Relational Normalization Theory

Chapter 6

Limitations of E-R Designs

- Provides a set of guidelines, does not result in a unique database schema
- Does not provide a way of evaluating alternative schemas
- Normalization theory provides a mechanism for analyzing and refining the schema produced by an E-R design

Redundancy

- Dependencies between attributes cause redundancy
- Ex. All addresses in the same town have the same zip code

SSN	Name	Town	Zip
1234	Joe	Stony Brook	11790
4321	Mary	Stony Brook	11790
5454	Tom	Stony Brook	11790
	$\ldots \ldots \ldots \ldots \ldots . ~ R e d u n d a n c y ~$		

Redundancy and Other Problems

- Set valued attributes in the E-R diagram result in multiple rows in corresponding table
- Example: Person (SSN, Name, Address, Hobbies)
- A person entity with multiple hobbies yields multiple rows in table Person
- Hence, the association between Name and Address for the same person is stored redundantly
- SSN is key of entity set, but (SSN, Hobby) is key of corresponding relation
- The relation Person can't describe people without hobbies

Example

ER Model

SSN	Name	Address	Hobby
1111	Joe	123 Main	\{biking, hiking \}

Relational Model

Anomalies

- Redundancy leads to anomalies:
- Update anomaly: A change in Address must be made in several places
- Deletion anomaly: Suppose a person gives up all hobbies. Do we:
- Set Hobby attribute to null? No, since Hobby is part of key
- Delete the entire row? No, since we lose other information in the row
- Insertion anomaly: Hobby value must be supplied for any inserted row since Hobby is part of key

Decomposition

- Solution: use two relations to store Person information
- Person1 (SSN, Name, Address)
- Hobbies (SSN, Hobby)
- The decomposition is more general: people with hobbies can now be described
- No update anomalies:
- Name and address stored once
- A hobby can be separately supplied or deleted

Normalization Theory

- Result of E-R analysis need further refinement
- Appropriate decomposition can solve problems
- The underlying theory is referred to as normalization theory and is based on functional dependencies (and other kinds, like multivalued dependencies)

Functional Dependencies

- Definition: A functional dependency (FD) on a relation schema \mathbf{R} is a constraint $\boldsymbol{X} \rightarrow \boldsymbol{Y}$, where X and Y are subsets of attributes of \mathbf{R}.
- Definition: An FD $\boldsymbol{X} \rightarrow \boldsymbol{Y}$ is satisfied in an instance \mathbf{r} of \mathbf{R} if for every pair of tuples, t and s: if t and s agree on all attributes in X then they must agree on all attributes in Y
- Key constraint is a special kind of functional dependency: all attributes of relation occur on the right-hand side of the FD:
- SSN \rightarrow SSN, Name, Address

Functional Dependencies

- Address \rightarrow ZipCode
- Stony Brook's ZIP is 11733
- ArtistName \rightarrow BirthYear
- Picasso was born in 1881
- Autobrand \rightarrow Manufacturer, Engine type
- Pontiac is built by General Motors with gasoline engine
- Author, Title \rightarrow PublDate
- Shakespeare's Hamlet published in 1600

Functional Dependency - Example

- Consider a brokerage firm that allows multiple clients to share an account, but each account is managed from a single office and a client can have no more than one account in an office
- HasAccount (AcctNum, ClientId, OfficeId)
- keys are (ClientId, OfficeId), (AcctNum, ClientId)
- Client, OfficeId \rightarrow AcctNum
- AcctNum \rightarrow OfficeId
- Thus, attribute values need not depend only on key values

Entailment, Closure, Equivalence

- Definition: If \boldsymbol{F} is a set of FDs on schema \mathbf{R} and f is another FD on \mathbf{R}, then \boldsymbol{F} entails f if every instance \mathbf{r} of \mathbf{R} that satisfies every FD in \boldsymbol{F} also satisfies f
- Ex: $\boldsymbol{F}=\{A \rightarrow B, B \rightarrow C\}$ and f is $A \rightarrow C$
- If Town \rightarrow Zip and Zip \rightarrow AreaCode then Town \rightarrow AreaCode
- Definition: The closure of \boldsymbol{F}, denoted \boldsymbol{F}^{+}, is the set of all FDs entailed by \boldsymbol{F}
- Definition: \boldsymbol{F} and \boldsymbol{G} are equivalent if \boldsymbol{F} entails \boldsymbol{G} and \boldsymbol{G} entails \boldsymbol{F}

Entailment (cont'd)

- Satisfaction, entailment, and equivalence are semantic concepts - defined in terms of the actual relations in the "real world."
- They define what these notions are, not how to compute them
- How to check if \boldsymbol{F} entails f or if \boldsymbol{F} and \boldsymbol{G} are equivalent?
- Apply the respective definitions for all possible relations?
- Bad idea: might be infinite number for infinite domains
- Even for finite domains, we have to look at relations of all arities
- Solution: find algorithmic, syntactic ways to compute these notions
- Important: The syntactic solution must be "correct" with respect to the semantic definitions
- Correctness has two aspects: soundness and completeness - see later

