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Abstract

Most known computational approaches to reasoning have problems when facing inconsistency,
so they assume that a given logical system is consistent. Unfortunately, the latter is difficult to
verify and very often is not true. It may happen that addition of data to a large system makes it
inconsistent, and hence destroys the vast amount of meaningful information. We present a logic,
called APC (annotated predicate calculus; cf. annotated logic programs of [3], that treats any set
of clauses, either consistent or not, in a uniform way. In this logic, consequences of a contradiction
are not nearly as damaging as in the standard predicate calculus, and meaningful information can
still be extracted from an inconsistent set of formulae. APC has a resolution-based sound and
complete proof procedure. We also introduce a novel notion of “epistemic entailment” and show
its importance for investigating inconsistency in predicate calculus as well as its application to
nonmonotonic reasoning. Most importantly, our claim that a logical theory is an adequate model
of human perception of inconsistency, is actually backed by rigorous arguments.

1 Preface

Most existing logical systems provide no means for reasoning in the presence of inconsistency. For
instance, consider the following set of facts: S=flies(tweety), —flies(tweety), grade(john, A). Al-
though there is certain amount of inconsistency in S, only the knowledge regarding tweety being
able to fly is affected. Intuitively, this inconsistency should have no implication regarding John’s
grade. However, since S has no model, the standard predicate calculus would warrant any conclu-
sion, including grade(john, F'). On the other hand, checking or guaranteeing consistency in large
knowledge-base systems is very expensive, if at all possible. Therefore semantics of such systems
cannot be based (at least directly) on standard logic. Lacking an alternative, many system design-
ers either assume that their systems are always consistent — hardly a realistic assumption, or opt
for syntactic approaches to inference, disregarding semantic issues. In the latter case, the user may
never be sure of the meaning of his program.

Thus, it 1s desirable to devise a logic in which inconsistency would be not as destructive as
in predicate calculus. The goal of the present paper is to propose just such a logic, which we
call APC (annotated predicate calculus; cf. annotated logic programs of [3]. Furthermore, unlike
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many other works that propose logics to deal with various reasoning phenomena, our approach is
justified not only by a number of carefully selected examples but by a host of rigorous arguments
presented in Section 6. In this section we provide a formalization of the intuition about the causes
of inconsistency in predicate calculus (with function symbols) and then show that these precisely
correspond to inconsistent beliefs in APC.

This paper is organized as follows. Section 2 introduces the syntax and semantics of annotated
predicate calculus. Section 3 discusses the notions of entailment and negation and in Section 4 we
give a number of examples of nonmonotonic reasoning in the presence of inconsistency. Section 5
presents a proof theory for the proposed logic. In Section 6 we argue that inconsistent beliefs in
APC represent, in a well defined sense, what humans are likely to regard as causes of inconsistency
in predicate calculus. Section 7 discusses various applications and extensions of APC. In Section
8, we present an alternative semantics for APC. Although it is slightly more complicated than the
one given in Section 2.2, it has an advantage that the completeness theorem holds for arbitrary
sets of formulas; with the semantics of Section 2.2 completeness is guaranteed only for restricted
sets of clauses. Some of the proofs are delegated to Appendices A and B.

2 Introduction to APC

Several researchers have introduced and demonstrated the usefulness of lattice-valued logics. Due
to these approaches, each closed formula may be assigned a truth value drawn from a lattice instead
of the traditional {¢true, false}. Two popular lattices to be used in the examples are depicted in
Figure 1.
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(a) A 4-valued Lattice [2] (b) A Lattice with Defaults [13]

Figure 1: Examples of Lattices

Belnap [2] was advocating the use of such logics as a general means for handling inconsistency,
while Ginsberg [13] and Sandewal [29] have shown their utility in explaining Reiter’s results on
Default Logic [27]. Quite recently, Fitting [11] proposed a fixpoint semantics for bilattice-valued
logic programs. With all their elegance, these approaches suffer from a number of drawbacks:



the lack of the notion of tautology (in the traditional sense) leads to difficulties in defining proof
procedures and to the need for additional complex truth-related notions such as “formula closure”
[13]. The notion of logical entailment also differs from the standard one and there is an unpleasant
asymmetry in the semantics of implication (at least, in [2, 29, 11]): normally logic formulas may
assume any truth value from the lattice, except for implications, which are strictly 2-valued.

Underlying APC is an upper semilattice of “degrees of belief”, a belief semilattice, BSL. An
upper semilattice is a partial order with a unique least upper bound for every pair of elements; the
existence of greatest lower bounds is not mandatory. We assume that BSL satisfies the following
conditions:

(i) Tt contains at least the following four distinguished elements: t (true), f (false), T (contradic-
tion), and L (unknown);

(ii) For every s € BSL, 1 < s < T (< is the semilattice ordering);
(iii) lub(t, f) = T, where lub denotes the least upper bound.!

The role of BSL in APC is different from that in the lattice-valued logics. In APC, the belief
semilattice is part of the object language rather than the range of truth valuations. Unlike [2, 13,
11, 29] semantic structures of APC remain 2-valued, the notion of tautology is preserved, and there
is a sound and complete resolution-based proof procedure.

We distinguish between what the reasoner believes in (at the epistemic level),? and what is
actually true or false in the real world (at the ontological level). As will be shown in Section 6,
APC can faithfully interpret the standard predicate calculus at its ontological level, thus being
intolerant to inconsistency, or it can interpret the calculus epistemically being able to tolerate
inconsistency in full (or, it can mix the two interpretations).

Some of the ideas about treatment of inconsistency used in APC appeared in [15, 3]. However,
these works are not as general as the present paper, since they are restricted to a subset of logic, and
as explained later, consider only one kind of negation which we call “epistemic.” In the present work,
we allow both epistemic and ontological negation, and describe a sound and complete resolution-
based theorem-proving procedure for the general logic. We also investigate the relationship of
inconsistency in predicate calculus to epistemic and ontological inconsistency in APC.

