be decomposed into
R1 = {SSN, Name, Address}
F1 = {SSN → Name, Address}

and 
R2 = {SSN, Hobby}
F2 = { }
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Lossless Schema Decomposition

• A decomposition should not lose information
• A decomposition (R1,…, Rn) of a schema, R, is 

losslesslosslessif every valid instance, r, of R can be 
reconstructed from its components:

• where each  ri = πRi(r)

r = r1 r2 rn……

34

Lossy Decomposition

r ⊆ r1 r2 ... rn

SSN     Name       Address SSN    Name Name      Address

1111  Joe        1 Pine         1111 Joe         Joe        1 Pine
2222  Alice     2 Oak         2222  Alice     Alice     2 Oak
3333  Alice     3 Pine         3333 Alice     Alice     3 Pine

r ⊇ r1 r2 rn...

r1 r2r ⊇

The following is always the case (Think why?):

But the following is not always true:

Example:

The tuples (2222, Alice, 3 Pine) and (3333, Alice, 2 Oak) are  in the join, 
but not in the original
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Lossy Decompositions: 
What is Actually Lost?

• In the previous example, the tuples (2222, Alice, 3 
Pine) and (3333, Alice, 2 Oak) were gained, not lost!  
– Why do we say that the decomposition was lossy?

• What was lost is information:
– That  2222 lives at  2 Oak:  In the decomposition, 2222 can 

live at either 2 Oak or 3 Pine

– That  3333 lives at  3 Pine:  In the decomposition, 3333 can 
live at either 2 Oak or 3 Pine

36

Testing for Losslessness

• A (binary) decomposition of  R = (R, F)
into R1 = (R1, F1) and R2 = (R2, F2) is 
lossless if and only if :
– either the FD

• (R1 ∩ R2 ) → R1 is in  F+

– or the FD
• (R1 ∩ R2 ) → R2 is in  F+
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Example
Schema (R, F) where

R = {SSN, Name, Address, Hobby}
F = {SSN → Name, Address}

can be decomposed into
R1 = {SSN, Name, Address}
F1 = {SSN → Name, Address}

and 
R2 = {SSN, Hobby}
F2 = { }

Since R1 ∩ R2 = SSN  and SSN → R1  the
decomposition is lossless

38

Intuition Behind the Test for 
Losslessness

• Suppose R1 ∩ R2 → R2 .  Then a row of r1 
can combine with exactly one row of r2  in 
the natural join (since in  r2 a particular set 
of values for the attributes in R1 ∩ R2
defines a unique row)

R1 ∩ R2 R1 ∩ R2

………….   a               a   ………...
…………    a               b   ………….
…………    b               c   ………….
…………    c

r1 r2
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If R1 ∩ R2 → R2 then 
card (r1 

Proof of Lossless Condition

• r ⊆ r1 r2  – this is true for any decomposition

r2) = card (r1)  

But card (r) ≥ card (r1)  (since r1  is a projection of  r)

and therefore card (r) ≥ card (r1         r2)

Hence r = r1 r2

• r ⊇ r1 r2

(since each row of   r1 joins with exactly one row of  r2)

40

Dependency Preservation
• Consider a decomposition of R = (R, F) into R1 = (R1, 

F1) and R2 = (R2, F2)
– An FD X → Yof F+ is in Fi  iff X ∪ Y ⊆ Ri

– An FD,  f ∈F+ may be in neither F1, nor F2, nor even 
(F1 ∪ F2)

+

• Checking that  f is true in r1 or r2 is (relatively) easy
• Checking  f in  r1 r2 is harder – requires a join
• Ideally:  want to check FDs locally, in r1 and r2, and have 

a guarantee that every f ∈F holds in r1 r2

• The decomposition is dependency preservingdependency preserving iff the sets 
F and F1 ∪ F2 are equivalent:  F+ = (F1 ∪ F2)+

– Then checking all FDs in F, as r1 and r2 are updated, can  be 
done by checking F1 in r1 and F2 in r2
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Dependency Preservation

• If  f is an FD in F, but f is not in F1 ∪ F2,
there are two possibilities:
– f ∈ (F1 ∪ F2)+

• If the constraints in  F1 and F2 are maintained,  f
will be maintained automatically.

– f ∉ (F1 ∪ F2)+

• f can be checked only by first taking the join of r1

and r2.  This is costly.