Armstrong's Axioms for FDs

- This is the syntactic way of computing/testing the various properties of FDs
- Reflexivity: If $Y \subseteq X$ then $X \rightarrow Y$ (trivial FD)
- Name, Address \rightarrow Name
- Augmentation: If $X \rightarrow Y$ then $X Z \rightarrow Y Z$
- If Town \rightarrow Zip then Town, Name \rightarrow Zip, Name
- Transitivity: If $X \rightarrow Y$ and $Y \rightarrow Z$ then $X \rightarrow Z$

Soundness

- Axioms are sound: If an FD $f: X \rightarrow Y$ can be derived from a set of FDs \boldsymbol{F} using the axioms, then f holds in every relation that satisfies every FD in \boldsymbol{F}.
- Example: Given $X \rightarrow Y$ and $X \rightarrow Z$ then

$$
\begin{array}{ll}
X \rightarrow X Y & \text { Augmentation by } X \\
Y X \rightarrow Y Z & \text { Augmentation by } Y \\
X \rightarrow Y Z & \text { Transitivity }
\end{array}
$$

- Thus, $X \rightarrow Y Z$ is satisfied in every relation where both $X \rightarrow Y$ and $X \rightarrow Z$ are satisfied
- Therefore, we have derived the union rule for FDs: we can take the union of the RHSs of FDs that have the same LHS

Completeness

- Axioms are complete: If \boldsymbol{F} entails f, then f can be derived from \boldsymbol{F} using the axioms
- A consequence of completeness is the following (naïve) algorithm to determining if \boldsymbol{F} entails f :
- Algorithm: Use the axioms in all possible ways to generate \boldsymbol{F}^{+}(the set of possible FD's is finite so this can be done) and see if f is in \boldsymbol{F}^{+}

Correctness

- The notions of soundness and completeness link the syntax (Armstrong's axioms) with semantics (the definitions in terms of relational instances)
- This is a precise way of saying that the algorithm for entailment based on the axioms is "correct" with respect to the definitions

Generating F^{+}

$$
\begin{aligned}
& \text { F } \\
& A B \rightarrow C
\end{aligned}
$$

Thus, $A B \rightarrow B D, A B \rightarrow B C D, A B \rightarrow B C D E$, and $A B \rightarrow C D E$ are all elements of \boldsymbol{F}^{+}

Attribute Closure

- Calculating attribute closure leads to a more efficient way of checking entailment
- The attribute closure of a set of attributes, X, with respect to a set of functional dependencies, \boldsymbol{F}, (denoted $X_{\boldsymbol{F}}^{+}$) is the set of all attributes, A, such that $X \rightarrow A$
$-X^{+}{ }_{\boldsymbol{F} I}$ is not necessarily the same as $X^{+}{ }_{\boldsymbol{F} 2}$ if $\boldsymbol{F} 1 \neq \boldsymbol{F} 2$
- Attribute closure and entailment:
- Algorithm: Given a set of FDs, \boldsymbol{F}, then $X \rightarrow Y$ if and only if $X^{+}{ }_{F} \supseteq Y$

Example - Computing Attribute Closure

$$
\begin{gathered}
\boldsymbol{F}: A B \rightarrow C \\
A \rightarrow D \\
D \rightarrow E \\
A C \rightarrow B
\end{gathered}
$$

X	$X_{F}{ }^{+}$
A	$\{A, D, E\}$
$A B$	$\{A, B, C, D, E\}$
	\quad (Hence $A B$ is a key)
B	$\{B\}$
D	$\{D, E\}$

Is $A B \rightarrow E$ entailed by \boldsymbol{F} ? Yes
Is $D \rightarrow C$ entailed by \boldsymbol{F} ? No
Result: $X_{F}{ }^{+}$allows us to determine FDs of the form $X \rightarrow Y$ entailed by \boldsymbol{F}

Computation of Attribute Closure $X^{+}{ }_{F}$

closure $:=X ; \quad / /$ since $X \subseteq X^{+}{ }_{F}$ repeat
old $:=$ closure;
if there is an FD $Z \rightarrow V$ in \boldsymbol{F} such that $Z \subseteq$ closure and $V \nsubseteq$ closure then closure $:=$ closure $\cup V$
until old $=$ closure

- If $T \subseteq$ closure then $X \rightarrow T$ is entailed by \boldsymbol{F}

Example: Computation of Attribute Closure

Problem: Compute the attribute closure of $A B$ with respect to the set of FDs : $\quad A B \rightarrow C$ (a)

$$
\begin{array}{ll}
A \rightarrow D & \text { (b) } \\
D \rightarrow E & \text { (c) } \\
A C \rightarrow B & \text { (d) } \tag{c}
\end{array}
$$

Solution:

$$
\text { Initially closure }=\{A B\}
$$

Using (a) closure $=\{A B C\}$
Using (b) closure $=\{A B C D\}$
Using (c) closure $=\{A B C D E\}$

Normal Forms

- Each normal form is a set of conditions on a schema that guarantees certain properties (relating to redundancy and update anomalies)
- First normal form (1 NF) is the same as the definition of relational model (relations = sets of tuples; each tuple $=$ sequence of atomic values)
- Second normal form (2NF) - a research lab accident; has no practical or theoretical value - won't discuss
- The two commonly used normal forms are third normal form (3NF) and Boyce-Codd normal form (BCNF)