Elements of our approach can be traced back even further to [33, 30]. However, [33] does not
handle inconsistency and negation at all, while [30] considers only a subset of the logic. There is
also an abundance of literature (e.g. [6, 28]) describing other approaches to inconsistency. We are
not discussing them here since they employ quite different techniques from the ones used in this
paper.

APC is close in spirit to the logics derived from Post and semi-Post algebras [26]. However, these
logics do not deal with inconsistency and their negation is intuitionistic. In contrast, APC has two
negations: ontologic and epistemic, both of which are classical (although it is possible to include
an “epistemic intuitionistic negation”, if desired). Furthermore, the Post algebra based logic is less
expressive than APC and can be imitated by APC, while the logic of [26]. is too expressive to have
a resolution-based theorem proving procedure.

Inconsistency can be also approached using various modal logics of belief (e.g. [8, 17]). In
these logics, the sentence B(¢) A B(—¢) is satisfiable, as is a similar sentence in APC (APC has
no modal operators, but uses different means for representing beliefs; see Section 2). However, the
aforesaid logics are propositional, i.e., they do not support logical variables and quantification. Even
though the validity problem in quantified modal logics is known to be recursively enumerable, no

'Some of these conditions are not needed either for the proof theory, or for the results of Section 6. Section 7
summarizes conditions needed for each of the results.

20ne of the referees has pointed out that the term “epistemic” may be inappropriate here since it usually refers to
knowledge rather than belief. However, having consulted with some books on philosophical logic, e.g. [14], we have found
that the word “epistemic” is being used for beliefs as well as knowledge. We therefore stick to our original terminology,
also because we find it more palatable than the term “doxastic” suggested by the referee.



efficient proof procedure exists (but see [12, 22, 9] for some proposals). In contrast, APC supports
quantification and has a resolution-based semi-decision procedure that is comparable in efficiency
to the standard predicate calculus.

In a sense, logics of belief are more powerful than APC. For instance, a statement B(¢ V 9)
has no natural representation in APC (but there is an analogue of B(¢) V B(v)). On the other
hand, unlike logics of belief, literals in APC can be believed in to various degrees, so that it becomes
possible to differentiate between, say, necessary and default conclusions (see Section 4 for additional
remarks).

2.1 Syntax of APC

The language of APC is similar to that of predicate calculus. It contains predicates, function
symbols, constants, variables, quantifiers, and logical connectives. The only syntactic difference
is that atomic formulas in our logic are constructed from those of predicate calculus (e.g. !) by
appending to them annotations that are drawn from BSL (e.g. ! : r). Informally, an annotation,
r, represents strength of reasoner’s belief in the truth of the statements annotated with r ({ in our
case). For example, p(X) : s, ¢: T, and =r(X, g(Y, 7)) : 1, where s, 1, T € BSL, are literals of
APC. Similarly, (VY)r(Y) : t, (3X)—q(X,Z) : f, and (YX)(3Y) (p(9(X,Y),Z) : sVq(X) : L)
are formulas. We also note that =p : s means —(p : s) rather than (=p) : s. In fact, the latter is
not a well-formed formula according to the above definition.

Occasionally we will refer to atomic formulas of APC as “annotated atoms” to contrast them
with “non-annotated” atoms — the atomic formulas of PC.

2.2 Semantics of APC

Asin predicate calculus, given an APC language, L, a semantic structure, I,1s atuple < D, Ip, Ip >.
Here D is the domain of I; Ir associates to each k-ary function symbol f of L a mapping Ir(f) :
D* — D; and Ip associates to each m-ary predicate symbol p a function Ip(p) : D™ — BSL.

A valuation, v, assigns values from D to variables. This mapping can be extended to terms as
usual in the first-order logic by combining v and Ip: v(f(...,s,...)) = Ir(f)(..., v(s),...). So,
for a term t, v(t) € D.

For an atomic formula p(t1,...,%x) : s, we write I |, p(t1,...,%x) : s if and only if s <
Ip(p)(v(t1),...,v(tg)). This reflects the view that if the reasoner believes in p(@) to the degree
r then he also believes in it to any smaller degree. The rest follows the standard definitions of
predicate calculus:

IE, oV ifandonlyif I =, ¢ or I =, 9

I, gAY ifandonlyif I |, ¢ and I =, o

I &=, — if and only if not I =, ;

I =, (VX)9 if and only if T =, 9, for every u that may differ from v only in its
X-value;

I =, (3X)9 if and only if I |, ¢, for some u that may differ from v only in its
X-value.

We say that ¢ is satisfied by I if and only if for every valuation v, I }=, ¢. In this case we write
IEé.

Following the standard definitions, we say that a semantic structure I is a model of a set of
formulas S if and only if every formula ¢ in S is satisfied in 7. A set of formulas S logically entails
a formula ¢, denoted S = ¢, if and only if every model of S is also a model of ¢.



3 Inconsistency, Negation, and Implication in APC

3.1 Inconsistency: Ontological vs. Epistemic

Example 1: Consider a set of ground formulas S = {p : t, p : fVg :t, p:fvg: £ r t}. If
one tried to express the same information in predicate calculus (PC), the most likely result would
be S’ = {p, -pVyq, -pV—q, r}. O

In PC, S’ is inconsistent, so the standard predicate calculus warrants every conclusion, in
particular both r and —r. Intuitively, we may notice the difference in the contribution to the
inconsistency made by r and the first three formulas of S’. Indeed, the latter are inconsistent
regardless of the literal r, which has nothing to do with p and g¢.