42

Example
Schema (R, F) where

R = {SSN, Name, Address, Hobby}
F = {SSN → Name, Address}

can be decomposed into
R1 = {SSN, Name, Address}
F1 = {SSN → Name, Address}

and 
R2 = {SSN, Hobby}
F2 = { }

Since F = F1 ∪ F2 the decomposition is
dependency preserving
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Example

• Schema: (ABC;  F) ,  F = {A 
�

B, B � C, C � B}
• Decomposition:

– (AC, F1),  F1 = {A � C}
• Note:  A � C ∉ F, but in F+

– (BC, F2),  F2 = {B � C, C � B}

• A 
�

B ∉ (F1  ∪ F2),  but  A 
�

B ∈ (F1  ∪ F2)
+.

– So  F+ = (F1  ∪ F2)+  and thus the decompositions is 
still dependency preserving

Example
•• HasAccountHasAccount (AcctNum, ClientId, OfficeId)

f1: AcctNum → OfficeId
f2: ClientId, OfficeId → AcctNum

• Decomposition:
R1 = (AcctNum, OfficeId;  {AcctNum → OfficeId})
R2 = (AcctNum, ClientId;   {})

• Decomposition is lossless: 
R1 ∩ R2= {AcctNum} and AcctNum → OfficeId

• In BCNF

• Not dependency preserving:  f2 ∉ (F1 ∪ F2)+

•• HasAccountHasAccount does not have BCNF decompositions that are both 
lossless and dependency preserving! (Check, eg, by enumeration)

• Hence:    BCNF+lossless+dependency preserving  decompositions 
are not always achievable!
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BCNF Decomposition Algorithm

Input:  R = (R; F)

Decomp := R
while there is S = (S; F’ ) ∈ Decomp and S not in BCNF do 

Find X → Y ∈ F’ that violates BCNF // X isn’ t a superkeyin S
Replace S in Decomp with  S1 = (XY; F1),  S2 = (S - (Y - X); F2)
// F1 = all FDs of F’ involving only attributes of  XY 
// F2 = all FDs of F’ involving only attributes of  S - (Y - X)

end
return  Decomp

46

Simple Example
•• HasAccountHasAccount :

(ClientId,  OfficeId,  AcctNum)

(ClientId ,  AcctNum)

BCNF (only trivial FDs)

• Decompose using  AcctNum→ OfficeId :

(OfficeId,  AcctNum)

BCNF: AcctNum is key
FD: AcctNum → OfficeId

ClientId,OfficeId → AcctNum
AcctNum → OfficeId
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A Larger Example
Given: R = (R; F) where R = ABCDEGHK and 

F = {ABH→ C, A→ DE, BGH→ K, K→ ADH, BH→ GE}
step 1:  Find a FD that violates BCNF

Not ABH → C since (ABH)+ includes all attributes 
(BH is a key)

A → DE violates BCNF since A is not a superkey (A+ =ADE)
step 2:  Split R into: 

R1 = (ADE, F1={A→ DE })
R2 = (ABCGHK; F1={ABH→C, BGH→K, K→AH, BH→G})
Note 1:  R1 is in BCNF
Note 2:  Decomposition is lossless since A is a key of R1.

Note 3:  FDs K → D and BH → E are not in F1 or F2. But
both can be derived from F1∪ F2

(E.g., K→ A  and A→ D implies K→ D)
Hence, decomposition is dependency preserving.

48

Example (con’t )

Given: R2 = (ABCGHK; {ABH→C, BGH→K, K→AH, BH→G})
step 1:  Find a FD that violates BCNF.

Not ABH → C or BGH → K, since BH is a key of R2
K→ AH  violates BCNF since K is not a superkey (K+ =AH)

step 2:  Split R2 into: 
R21 = (KAH, F21={K → AH})
R22 = (BCGK; F22={})

Note 1: Both R21 and R22 are in BCNF.
Note 2: The decomposition is lossless (since K is a key of R21)
Note 3: FDs ABH→ C, BGH→ K, BH→ G  are not in F21

or  F22 , and they can’t be derived from F1 ∪ F21 ∪ F22 .
Hence the decomposition is not dependency-preserving



25

49

Properties of BCNF Decomposition Algorithm

Let X → Y violate BCNF in R = (R,F) and R1 = (R1,F1),

R2 = (R2,F2) is the resulting decomposition. Then:

• There are fewer violations of BCNF in R1 and R2 than 
there were in R
– X → Y  implies X is a key of R1

– Hence X → Y ∈ F1 does not violate BCNF in R1 and, since   
X → Y ∉F2, does not violate BCNF in R2 either

– Suppose f  is X � → Y � and  f ∈ F doesn’t violate BCNF in R.
If  f ∈ F1 or F2 it does not violate BCNF in R1 or R2 either 
since X � is a superkey of R and hence also of R1 and R2 .