BCNF

- Definition: A relation schema \mathbf{R} is in BCNF if for every FD $X \rightarrow Y$ associated with \mathbf{R} either
$-Y \subseteq X$ (i.e., the FD is trivial) or
$-X$ is a superkey of \mathbf{R}
- Example: Person1(SSN, Name, Address)
- The only FD is $S S N \rightarrow$ Name, Address
- Since $S S N$ is a key, Person1 is in BCNF

(non) BCNF Examples

- Person (SSN, Name, Address, Hobby)
- The FD SSN \rightarrow Name, Address does not satisfy requirements of BCNF
- since the key is (SSN, Hobby)
- HasAccount (AcctNum, ClientId, OfficeId)
- The FD AcctNum \rightarrow OfficeId does not satisfy BCNF requirements
- since keys are (ClientId, OfficeId) and (AcctNum, ClientId); not AcctNum.

Redundancy

- Suppose \mathbf{R} has a FD $A \rightarrow B$, and A is not a superkey. If an instance has 2 rows with same value in A, they must also have same value in B (=> redundancy, if the A-value repeats twice)

- If A is a superkey, there cannot be two rows with same value of A
- Hence, BCNF eliminates redundancy

Third Normal Form

- A relational schema \mathbf{R} is in 3NF if for every FD $X \rightarrow Y$ associated with \mathbf{R} either:
$-Y \subseteq X$ (i.e., the FD is trivial); or
$-X$ is a superkey of \mathbf{R}; or
- Every $A \in Y$ is part of some key of \mathbf{R}
- 3NF is weaker than BCNF (every schema that is in BCNF is also in 3NF)

3NF Example

- HasAccount (AcctNum, ClientId, OfficeId)
- ClientId, OfficeId \rightarrow AcctNum
- OK since LHS contains a key
- AcctNum \rightarrow OfficeId
- OK since RHS is part of a key
- HasAccount is in 3NF but it might still contain redundant information due to AcctNum \rightarrow OfficeId (which is not allowed by BCNF)

3NF (Non) Example

- Person (SSN, Name, Address, Hobby)
- (SSN, Hobby) is the only key.
$-S S N \rightarrow$ Name violates 3NF conditions since Name is not part of a key and SSN is not a superkey

Decompositions

- Goal: Eliminate redundancy by decomposing a relation into several relations in a higher normal form
- Decomposition must be lossless: it must be possible to reconstruct the original relation from the relations in the decomposition
- We will see why

Decomposition

- Schema $\mathbf{R}=(R, \boldsymbol{F})$
$-R$ is set a of attributes
- \boldsymbol{F} is a set of functional dependencies over R
- Each key is described by a FD
- The decomposition of schema \mathbf{R} is a collection of schemas $\mathbf{R}_{\mathrm{i}}=\left(R_{i j}, \boldsymbol{F}_{i}\right)$ where
$-R=\cup_{i} R_{i}$ for all i (no new attributes)
- \boldsymbol{F}_{i} is a set of functional dependences involving only attributes of R_{i}
- \boldsymbol{F} entails \boldsymbol{F}_{i} for all i (no new FDs)
- The decomposition of an instance, \mathbf{r}, of \mathbf{R} is a set of relations $\mathbf{r}_{i}=\pi_{R_{i}}(\mathbf{r})$ for all i

Example Decomposition

Schema (R, F) where

$$
\begin{aligned}
& R=\{\text { SSN, Name, Address, Hobby }\} \\
& \boldsymbol{F}=\{S S N \rightarrow \text { Name, Address }\}
\end{aligned}
$$

can be decomposed into

$$
\begin{aligned}
& R_{l}=\{S S N, \text { Name, Address }\} \\
& \boldsymbol{F}_{1}=\{S S N \rightarrow \text { Name, Address }\}
\end{aligned}
$$

and

$$
\begin{aligned}
& R_{2}=\{S S N, H o b b y\} \\
& \boldsymbol{F}_{2}=\{ \}
\end{aligned}
$$

Lossless Schema Decomposition

- A decomposition should not lose information
- A decomposition $\left(\mathbf{R}_{l}, . ., \mathbf{R}_{n}\right)$ of a schema, \mathbf{R}, is lossless if every valid instance, \mathbf{r}, of \mathbf{R} can be reconstructed from its components:

$$
\mathbf{r}=\mathbf{r}_{1} \bowtie \mathbf{r}_{2} \bowtie \quad \ldots \ldots . \quad \bowtie \quad \mathbf{r}_{n}
$$

- where each $\mathbf{r}_{\mathrm{i}}=\pi_{\mathbf{R} i}(\mathbf{r})$

Lossy Decomposition

The following is always the case (Think why?):

$$
\mathbf{r} \subseteq \mathbf{r}_{1} \quad \bowtie \quad \mathbf{r}_{2} \bowtie<\quad \ldots \quad \bowtie \mathbf{r}_{n}
$$

But the following is not always true:
$\mathbf{r} \supseteq \mathbf{r}_{1} \bowtie \mathbf{r}_{2} \bowtie \quad \ldots \quad \bowtie \quad \mathbf{r}_{n}$
Example: \mathbf{r}

SSN	Name	Address
1111	Joe	1 Pine
2222	Alice	2 Oak
3333	Alice	3 Pine

| \nsupseteq | \mathbf{r}_{1} | \bowtie |
| :--- | :--- | :--- | \mathbf{r}_{2}

The tuples (2222, Alice, 3 Pine) and (3333, Alice, 2 Oak) are in the join, but not in the original

Lossy Decompositions:
 What is Actually Lost?