It is our desire to turn this intuition into a result of a logically correct reasoning. As mentioned
earlier, the inconsistency encountered in S’ accounts for conflicting beliefs of a reasoner, and reflects
his contradicting intentions or inadequate information about the real world. Separating the reality
from one’s beliefs allows us to tolerate this kind of inconsistency. For instance, this can be done by
stating that in S’, p and ¢ are believed to be “inconsistent” while r is just “true.”

To analyze the notion of inconsistency in APC, let us consider the set S of Example 1, and
choose a semilattice, say, the one depicted in Figure 1(a). By the definitions in the previous section,
S has several kinds of models, some of which are listed below:

my, where p: T, q:T,and r: t are true;
msg, where p: T, q: L, and r : t are true;
mg, where p: T, q:T,and r: T are true;
my, where p: t,q: T, and r: t are true.

Actually, p : T means that the reasoner holds an inconsistent belief regarding p, so here we are
dealing with epistemic inconsistency, or e-inconsistency for short. A model M of S is e-inconsistent
if M =p: T for some p. A set S of formulas is e-inconsistent if S |=p : T, for some non-annotated
atom p. A set of formulas is ontologically inconsistent (abbr., o-inconsistent) if it has no models
in APC.

Ontologic inconsistency is similar to inconsistency in the ordinary predicate calculus: o-inconsistent
sets of formulas have no meaning, since they entail everything. In contrast, e-inconsistent formulas
do have models in APC; these models can be perceived as possible states of the reasoner’s beliefs.
However, if S is e-inconsistent then S = p : T, for some p, i.e. there is at least one inconsistent
belief in every possible state of beliefs corresponding to S.

There is also a third possibility, the one illustrated in Example 1. A set of formulas S may be
e-consistent, yet each of its models may be e-inconsistent. In other words, each of the possible states
of reasoners beliefs characterized by S contains an inconsistent belief, although this belief may be
different in different states (that is why S itself is e-consistent, according to our earlier definition).
Corollary 3 of Section 6 reveals the connection between this latter situation and inconsistency in
PC.

An examination of APC models suggests several useful notions. First, we observe that models
may differ in the number of inconsistent beliefs (i.e., e-inconsistency) they contain. For instance,
ms and my4 contain less e-inconsistency than m;, and the latter is “more consistent” than mg. In
addition, we may say that my and my4 are “minimal” among the listed models, in the sense that
they contain the smallest (with respect to the semilattice ordering) beliefs about p, ¢, and r. On
the other hand, ms and m4 have similar amounts of inconsistency.

Formally, we say that a semantic structure Iy is more (or equally) e-consistent than I (denoted
I, <t I) if and only if for every atom p(t1,...,tx), whenever Iy = p(t1,...,tg) : T it is also the
case that In | p(t1,...,%) : T. I is most e-consistent in a class of semantic structures, if no
semantic structure in this class is strictly more e-consistent than I (i.e., for every J in the class,
J <t Iimplies I <t .J).

Similarly, we say that Jy is smaller than J; (denoted J; < J3) if and only if for every atom
q(t1,...,tx), whenever Jy = q(t1,...,tx) : s then also Jo = q(¢1,...,%) : s. A semantic structure



J is minimal in a given class of semantic structures if and only if this class contains no semantic
structure strictly smaller than .J.

A minimal model may be not most e-consistent, and vice versa, as illustrated by the following

example.
Example 2: Consider S = {p: ¢, p: £V ¢ : t} and suppose p stands for “it rains” while ¢
for “take umbrella.” S has two minimal models: m; in which p : t and ¢ : t are believed, and
mg where p : T and ¢ : L are true. Here, my is strictly more e-consistent than ms, and also m;
is more appealing to our intuition (i.e., “take umbrella when it rains”). The other model, ms,
corresponds to the following way of reasoning: “Although I was told that it rains and nobody has
claimed otherwise, I remain sceptic making no decision about taking an umbrella.” O

Sometimes, certain semilattice elements other than T may be also viewed as a kind of inconsis-
tency. For instance, in Figure 1(b), dt (or df) stands for “concluded true (resp., false) by default.”
Then the intended meaning of dT would be an “inconsistent default conclusion.” Ginsberg [13]
suggests that dT should be distinguished from a stronger inconsistency represented by T. In this
situation, a reasoner may tend to minimize not just the number of ¢ : T literals, but also other
kinds of epistemic inconsistencies (such as dT).

Formally, let A C BSL. We write Iy <a I (I1 is more or equally e-consistent than I5 relatively
to A) if whenever I = p : A for some A € A, then I3 = p : A. This leads to the notion of most
e-consistent models with respect to A. Several examples of the use of this notion in conjunction
with the lattice of Figure 1(b) appear in Section 4.

3.2 Negation: Ontological vs. Epistemic

The negation, “=”, introduced in Section 2 is of ontological nature, since —p : « is interpreted as
the opposite to believing in p to the degree of a. However, at the epistemic level, it is also possible
to talk about epistemic negation, denoted ~ , where ~p: t =p: fand~p:f=p: t.

Formally, epistemic negation, “~” is a semilattice isomorphism BSL— BSL such that

e it is symmetric, i.e. ~~ a = a for all « € BSL; and

e ~t=f,~f=t,~L1L =1 and ~T =T (the last two equalities actually follow from the

symmetry of “~” and the monotonicity of semilattice homomorphisms).

It 1s extended to formulae as follows:
i) ~p:a=pi~a
(ii) ~=¢ = =~9¢

(iii) ~ (¢ V) = ~dA~Y
~(pAY) = ~oV~y
(iv) ~ (VX))o = (3X) ~¢
~(3X)¢ = (VX) ~¢

Epistemic negation is uniquely defined for the lattice of Figure 1(a). For the BSL in Figure
1(b), we only need to postulate ~ dt = df, ~ df = dt, and ~dT =dT.