50

Properties of BCNF Decomposition Algorithm

• A BCNF decomposition is not necessarily
dependency preserving 

• But always lossless:
since R1 ∩ R2 = X,    X → Y,  and R1 = XY

• BCNF+lossless+dependency preserving is 
sometimes unachievable (recall HasAccountHasAccount)



26

51

Third Normal Form

• Compromise  – Not all redundancy 
removed, but dependency preserving 
decompositions are always possible (and, of 
course, lossless)

• 3NF decomposition is based on a minimal 
cover

52

Minimal Cover
• A minimal coverminimal cover of a set of dependencies, F, is a set of 

dependencies, U, such that:
– U is equivalent to F (F+ = U+)

– All FDs in U have the form X → A where A is a single 
attribute

– It is not possible to make U smaller (while preserving 
equivalence) by

• Deleting an FD

• Deleting an attribute from an FD  (either from LHS or RHS)

– FDs and attributes that can be deleted in this way are called 
redundantredundant
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Computing Minimal Cover
• Example: F = {ABH → CK, A → D, C → E,

BGH → L, L → AD, E → L, BH → E}

• step 1: Make RHS of each FD into a single attribute
– Algorithm:  Use the decomposition inference rule for FDs
– Example: L → AD replaced by L → A, L → D ;   ABH → CK by 

ABH →C, ABH →K

• step 2: Eliminate redundant attributes from LHS.  
– Algorithm: If FD XB → A ∈ F (where B is a single attribute) 

and X → A is entailed by F, then B was unnecessary 
– Example: Can an attribute be deleted from ABH → C ?  

• Compute AB+
F, AH+

F, BH+
F. 

• Since C ∈ (BH)+
F , BH → C  is entailed by F and A is redundant in 

ABH → C.

54

Computing Minimal Cover (con’t )

• step 3: Delete redundant FDs from F
– Algorithm:  If F – {f} entails  f, then  f  is redundant

• If f  is X → A then check if A ∈ X+
F-{f}

– Example: BGH → L is entailed by E → L,  BH → E,
so it is redundant

• Note:  The order of steps 2 and 3 cannot be 
interchanged!! See the textbook for a 
counterexample
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Synthesizing a 3NF Schema

• step 1: Compute a minimal cover, U, of F.  The 
decomposition is based on U, but since U+ = F+

the same functional dependencies will hold
– A minimal cover for                                             

F={ABH→CK, A→D, C→E, BGH→L, L→AD, 
E→ L, BH → E}

is

U={BH→C, BH→K, A→D, C→E, L→A, E→L}

Starting with a schema R = (R, F)

56

Synthesizing a 3NF schema (con’t )

• step 2: Partition U into sets U1, U2, … Un

such that the LHS of all elements of Ui are the 
same
– U1 = {BH → C, BH → K}, U2 = {A → D}, 

U3 = {C → E}, U4 = {L → A}, U5 = {E → L}
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Synthesizing a 3NF schema (con’t )

• step 3: For each Ui form schema Ri = (Ri, Ui), 
where Ri is the set of all attributes mentioned in 
Ui

– Each FD of U will be in some Ri.  Hence the 
decomposition is dependency preserving

– R1 = (BHCK;  BH→C, BH→ K),  R2 = (AD;  A→D),              
R3 = (CE;  C → E),  R4 = (AL;  L→A),                      
R5 = (EL;  E → L)

58

Synthesizing a 3NF schema (con’t )

• step 4: If no Ri is a superkey of R, add schema R0 = 
(R0,{}) where R0 is a key of R.
– R0 = (BGH, {})

• R0  might be needed when not all attributes are necessarily contained 
in R1∪R2 …∪Rn

– A missing attribute, A, must be part of all keys 
(since it’s not in any FD of U, deriving a key constraint from U
involves the augmentation axiom)

• R0  might be needed even if all attributes are accounted for in R1∪R2
…∪Rn

– Example:    (ABCD; {A
�

B, C
�

D}).  
Step 3 decomposition: R1 = (AB; {A

�
B}),  R2 = (CD; {C

�
D}).  