- In the previous example, the tuples (2222, Alice, 3 Pine) and (3333, Alice, 2 Oak) were gained, not lost!
- Why do we say that the decomposition was lossy?
- What was lost is information:
- That 2222 lives at 2 Oak: In the decomposition, 2222 can live at either 2 Oak or 3 Pine
- That 3333 lives at 3 Pine: In the decomposition, 3333 can live at either 2 Oak or 3 Pine

Testing for Losslessness

- A (binary) decomposition of $\mathbf{R}=(R, \boldsymbol{F})$ into $\mathbf{R}_{1}=\left(R_{l}, \boldsymbol{F}_{l}\right)$ and $\mathbf{R}_{2}=\left(R_{2}, \boldsymbol{F}_{2}\right)$ is lossless if and only if :
- either the FD
- $\left(R_{1} \cap R_{2}\right) \rightarrow R_{I}$ is in \boldsymbol{F}^{+}
- or the FD
- $\left(R_{1} \cap R_{2}\right) \rightarrow R_{2}$ is in \boldsymbol{F}^{+}

Example

Schema (R, F) where

$$
\begin{aligned}
& R=\{\text { SSN, Name, Address, Hobby }\} \\
& \boldsymbol{F}=\{S S N \rightarrow \text { Name, Address }\}
\end{aligned}
$$

can be decomposed into

$$
\begin{aligned}
& R_{l}=\{\text { SSN, Name, Address }\} \\
& \boldsymbol{F}_{1}=\{S S N \rightarrow \text { Name, Address }\}
\end{aligned}
$$

and

$$
\begin{aligned}
& R_{2}=\{S S N, H o b b y\} \\
& \boldsymbol{F}_{2}=\{ \}
\end{aligned}
$$

Since $R_{1} \cap R_{2}=S S N$ and $S S N \rightarrow R_{1}$ the decomposition is lossless

Intuition Behind the Test for Losslessness

- Suppose $R_{1} \cap R_{2} \rightarrow R_{2}$. Then a row of \mathbf{r}_{1} can combine with exactly one row of \mathbf{r}_{2} in the natural join (since in \mathbf{r}_{2} a particular set of values for the attributes in $R_{1} \cap R_{2}$ defines a unique row)

Proof of Lossless Condition

- $\mathbf{r} \subseteq \mathbf{r}_{1} \bowtie \mathbf{r}_{2} \quad-$ this is true for any decomposition
- $\mathbf{r} \supseteq \mathbf{r}_{1} \bowtie \mathbf{r}_{2}$

If $R_{1} \cap R_{2} \rightarrow R_{2}$ then

$$
\operatorname{card}\left(\mathbf{r}_{1} \bowtie \mathbf{r}_{2}\right)=\operatorname{card}\left(\mathbf{r}_{1}\right)
$$

(since each row of r_{1} joins with exactly one row of r_{2})
But $\operatorname{card}(\mathbf{r}) \geq \operatorname{card}\left(\mathbf{r}_{1}\right)$ (since \mathbf{r}_{l} is a projection of \mathbf{r}) and therefore $\operatorname{card}(\mathbf{r}) \geq \operatorname{card}\left(\mathbf{r}_{1} \bowtie \mathbf{r}_{2}\right)$

Hence $\mathbf{r}=\mathbf{r}_{1} \bowtie \quad \mathbf{r}_{2}$

Dependency Preservation

- Consider a decomposition of $\mathbf{R}=(R, \boldsymbol{F})$ into $\mathbf{R}_{1}=\left(R_{l}\right.$, $\left.\boldsymbol{F}_{1}\right)$ and $\mathbf{R}_{2}=\left(\boldsymbol{R}_{2}, \boldsymbol{F}_{2}\right)$
- An FD $X \rightarrow Y$ of \boldsymbol{F}^{+}is in \boldsymbol{F}_{i} iff $X \cup Y \subseteq R_{i}$
- An FD, $f \in \boldsymbol{F}^{+}$may be in neither \boldsymbol{F}_{1}, nor \boldsymbol{F}_{2}, nor even $\left(\boldsymbol{F}_{1} \cup \boldsymbol{F}_{2}\right)^{+}$
- Checking that f is true in \mathbf{r}_{1} or \mathbf{r}_{2} is (relatively) easy
- Checking f in $\mathbf{r}_{1} \bowtie \mathbf{r}_{2}$ is harder - requires a join
- Ideally: want to check FDs locally, in \mathbf{r}_{1} and \mathbf{r}_{2}, and have a guarantee that every $f \in F$ holds in $\mathbf{r}_{1} \bowtie \mathbf{r}_{2}$
- The decomposition is dependency preserving iff the sets \boldsymbol{F} and $\boldsymbol{F}_{1} \cup \boldsymbol{F}_{2}$ are equivalent: $\boldsymbol{F}^{+}=\left(\boldsymbol{F}_{1} \cup \boldsymbol{F}_{2}\right)^{+}$
- Then checking all FDs in \boldsymbol{F}, as \mathbf{r}_{l} and \mathbf{r}_{2} are updated, can be done by checking \boldsymbol{F}_{1} in \mathbf{r}_{1} and F_{2} in \mathbf{r}_{2}