3.3 Implication and Entailment: Ontological vs. Epistemic

In PC, implication 1+ ¢ is defined as ¢ V =¢. In APC we have a choice between the ontological
implication: ¢ =1V —¢, and the epistemic implication: <~ ¢ =YV ~ ¢.

The two kinds of implication differ significantly in their properties, especially in the way they
propagate inconsistent beliefs.
Example 3: Consider S = {gq: t, p: t<—q: t}. It is easy to see that S | p : t. Furthermore,
even if ¢ were an inconsistent belief, p : t would still follow: {q : T, p: t<q: t} E=p: t. Thus,
ontological implication allows us to draw conclusions from inconsistent beliefs. This corresponds to



the following way of reasoning: Let p be a reasoner holding an inconsistent belief ¢, i.e. p believes
q is true. Then the rule p : t<q : t says that p believes in p as long as it believes in q. Therefore,
since p thinks ¢ is true, it concludes that p is true, even though p also believes that ¢ may be false.
This kind of reasoning may be appropriate in situations when a reasoner has several sources of
equally credulous information and wants to explore all consequences of this information.

For comparison, let us replace <— with < in the above example: T = {q: t, p: t<q: t}.
Surprisingly, it is no longer true that 7' }=p : t. Indeed, p: t <~ ¢ : t is equivalent to ¢ : fVp : t,
and therefore there is a model 7 in which 7 = ¢ : T, but only 7 = p: L (in particular, I [£p: t).
The intuitive reading in this latter case is: If p does not believe that ¢ is false then p believes in p.
Even though p thinks that ¢ is true, it may still believe that ¢ is false and so p : t is not concluded.
O

We thus see that ontological implication is “eager”: It permits drawing conclusions from incon-
sistent beliefs and has a strong modus ponens property, i.e., if ¥y < a then {p : a, ¢ : f+p :
v} E ¢ : B. In contrast, epistemic implication is “overly cautious.” Not only does it refuse to
draw conclusions from inconsistent beliefs, but it also guards against the possibility that one of the
premises (i.e. ¢ in Example 3) may somehow turn out to be inconsistent after all. This excessive
cautiousness can be countered with a kind of closed world assumption applied to e-inconsistency,
which suggests to prefer models with the least amount of e-inconsistency.

In other words, in dealing with epistemic implication we may want to narrow our attention
to the set of most e-consistent models. Logical entailment restricted to most e-consistent models
will be called epistemic entailment, denoted . A notion similar to most e-consistent models and
epistemic entailment was independently proposed by Priest [24].

More generally, let A € BSL. We write T |a ¢ if and only if whenever M is a most e-consistent
model of T" with respect to A, M = ¢ holds as well. Typically, inconsistency is minimized with
respect to the set

A ={a|aeBSL, ~a=a}.

Epistemic entailment with respect to the set A thus defined will be used throughout the rest of
this paper. For the 4-valued BSL of Figure 1(a), sz coincides with | (i.e. with k7)) In what

follows, we will omit the subscript A and write s instead of R

It is easy to see that in Example 3, T' | p : t. While countering the overly cautious behaviour
of <~ epistemic entailment still does not permit drawing conclusions from inconsistent premises.
That is, if 7" ={q : T, p : t<w-q: t}, then T' & p : t, since the model [ of 77 in which I =¢q: T
and I }£ p : t hold, is most e-consistent.

Still, epistemic implication, as defined, does not adequately capture the intuition behind the
notion of implication. The problem is in the inability to define the concept of a “canonic” possible
world for a set of logical formulae. For instance, consider C' = {q : t <~ p : £}, which is equivalent
tog : tVp @ t. If “<~” were thought of as an implication of some sort, the most “natural”
possible world for C' would be the one where both p and ¢ are unknown (have L as a truth value).
However, such a semantic structure would not be a model for C'. The minimal most e-consistent
models of C' are the ones where either p or ¢ is known to be true, which does not seem to be a
suitable behaviour for implication in this case.

To overcome this difficulty, we modify the definition of epistemic implication as follows:

def

6™y G (PA~Y) = GV~ = b (AT~ ).

From now on, we will abandon the old notion of epistemic implication and will use “<~” to denote
“<e % ” The reader can verify that if ¢ is a disjunction and ¥ is a conjunction of literals then
¢ <1 is a clause, as should be expected of an implication. For instance, ¢ < (1) A n) is equivalent
to ¢ V-V ~p VoV ~ 1.

It is easy to verify that, when coupled with |&, the new definition of implication <~ is similar
to the old one in that it has modus ponens and does not propagate inconsistency. However, it
does not suffer from the drawback of the old definition. For instance, the semantic structure M



‘ Paraphernalia ‘ Properties ‘

—, E Draws conclusions from inconsistent beliefs; Logically
omniscient, strong modus ponens.

—, K Same as above.

«, E Overly cautious, no modus ponens, non-omniscient.

«, K No conclusions drawn from inconsistent beliefs; Lim-
ited modus ponens.

Table 1: Summary of APC Entailments

that assigns L to every atom would now be a model of C' = {q : t <« p : t}, since under the new
definition, C' is equivalent to ¢ : tV—-p : tVp : f,and M | —p : t.

However, unlike “<”  only a lzmited version of modus ponens holds for “<~.” For instance, for
the lattice of Figure 1(b), {p : ¢, ¢ : t<p : dt} ¢ : t, while {p : t, ¢ : tep : dt} Eq : t.
The epistemic rule ¢ : t<p : dt cannot be applied to p : t because t > ~ dt = df, where
“>” is the BSL-ordering. In general, when v > «, then {p : v, ¢ : B<p : a} ¢ : pif and
only if ¥ > lub(a, ~ a) (notice that lub(a, ~ a) € A and it is the smallest inconsistent degree of
belief located above a in BSL).