Lossy! Need to add (AC; { }), for losslessness

– Step 4 guarantees lossless decomposition.
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BCNF Design Strategy

• The resulting decomposition, R0, R1, … Rn , is 
– Dependency preserving (since every FD in U is a FD of 

some schema)
– Lossless (although this is not obvious)
– In 3NF (although this is not obvious)

• Strategy for decomposing a relation
– Use 3NF decomposition first to get lossless, 

dependency preserving decomposition
– If any resulting schema is not in BCNF, split it using 

the BCNF algorithm (but this may yield a non-
dependency preserving result)

60

Normalization Drawbacks

• By limiting redundancy, normalization  helps 
maintain consistency and saves space

• But performance of querying can suffer because 
related information that was stored in a single 
relation is now distributed among several

• Example:  A join is required to get the names and 
grades of all students taking CS305 in S2002.

SELECT S.Name, T.Grade
FROM StudentStudent S, TranscriptTranscript T
WHERE S.Id = T.StudId AND

T.CrsCode = ‘CS305’  AND T.Semester = ‘S2002’ 
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Denormalization
• Tradeoff:  Judiciously introduce redundancy to improve 

performance of certain queries
• Example:  Add attribute Name to TranscriptTranscript

– Join is avoided
– If queries are asked more frequently than TranscriptTranscript

is modified, added redundancy might  improve 
average performance

– But, TranscriptTranscript
��

is no longer in BCNF since key is 
(StudId, CrsCode, Semester) and StudId → Name

SELECT T.Name, T.Grade
FROM  TranscriptTranscript

��

T
WHERE  T.CrsCode = ‘CS305’  AND T.Semester = ‘S2002’
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Fourth Normal Form

• Relation has redundant data 
• Yet it is in BCNF (since there are no non-trivial FDs)

• Redundancy is due to set valued attributes (in the E-R 
sense), not because of the FDs

SSN            PhoneN ChildSSN

111111       123-4444        222222
111111       123-4444        333333
111111       321-5555        222222
111111       321-5555        333333
222222       987-6666        444444
222222       777-7777        444444
222222       987-6666        555555
222222       777-7777        555555

redundancy
PersonPerson
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Multi-Valued Dependency

• Problem: multi-valued (or binary join) dependency
– Definition: If every instance of schema R can be (losslessly) 

decomposed using attribute sets (X, Y) such that:

r = π X (r)          π Y (r)

then a multimulti--valued dependencyvalued dependency
R = π X (R)         π Y (R)

holds in r

Ex: PersonPerson=πSSN,PhoneN (PersonPerson)           π SSN,ChildSSN (PersonPerson)
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Fourth Normal Form (4NF)

• A schema is in fourth normal formfourth normal form (4NF) if 
for every multi-valued dependency

R = X       Y
in that schema, either:

- X ⊆ Y or Y ⊆ X  (trivial case); or
- X ∩ Y is a superkey of R  (i.e., X ∩ Y→ R )
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Fourth Normal Form (Cont’d)

• Intuition: if X ∩ Y→ R, there is a unique row 
in relation r for each value of X ∩ Y (hence 
no redundancy)
– Ex: SSN does not uniquely determine PhoneN or 

ChildSSN, thus PersonPerson is not in 4NF.

• Solution: Decompose R into X and Y
– Decomposition is lossless – but not necessarily 

dependency preserving (since 4NF implies BCNF 
– next)
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4NF Implies BCNF
• Suppose R is in 4NF and X → Y is an FD.

– R1 = XY,  R2 = R – Y is a lossless decomposition of  R

– Thus R has the multi-valued dependency:

R = R1          R2

– Since R is in 4NF, one of the following must hold :
– XY⊆ R – Y    (an impossibility)
– R – Y ⊆ XY  (i.e.,  R = XY and X is a superkey)
– XY ∩ R – Y   (= X)   is a superkey

– Hence X → Y satisfies BCNF condition