Dependency Preservation

- If f is an FD in \boldsymbol{F}, but f is not in $\boldsymbol{F}_{1} \cup \boldsymbol{F}_{2}$, there are two possibilities:
$-f \in\left(\boldsymbol{F}_{1} \cup \boldsymbol{F}_{2}\right)^{+}$
- If the constraints in \boldsymbol{F}_{1} and \boldsymbol{F}_{2} are maintained, f will be maintained automatically.
$-f \notin\left(\boldsymbol{F}_{1} \cup \boldsymbol{F}_{2}\right)^{+}$
- f can be checked only by first taking the join of \mathbf{r}_{l} and \mathbf{r}_{2}. This is costly.

Example

Schema (R, \boldsymbol{F}) where

$$
\begin{aligned}
& R=\{S S N, \text { Name, Address, Hobby }\} \\
& \boldsymbol{F}=\{S S N \rightarrow \text { Name, Address }\}
\end{aligned}
$$

can be decomposed into

$$
\begin{aligned}
& R_{l}=\{S S N, \text { Name, Address }\} \\
& \boldsymbol{F}_{1}=\{S S N \rightarrow \text { Name, Address }\}
\end{aligned}
$$

and

$$
\begin{aligned}
& R_{2}=\{S S N, H o b b y\} \\
& \boldsymbol{F}_{2}=\{ \}
\end{aligned}
$$

Since $\boldsymbol{F}=\boldsymbol{F}_{1} \cup \boldsymbol{F}_{2}$ the decomposition is dependency preserving

Example

- Schema: $(A B C ; F), \boldsymbol{F}=\{A \rightarrow B, B \rightarrow C, C \rightarrow B\}$
- Decomposition:
$-\left(A C, \boldsymbol{F}_{1}\right), \boldsymbol{F}_{1}=\{A \rightarrow C\}$
- Note: $\mathrm{A} \rightarrow \mathrm{C} \notin \boldsymbol{F}$, but in \boldsymbol{F}^{+}
$-\left(B C, \boldsymbol{F}_{2}\right), \boldsymbol{F}_{2}=\{B \rightarrow C, C \rightarrow B\}$
- $A \rightarrow B \notin\left(\boldsymbol{F}_{1} \cup \boldsymbol{F}_{2}\right)$, but $A \rightarrow B \in\left(\boldsymbol{F}_{1} \cup \boldsymbol{F}_{2}\right)^{+}$.
- So $\boldsymbol{F}^{+}=\left(\boldsymbol{F}_{1} \cup \boldsymbol{F}_{2}\right)^{+}$and thus the decompositions is still dependency preserving

Example

- HasAccount (AcctNum, ClientId, OfficeId)
$f_{1}:$ AcctNum \rightarrow OfficeId
f_{2} : ClientId, OfficeId \rightarrow AcctNum
- Decomposition:
$R_{1}=($ AcctNum, OfficeId; $\{$ AcctNum \rightarrow OfficeId $\})$
$R_{2}=($ AcctNum, ClientId; $\{ \})$
- Decomposition is lossless:
$R_{1} \cap R_{2}=\{$ AcctNum $\}$ and AcctNum \rightarrow OfficeId
- In BCNF
- Not dependency preserving: $f_{2} \notin\left(\boldsymbol{F}_{l} \cup \boldsymbol{F}_{2}\right)^{+}$
- HasAccount does not have BCNF decompositions that are both lossless and dependency preserving! (Check, eg, by enumeration)
- Hence: BCNF+lossless+dependency preserving decompositions are not always achievable!

BCNF Decomposition Algorithm

Input: $\mathbf{R}=(R ; \boldsymbol{F})$
Decomp := \mathbf{R}
while there is $\mathbf{S}=\left(S ; \boldsymbol{F}^{\prime}\right) \in$ Decomp and \mathbf{S} not in BCNF do
Find $X \rightarrow Y \in \boldsymbol{F}^{\prime}$ that violates BCNF //X isn't a superkey in \mathbf{S}
Replace \mathbf{S} in Decomp with $\mathbf{S}_{\mathbf{1}}=\left(X Y ; \boldsymbol{F}_{1}\right), \mathbf{S}_{\mathbf{2}}=\left(S-(Y-X) ; \boldsymbol{F}_{2}\right)$
$/ / \boldsymbol{F}_{1}=$ all FDs of \boldsymbol{F}^{\prime} involving only attributes of $X Y$
$/ / \boldsymbol{F}_{2}=$ all FDs of \boldsymbol{F}^{\prime} involving only attributes of $S-(Y-X)$
end
return Decomp