APC with its two kinds of negation and implication provides a rich framework for modeling
various situations where inconsistency may arise. For instance, Belnap [2] takes a stand that no
conclusion should be based on inconsistent beliefs, and defines implication accordingly. As we
have seen, epistemic implication represents that view. On the other hand, Touretzki, Horty, and
Thomason [32] argued that in some situations inconsistency may be propagated through implica-
tions, which corresponds to the ontological implication in APC.

The distinction between the ontological and epistemic versions of negation and implication
sheds additional light on the logics used in [33, 30, 3, 15] from which APC was gradually evolving.
It turns out that those logics use the ontological implication, but the negation is epistemic ([33]
does not consider negation). They also use special kinds of lattices and [33, 30, 3] are subsumed
both by [15] and APC. On the other hand, [15] cannot be directly compared to APC, since the
former uses quantified variables and evaluable monotonic functions over BSL. We can summarize
our observations in Table 1.

4 Nonmonotonic Reasoning with Contradictory Beliefs

As is well known, nonmonotonic logics (e.g. [20, 27]) significantly extend the power of PC to model
various aspects of human reasoning. Circumscription, Default Logic and other reasoning schemes
can be built on top of APC along the same lines. However, even without using circumscription or
defaults, APC yields more informative results than PC does.

Example 4: Consider the following set of clauses D:

flies(X) : t < bird(X) : t

~ flies(X) : t <« penguin(X) : t
bird(tweety) : t

bird(fred) : t.

Let D’ denote D with the denotations stripped off (and ~ replaced with =), i.e. D’ is a set of PC-
clauses. Both PC and APC conclude that flies(tweety) and flies(fred) are true. However, adding
penguin(tweety) to D’ makes it PC-inconsistent, precluding any informative conclusion. In con-
trast, in APC, adding penguin(tweety) : t to D leads to the inconsistency regarding flies(tweety)
(i.e. flies(tweety) : T), but still infers flies(fred) : t rather than, say, flies(fred) : £. O



Although recent advances in Logic Programming [21] provided an adequate semantics for nega-
tion in rule bodies, still negation is disallowed in rule heads. In particular, rather natural situations
such as that of Example 4 do not have a straightforward representation. In the framework of APC
such programs can be given a natural and computationally realizable semantics. In addition, it
now becomes possible to exploit the two kinds of implications found in APC.

In Logic Programming, negation in rule bodies is normally treated via a form of closed world
assumption. An appropriate semantics for this treatment was recently proposed in [1, 25, 18].
Conclusions made according to such semantics may not always be logically valid, but rather have
the status of defaults. Several researchers argued that preserving the distinction between true and
default facts may be useful [13, 23]. We shall see in the examples below that in APC keeping track
of the defaults can be facilitated by using special semilattices, such as the one in Figure 1(b). In
general, the choice of a suitable semilattice is problem-dependent and may be quite different from
that of Figure 1(b).

A number of recent proposals allow negated literals in rule heads [10, 3, 15]. However, all
these consider the epistemic negation only. In addition, the treatment of negation in [10, 3]. is
monotonic, which precludes default reasoning. Recently Kifer and Li [15] have shown that for a
special type of lattices, epistemic negation can be also treated non-monotonically. This result can
be extended to the case when BSL is a bilattice with conflation. Allowing both types of negation
and non-monotonicity — epistemic and ontological — results in a very rich logic programming
language. Many of the above issues are illustrated in the examples that follow.

Example 5: Let us refine the Tweety/penguin example as follows:
(i) flies(X) : dtebird(X) : dt
(i1) flies(X) : dfpenguin(X) : dt
(iii) flies(X) : df < wounded(X) : dt

flies(X) : df <~ wounded(X) : t
(iv) flies(X) : f < penguin(X) : t.
The first rule states that whenever there is an evidence (perhaps obtained via reasoning by default)
that X 1s a bird, it is viewed as a sufficient reason to make a default conclusion that X flies. The
next rule states that the default belief “X 1s a penguin” suffices to further conclude that X cannot
fly; Rule (ii) assigns this latter conclusion the status of a default. Clauses in (iii) tell us that when
we think X is wounded (say, if we hear a shot, knowing that the hunter is quite accurate) we assume
X cannot fly. Again, we assign this conclusion only a default status because we may not be sure
that X cannot fly when it is wounded, even more so if we are not at all sure that X is wounded.
Rule (iv) says that if X is known to be a penguin then conclude that X cannot fly.

It 1s not accidental that the last three clauses contain epistemic implication. The rationale here
is that we do not want to propagate inconsistency through (iii) and (iv) (recall from Section 3.3 that
under the epistemic entailment “j”, the implication “<a” differs from “4” in that inconsistent
conclusions are not propagated through “<~”). In (iii), if our information about X being wounded
is contradictory (of status dT or T), we do not want to conclude that X cannot fly. We would like
to be more cautious here than in Rule (ii) because being wounded is not a sufficient reason for not
flying (as opposed to being a penguin) — even more so if there is a counter-evidence suggesting
that X is not wounded in the first place. In Rule (iv), we use epistemic implication because in the
presence of inconsistency of type T, i.e., when there is a possibility that X may not be a penguin
(penguin(X) : f), we do not rush to conclude that X cannot fly and prefer to rely on other rules
(Clauses (i) - (iii)).

To extract the desired behaviour from our program we will consider it under the epistemic
entailment “R” (i.e. Rz, where A = {1, dT, T} — see Section 3.3).

Suppose that initially it is known that:

(v) bird(tweety) : t.

Then, by (i), we can conclude that Tweety possibly flies: flies(tweety) : dt. However, if later we
somehow arrive at a default conclusion



(vi) penguin(tweety) : dt,
Rule (ii) would lead us to conclude flies(tweety) : df. Together with flies(tweety) : dt this
yields flies(tweety) : dT, as expected.

It was our intention here not to impose priorities on the default evidences “bird” and “penguin.”
Prioritizing evidences is not hard, however. For instance, we could use a more elaborate semilattice,
where several levels of defaults are represented (e.g., dt1, dfy, d Ty, dta, dfs, dTg, etc., such that
dt;, df; < dT; and @; < #;41, where @ and # are either dt, df, or dT), and use different-
strength default truth values in Clauses (i) and (ii). Now, suppose that after making further
observations we upgrade Tweety’s status to
(vil) penguin(tweety) : t.

This allows us to execute Rule (iv), yielding flies(tweety) : f. Since dT < f in the lattice ordering
of Figure 1(b), we now conclude flies(tweety) : f, as intended.

Even more interesting is to see what happens when the information about Tweety being a
penguin gets garbled so that we become unsure about Tweety’s zoological classification. Let us
assume for the sake of an example that new rumors have it that Tweety 1s not a penguin but an
undercover CTA agent. We may get confused by all this and upgrade (vii) to
(viil) penguin(tweety) : T.

Since under the semantics defined by “” Rule (iv) does not propagate inconsistent beliefs, we no
longer can derive flies(tweety) : f. Therefore, only the rules (i) and (ii) apply and we fall back on
the previous conclusion flies(tweety) : AT, i.e. we become uncertain whether Tweety flies or not.

Now, let us turn to Tweety’s mate, Fred. Suppose that in addition to being a bird
(v) bird(fred) : ¢
it is rumored that Fred is wounded:

(vi)’ wounded(fred) : dt.

Rules (i) and (iii) lead us to conclude flies(fred) : dT. To see why Rule (iii) is enabled here,
observe that it is equivalent to flies(fred) : df V —wounded(fred) : dt V wounded(fred) : df.
There are two classes of models for this clause and for (vi)’. In one, wounded(fred) : dT but
not necessarily flies(fred) : df holds. In another, wounded(fred) : dT does not hold, but then
necessarily flies(fred) : df and wounded(fred) : dt must be true. Clearly, since dT € A, only
the latter class contains most e-consistent models relatively to A. Hence

{Clauses (iii), wounded(fred) : dt} |k flies(fred) : df.

If, however, subsequent rumors bring that the earlier rumors were wrong, we may become uncertain
about Fred’s wounds and assert

(vii)’ wounded(fred) : dT.

Similarly to the Tweety’s case, even though this inconsistency has a default status, it disables the
rules in (iii), since

{Clauses (iii), wounded(fred) : AT} W flies(fred) : df.

(Given wounded(fred) : dT and flies(fred) : df V —wounded(fred) : dtV wounded(fred) : df,
any model where wounded(fred) : dT holds but flies(fred) : L does not, is always <jx-smaller
than those models where, in addition, flies(fred) : df is true.) Therefore, only Rule (i) remains
active, yielding a default conclusion that Fred can fly: flies(fred) : dt. This is precisely the
desired effect since, as explained earlier, we do not want to draw conclusions via Rules (iii) from
inconsistent beliefs about wounded(X).

Notice that so far only the first of the rules in (iii) was employed. The second rule there is
needed in case we further upgrade the available information to wounded(fred) : t. The first rule
in (iii) does not apply to wounded(fred) : t because of the limited modus ponens. (Note that if
the information is upgraded to wounded(fred) : £, none of the rules in (iii) applies.)

We could continue this story and expand into the following situation:

(ix) cage(X) : dtflies(X) : dt

10



(x) cage(X) : f< flies(X) : f.

Rule (ix) says that if there is a slightest chance that X may fly away — put it into a cage. Moreover,
X must be caged even if our information is inconsistent merely at the default level. In contrast, if
we believe that X cannot fly, Rule (x) suggests not to imprison X. Epistemic entailment in Rule
(x) indicates that if we become uncertain of whether X flies or not, we would not want to use Rule
(x) but would rather rely on other rules.

For instance, having heard about Dumbo’s vast ears, we may conclude:
(xi) flies(dumbo) : dt,
prompting us to cage Dumbo, by default: cage(X) : dt. Later we may find out that Dumbo is an
elephant and, knowing that elephants cannot fly, decide:
(xi1) flies(dumbo) : f.
This activates Rule (x), yielding cage(dumbo) : f. Since dt < f in the lattice of Figure 1(b),
cage(dumbo) : f prevails and Dumbo is released. However, after seeing the cartoon, our beliefs
may be in disarray again, for we did see Dumbo flying after all! So, we assert:
(xiii) flies(dumbo) : T.
Now, rule (x) is disabled, for it does not propagate inconsistent beliefs. Therefore, we fall back on
Rule (ix), concluding cage(X) : dt. Poor Dumbo is caged again, as we decide not to take chances.
O

The next example is from [13]:
Example 6: Consider the situation described by the following set of formulae D:

bird(Tweety) : t

flies(X) : dt < bird(X) : dt
flies(X) : dt < bird(X) : t

~ acrophobic(X) : dt < bird(X) : dt
~ acrophobic(X) : dt < bird(X) : t.

Under the semantics determined by kv (i.e. Rz, where A = {T,dT, L}) we obtain that D |
~ flies(Tweety) : dt and D | acrophobic(Tweety) : df hold (the latter holds since ~
acrophobic(Tweety) : dt = acrophobic(Tweety) : df), as expected.