Simple Example

- HasAccount :
(ClientId, OfficeId, AcctNum) ClientId,OfficeId \rightarrow AcctNum AcctNum \rightarrow OfficeId
- Decompose using AcctNum \rightarrow OfficeId:
(OfficeId, AcctNum)
(ClientId, AcctNum)
BCNF: AcctNum is key
BCNF (only trivial FDs)
FD: AcctNum \rightarrow OfficeId

A Larger Example

Given: $\mathbf{R}=(R ; \boldsymbol{F})$ where $R=A B C D E G H K$ and
$\boldsymbol{F}=\{A B H \rightarrow C, A \rightarrow D E, B G H \rightarrow K, K \rightarrow A D H, B H \rightarrow G E\}$
step 1: Find a FD that violates BCNF
Not $A B H \rightarrow C$ since $(A B H)^{+}$includes all attributes ($B H$ is a key)
$A \rightarrow D E$ violates BCNF since A is not a superkey $\left(A^{+}=A D E\right)$
step 2: Split \mathbf{R} into:
$\mathbf{R}_{\mathbf{1}}=\left(A D E, \boldsymbol{F}_{I}=\{A \rightarrow D E\}\right)$
$\mathbf{R}_{\mathbf{2}}=\left(A B C G H K ; \boldsymbol{F}_{1}=\{A B H \rightarrow C, B G H \rightarrow K, K \rightarrow A H, B H \rightarrow G\}\right)$
Note 1: \mathbf{R}_{1} is in BCNF
Note 2: Decomposition is lossless since A is a key of \mathbf{R}_{1}.
Note 3: FDs $K \rightarrow D$ and $B H \rightarrow E$ are not in \boldsymbol{F}_{1} or \boldsymbol{F}_{2}. But both can be derived from $\boldsymbol{F}_{1} \cup \boldsymbol{F}_{2}$
(E.g., $K \rightarrow A$ and $A \rightarrow D$ implies $K \rightarrow D$)

Hence, decomposition is dependency preserving.

Example (con't)

Given: $\mathbf{R}_{\mathbf{2}}=(A B C G H K ;\{A B H \rightarrow C, B G H \rightarrow K, K \rightarrow A H, B H \rightarrow G\})$ step 1: Find a FD that violates BCNF.

Not $A B H \rightarrow C$ or $B G H \rightarrow K$, since $B H$ is a key of $\mathbf{R}_{\mathbf{2}}$
$K \rightarrow A H$ violates BCNF since K is not a superkey ($K^{+}=A H$)
step 2: Split $\mathbf{R}_{\mathbf{2}}$ into:
$\mathbf{R}_{21}=\left(K A H, \boldsymbol{F}_{21}=\{K \rightarrow A H\}\right)$
$\mathbf{R}_{22}=\left(B C G K ; \boldsymbol{F}_{22}=\{ \}\right)$
Note 1: Both \mathbf{R}_{21} and \mathbf{R}_{22} are in BCNF.
Note 2: The decomposition is lossless (since K is a key of $\mathbf{R}_{\mathbf{2 1}}$)
Note 3: FDs $A B H \rightarrow C, B G H \rightarrow K, B H \rightarrow G$ are not in \boldsymbol{F}_{21} or \boldsymbol{F}_{22}, and they can't be derived from $\boldsymbol{F}_{1} \cup \boldsymbol{F}_{21} \cup \boldsymbol{F}_{22}$. Hence the decomposition is not dependency-preserving

Properties of BCNF Decomposition Algorithm

Let $X \rightarrow Y$ violate BCNF in $\mathbf{R}=(R, \boldsymbol{F})$ and $\mathbf{R}_{\mathbf{1}}=\left(R_{l}, \boldsymbol{F}_{1}\right)$, $\mathbf{R}_{\mathbf{2}}=\left(R_{2}, \boldsymbol{F}_{2}\right)$ is the resulting decomposition. Then:

- There are fewer violations of BCNF in $\mathbf{R}_{\mathbf{1}}$ and $\mathbf{R}_{\mathbf{2}}$ than there were in \mathbf{R}
- $X \rightarrow Y$ implies X is a key of $\mathbf{R}_{\mathbf{1}}$
- Hence $X \rightarrow Y \in \boldsymbol{F}_{l}$ does not violate BCNF in \mathbf{R}_{1} and, since $X \rightarrow Y \notin \boldsymbol{F}_{2}$, does not violate BCNF in \mathbf{R}_{2} either
- Suppose f is $X^{\prime} \rightarrow Y^{\prime}$ and $f \in \boldsymbol{F}$ doesn't violate BCNF in \mathbf{R}. If $f \in \boldsymbol{F}_{1}$ or \boldsymbol{F}_{2} it does not violate BCNF in $\mathbf{R}_{\mathbf{1}}$ or $\mathbf{R}_{\mathbf{2}}$ either since X^{\prime} is a superkey of \mathbf{R} and hence also of $\mathbf{R}_{\mathbf{1}}$ and $\mathbf{R}_{\mathbf{2}}$.

Properties of BCNF Decomposition Algorithm

- A BCNF decomposition is not necessarily dependency preserving
- But always lossless:

$$
\text { since } R_{1} \cap R_{2}=X, \quad X \rightarrow Y, \quad \text { and } \quad R_{1}=X Y
$$

- BCNF+lossless+dependency preserving is sometimes unachievable (recall HasAccount)

Third Normal Form

- Compromise - Not all redundancy removed, but dependency preserving decompositions are always possible (and, of course, lossless)
- 3NF decomposition is based on a minimal cover

Minimal Cover

- A minimal cover of a set of dependencies, \boldsymbol{F}, is a set of dependencies, \boldsymbol{U}, such that:
$-U$ is equivalent to $\boldsymbol{F} \quad\left(\boldsymbol{F}^{+}=\boldsymbol{U}^{+}\right)$
- All FDs in \boldsymbol{U} have the form $X \rightarrow A$ where A is a single attribute
- It is not possible to make \boldsymbol{U} smaller (while preserving equivalence) by
- Deleting an FD
- Deleting an attribute from an FD (either from LHS or RHS)
- FDs and attributes that can be deleted in this way are called redundant

Computing Minimal Cover

- Example: $\boldsymbol{F}=\{A B H \rightarrow C K, A \rightarrow D, C \rightarrow E$,

$$
B G H \rightarrow L, L \rightarrow A D, E \rightarrow L, B H \rightarrow E\}
$$

- step 1: Make RHS of each FD into a single attribute
- Algorithm: Use the decomposition inference rule for FDs
- Example: $L \rightarrow A D$ replaced by $L \rightarrow A, L \rightarrow D ; A B H \rightarrow C K$ by $A B H \rightarrow C, A B H \rightarrow K$
- step 2: Eliminate redundant attributes from LHS.
- Algorithm: If FD $X B \rightarrow A \in \boldsymbol{F}$ (where B is a single attribute) and $X \rightarrow A$ is entailed by \boldsymbol{F}, then B was unnecessary
- Example: Can an attribute be deleted from $A B H \rightarrow C$?
- Compute $A B^{+}{ }_{F}, A H^{+}{ }_{F}, B H^{+}{ }_{F}$.
- Since $C \in(B H)^{+}{ }_{F}, B H \rightarrow C$ is entailed by \boldsymbol{F} and A is redundant in $A B H \rightarrow C$.

Computing Minimal Cover (con't)

- step 3: Delete redundant FDs from \boldsymbol{F}
- Algorithm: If $\boldsymbol{F}-\{f\}$ entails f, then f is redundant
- If f is $X \rightarrow A$ then check if $\mathrm{A} \in X^{+} F-(f)$
- Example: $B G H \rightarrow L$ is entailed by $E \rightarrow L, B H \rightarrow E$, so it is redundant
- Note: The order of steps 2 and 3 cannot be interchanged!! See the textbook for a counterexample

Synthesizing a 3NF Schema

Starting with a schema $\mathbf{R}=(R, \boldsymbol{F})$

- step 1: Compute a minimal cover, \boldsymbol{U}, of \boldsymbol{F}. The decomposition is based on \boldsymbol{U}, but since $\boldsymbol{U}^{+}=\boldsymbol{F}^{+}$ the same functional dependencies will hold
- A minimal cover for

$$
\begin{aligned}
\boldsymbol{F}=\{A B H \rightarrow C K, A \rightarrow D, C \rightarrow E, B G H \rightarrow L, L \rightarrow A D, & \\
& E \rightarrow L, B H \rightarrow E\}
\end{aligned}
$$

is

$$
U=\{B H \rightarrow C, B H \rightarrow K, A \rightarrow D, C \rightarrow E, L \rightarrow A, E \rightarrow L\}
$$

Synthesizing a 3NF schema (con't)

- step 2: Partition \boldsymbol{U} into sets $\boldsymbol{U}_{1}, \boldsymbol{U}_{2}, \ldots \boldsymbol{U}_{n}$ such that the LHS of all elements of \boldsymbol{U}_{i} are the same

$$
\begin{aligned}
-\boldsymbol{U}_{1} & =\{B H \rightarrow C, B H \rightarrow K\}, U_{2}=\{A \rightarrow D\}, \\
\boldsymbol{U}_{3} & =\{C \rightarrow E\}, U_{4}=\{L \rightarrow A\}, U_{5}=\{E \rightarrow L\}
\end{aligned}
$$

Synthesizing a 3NF schema (con't)

- step 3: For each \boldsymbol{U}_{i} form schema $\mathbf{R}_{\mathrm{i}}=\left(R_{i j} \boldsymbol{U}_{i}\right)$, where R_{i} is the set of all attributes mentioned in U_{i}
- Each FD of \boldsymbol{U} will be in some \mathbf{R}_{i}. Hence the decomposition is dependency preserving
$-\mathbf{R}_{\mathbf{1}}=(B H C K ; B H \rightarrow C, B H \rightarrow K), \mathbf{R}_{2}=(A D ; A \rightarrow D)$, $\mathbf{R}_{\mathbf{3}}=(C E ; C \rightarrow E), \mathbf{R}_{\mathbf{4}}=(A L ; L \rightarrow A)$, $\mathbf{R}_{5}=(E L ; E \rightarrow L)$