This should be contrasted with [13] where two distinct possible worlds are sanctioned: One
corresponds to our result above while in another Tweety cannot fly (i.e., flies(Tweety) : f)
and it is unknown whether he is acrophobic (i.e. acrophobic(Tweety) : L). To eliminate the
unwanted (second) possible world, Ginsberg [13] needs to employ an additional notion, which he
calls “boundedness.” O

The next example is known as Nixon’s Diamond and, again, we will contrast the APC-representation
to that of [13].

and a Quaker. All Quakers are supposedly doves (but there might be exceptions) and all
republicans are hawks, by default. It is also assumed that hawks and doves are incompatible
political views. In APC this can be represented as follows:

(i) quaker(nizon) : t
(i1) republican(nizon) : t

(iii) hawk(X) : dt < republican(X) : dt
hawk(X) : dt < republican(X) : t

(iv) dove(X) : dt < quaker(X) : dt
dove(X) : dt < quaker(X) : t

(v) ~dove(X) : dt <« hawk(X) : dt
~ dove(X) : dt <« hawk(X) : t

(vi) ~hawk(X) : dt <« dove(X) : dt
~ hawk(X) : dt < dove(X) : t.
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Let us denote the above set of clauses by D. Using the facts (i) and (ii) about Nixon and applying
Clauses (iii) — (v), we derive hawk(nizon) : dt and dove(nizon) : dT. Clauses in (vi) cannot
be applied to dove(nizon) : dT since < does not propagate inconsistency. The reader can verify
that My = {quaker(nizon) : t, republican(nizon) : t, hawk(nizon) : dt, dove(nizon) : dT}
is a most e-consistent model of D relatively to A.

On the other hand, if we apply Clauses (iii), (iv), and (vi) then hawk(nizon) : dT and
dove(nizon) : dt are derived. Clause (v) cannot be applied since we have contradictory be-
liefs about Nixon as a hawk. Therefore, My = {quaker(nizon) : t, republican(nizon)
t, hawk(nizon) : dT, dove(nizon) : dt} is another most e-consistent model of D with respect
to A. O

It 1s seen easily that M; and M5 above are the only most A-consistent models of D. In My,
Nixon 1s a hawk, by default, while the default conclusions regarding Nixon being a dove contradict
each other; in My, the conclusions dove(nizon) and hawk(nizon) exchange status. This is an
improvement over [13] where an analogue of Example 7 has only one possible world in which both
dove(nizon) and hawk(nizon) have the status dT.

5 Proof Theory

This section presents a sound and complete proof theory for the monotonic semantics of APC —
the one that is determined by the logical entailment relation “=”. Regarding the nonmonotonic
semantics represented by the relation “j” it is not hard to show that, as usual with such theories,
it has no complete proof theory. Computational aspects of “/” are beyond the scope of this paper;
we only mention that computation under “g” is closely related to truth-maintenance.

An appealing feature of APC is that the standard techniques, such as Skolemization, Herbrand’s
theorem, refutational proof procedure, and so on are still applicable. We assume that the reader is
familiar with these standard notions of first order logic, and present their counterparts in APC.

The Skolemization procedure in APC is essentially identical to that of PC, and we obtain the
following result whose proof is identical to that of Skolem theorem in predicate calculus [4].
Theorem 1 (cf. Skolem Theorem): Let S be a set of formulas, and ¢ — a formula. Let S, ¢
denote a Skolemization of S and ¢, respectively. Then S U {—¢} is o-inconsistent if and only if so
is SU{-¢}. O

As in the classic case, Skolem Theorem allows us to replace every formula by a set of clauses
such that the original formula is unsatisfiable if and only if so is the corresponding set of clauses.
A clause is a set of APC literals that is thought of as a disjunction. In particular, this means that
clauses contain no duplicate literals. So, although in the following we will often write clauses as
disjunctions of literals, it is important to keep in mind that these disjunctions are duplicate-free.

Given a language, L, the Herbrand universe in APC is the same as that in PC. The Herbrand
base is the set of all annotated ground atoms of L. A Herbrand wnterpretation, I, is a subset of
the Herbrand base such that for every ground literal p (without the annotation) there is r € BSL
(depending only on p) such that p : s € I if and only if s < r. We chose this variant of the
definition of Herbrand interpretations in keeping with the logic programming tradition that defines
such interpretations as sets of “true things.” Usually we will describe Herbrand interpretations by
specifying only the highest annotation associated with each atom, e.g. T = {p : s, ¢ : r} should
be understood as a shorthand for {p : u, ¢ : v|u<sand v <r}.

Proof of the following lemma is essentially identical to the proof of the corresponding result in
predicate calculus [4].

Lemma 1: A set of clauses (in APC) has a model if and only if it has a Herbrand model. O

In general, Herbrand’s theorem does not hold for APC as shown in the next example. Therefore,
APC does not have the compactness property. Theorem 2 below shows, however, that under certain
restrictions this property still applies. In Section 8 we propose an alternative (and a slightly more
complex) semantics for APC that does have the compactness property.
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Example 8: Consider a belief semilattice obtained from the 4-valued lattice (Figure 1a) by filling in
the edges of the diamond with a continuum of values. For definiteness, assume that the continuum
corresponding to the edge < L, t > is linearly ordered between L and t and has the form {t, | r €
[0,1]}, where tg = L and t; = t. Let S consist of -p: t and the set {p: ¢, |0 <r < 1}.

Clearly S is unsatisfiable, for in every model of S p: t; (= p: t) must be true. However, every
finite subset of S is satisfiable, since t is not a limit of any finite subset of {t, |0 < r < 1}. D

Nevertheless, Herbrand’s theorem holds in several important special cases, which include logic
programs and the situations when BSL is finite.

Theorem 2 (cf. Herbrand’s theorem): Consider a set of possibly nonground clauses, S, that
involves only a finite number of different belief annotations (this condition is always satisfied when
BSL is finite or when S itself is finite, e.g. a logic program). Then S is o-inconsistent if and only
if so is some finite subset of its ground instances.

Proof: See Appendix B. O

The notion of substitution in APC is the same as in PC. There is a slight difference in unification.
A pair of atoms, p(t1,...,tg) : sand p(t},...,t;) : r,is unifiable if and only if there exists a unifier
of p(t1,...,tx) and p(t},...,t;). Most general unifiers (mgu’s) are, again, defined in the standard
way [4].