Synthesizing a 3NF schema (con't)

- step 4: If no R_{i} is a superkey of \mathbf{R}, add schema $\mathbf{R}_{\mathbf{0}}=$ ($R_{0},\{ \}$) where R_{0} is a key of \mathbf{R}.
$-\mathbf{R}_{\mathbf{0}}=(B G H,\{ \})$
- $\mathbf{R}_{\mathbf{0}}$ might be needed when not all attributes are necessarily contained in $R_{1} \cup R_{2} \ldots \cup R_{\mathrm{n}}$
- A missing attribute, A, must be part of all keys
(since it's not in any FD of U, deriving a key constraint from U involves the augmentation axiom)
- \mathbf{R}_{0} might be needed even if all attributes are accounted for in $R_{1} \cup R_{2}$ $\ldots \cup R_{\mathrm{n}}$
- Example: ($A B C D ;\{A \rightarrow B, C \rightarrow D\}$).

Step 3 decomposition: $R_{1}=(A B ;\{A \rightarrow B\}), R_{2}=(C D ;\{C \rightarrow D\})$. Lossy! Need to add (AC; \{ \}), for losslessness

- Step 4 guarantees lossless decomposition.

BCNF Design Strategy

- The resulting decomposition, $\mathbf{R}_{\mathbf{0}}, \mathbf{R}_{\mathbf{1}}, \ldots \mathbf{R}_{\mathbf{n}}$, is
- Dependency preserving (since every FD in U is a FD of some schema)
- Lossless (although this is not obvious)
- In 3NF (although this is not obvious)
- Strategy for decomposing a relation
- Use 3NF decomposition first to get lossless, dependency preserving decomposition
- If any resulting schema is not in BCNF, split it using the BCNF algorithm (but this may yield a nondependency preserving result)

Normalization Drawbacks

- By limiting redundancy, normalization helps maintain consistency and saves space
- But performance of querying can suffer because related information that was stored in a single relation is now distributed among several
- Example: A join is required to get the names and grades of all students taking CS305 in S2002.

SELECT S.Name, T.Grade
FROM Student S, Transcript T
WHERE S.Id = T.StudId AND
T. CrsCode $=$ 'CS305’ AND T.Semester $=$ 'S2002'

Denormalization

- Tradeoff: Judiciously introduce redundancy to improve performance of certain queries
- Example: Add attribute Name to Transcript

SELECT T.Name, T.Grade
FROM Transcript' T
WHERE T.CrsCode $=$ 'CS305’ AND T.Semester $=$ 'S2002'

- Join is avoided
- If queries are asked more frequently than Transcript is modified, added redundancy might improve average performance
- But, Transcript' is no longer in BCNF since key is (StudId, CrsCode, Semester) and StudId \rightarrow Name

Fourth Normal Form

- Relation has redundant data
- Yet it is in BCNF (since there are no non-trivial FDs)
- Redundancy is due to set valued attributes (in the E-R sense), not because of the FDs

Multi-Valued Dependency

- Problem: multi-valued (or binary join) dependency
- Definition: If every instance of schema \mathbf{R} can be (losslessly) decomposed using attribute sets (X, Y) such that:

$$
\mathbf{r}=\pi_{X}(\mathbf{r}) \bowtie \pi_{Y}(\mathbf{r})
$$

then a multi-valued dependency

$$
\mathbf{R}=\pi_{X}(\mathbf{R}) \bowtie \pi_{Y}(\mathbf{R})
$$

holds in \mathbf{r}

Ex: Person $=\pi_{S S N, \text { PhoneN }}($ Person $) \bowtie \pi_{S S N, C h i l d S S N}($ Person $)$

Fourth Normal Form (4NF)

- A schema is in fourth normal form (4NF) if for every multi-valued dependency

$$
R=X \bowtie Y
$$

in that schema, either:

- $X \subseteq Y$ or $Y \subseteq X$ (trivial case); or
- $X \cap Y$ is a superkey of R (i.e., $X \cap Y \rightarrow R$)

Fourth Normal Form (Cont'd)

- Intuition: if $X \cap Y \rightarrow R$, there is a unique row in relation \mathbf{r} for each value of $X \cap Y$ (hence no redundancy)
- Ex: SSN does not uniquely determine PhoneN or ChildSSN, thus Person is not in 4NF.
- Solution: Decompose R into X and Y
- Decomposition is lossless - but not necessarily dependency preserving (since 4NF implies BCNF - next)

4NF Implies BCNF

- Suppose R is in 4NF and $X \rightarrow Y$ is an FD.
$-R 1=X Y, R 2=R-Y$ is a lossless decomposition of R
- Thus R has the multi-valued dependency:

$$
R=R_{1} \bowtie R_{2}
$$

- Since R is in 4NF, one of the following must hold :
$-X Y \subseteq R-Y \quad$ (an impossibility)
$-R-Y \subseteq X Y$ (i.e., $R=X Y$ and X is a superkey)
- $X Y \cap R-Y \quad(=X) \quad$ is a superkey
- Hence $X \rightarrow Y$ satisfies BCNF condition