Binary resolution is defined as follows. Let p(f) : s V¢ and =p(¢') : r V ¢ be a pair of clauses
not sharing common variables, such that # = mgu(p(#), p(f')) and s > r (note the asymmetry!).
Then their binary resolvent is (¢ V ¥)8.

Next, consider a clause ¢ = p(t1) : s1V...Vp(tg) : sgVoor ¢ = =p(t1) : s1V...V=p(tg) : spVe.
Let # = mgu(p(f1), ..., p(fx)). Then 0 is a factor? of 1.

As in predicate calculus, binary resolution can be combined with factorization to yield a single
powerful rule: Let o = p(f1) : 81V ...Vp(tg) : sk Ve, B==pt1) : 11 V...V=p(ty) : r, V¢ be
a pair of clauses and § = mgu(p(t1), ..., p(tx), p(t'1), ..., p(t'n)). Suppose further that for all i, j,
s; > r;. Then (¢ V)0 is a (full) resolvent of o and 3. However, we prefer to use binary resolution
with factorization rather than the combined resolution rule.

Notice that unlike in PC, there is an asymmetry in the definition of resolution, since the positive
literal to be resolved upon must not be believed in less strongly than the negative one. More
important, unlike in PC, resolution and factorization alone are not complete as derivation rules.
For instance, these rules do not suffice to derive an empty clause from S=p : £, p: t, =p : T,
although this set is unsatisfiable. Indeed, to be a model of S, I has to satisfy p: f and p: t. By
the definition of Herbrand models given above, I must also satisfy p : lub(f, t) = p: T. But then
I falsifies =p : T. Furthermore, for any atom p, p: L is a tautology in APC, yet it is not derivable
by the above rules. To complete the picture we introduce two more rules, called reduction and
elimination.

Given a pair of clauses p(f) : sV ¢ and p(¥') : rV ¢ such that § = mgu(p(¢), p(t')), their
reduction is the clause p(#)f : lub(s, r) V ¢8 V ¢». Coming back to the example in the previous
paragraph, we can reduce p: f and p : t, producing p : T. The latter literal can then be resolved
with —p : T, yielding the empty clause. The elimination rule, being applied to a clause C, simply
removes all literals in C' of the form —p(#) : L. The resulting clause is called an eliminant of C.
Notice that the elimination rules removes literals, not clauses. So, for instance, being applied to the
clause —p : L (recall: clauses are sets) it will yield an empty clause and being applied to —p : LV C’
it will yield C”.

Lemma 2: Resolution, factorization, elimination, and reduction are sound derivation rules.
Proof: Trivial. O

Given a set of clauses S, its refutation is a derivation from S of an empty clause using resolution,

factorization, elimination, and reduction inference rules.

®If BSL were a lattice, we could then define the factor of ¢ as p(£1)8 : glble(si) V ¢8 or mp(£:1)8 : 1ubk,(s;) Vv @8,
depending on whether positive or negative literals are being factored.
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Theorem 3: Refutation is a sound and complete procedure for testing o-inconsistency of sets of
clauses involving only a finite number of different belief constants. That is, if S is such a set then
it is o-inconsistent if and only if there is a refutation of S.

Proof: See Appendix B. O

It follows from Theorem 3 that e-inconsistency is also semi-decidable.

Corollary 1: It is semi-decidable whether a set of APC formulas is e-inconsistent, 1.e., there is an
algorithm that terminates with an answer “yes” if and only if S is e-inconsistent.

Proof: We first prove a weaker result and then explain what has to be done for the general case:
Consider a specific belief p. Clearly, S l=p : T if and only if SU {-p : T} is o-inconsistent, if and
only if (in view of Theorem 3) the latter set has a refutation.

For the general case (when the belief p to be tested is not specified), we have to show that S
entails some inconsistent belief and if it does so then to find one. The most intuitive way to prove
this is to consider an annotated version of HiLog — a recently introduced higher-order extension
of PC [5]. What makes HiLog so useful here is the fact that its variables may range over atomic
formulas of PC. Thus, to find out whether S implies p : T for some unspecified belief p, we only
need to verify that SU {=X : T} has a refutation, where X is a variable. Tt is shown in [5] that
HiLog has a sound and complete resolution-based refutation procedure. The reader who is familiar
with HiLog should have no problem to see that the theory developed so far for APC carries over
in a straightforward way to the annotated HiLog. In particular, annotated HiLog has a sound and
complete proof theory. Hence, SU{=X : T} can be refuted if and only if S |= (3X)X : T, if and
only if there is an atom p such that S|Ep : T. O
Example 9: Consider the following set of clauses:

(i) p:TVg:TV-r: L
(i) p:tVv-og:t;
(i) —p:T;
(iv) p:f.
The following refutation illustrates the basic concepts:
(v) p:TVg:T  (eliminant of (i));

(vi) p:TVp:t (resolvent of (v) and (ii));

(vii) p:t (resolvent of (iii) and (vi));
(viii) p: T (reduction of (vii) and (iv));
(ix)  empty clause (resolvent of (viii) and (iii)). O

The factorization rule is needed in APC in situations similar to those where it is needed in PC, e.g.
to refute {p(X) : sV p(Y) : s, =p(V) : sV-p(W) : s}.

6 Relationship to Predicate Calculus

As mentioned earlier, the purpose of APC is to cope with inconsistency. For consistent systems it
should be expected to yield essentially the same consequences as the standard predicate calculus.
In this section we present two different natural embeddings of PC into APC and discuss their
properties.

The first, epistemic embedding, =.,;, views formulas of PC as beliefs and interprets negation,
—p, in a rather restricted sense — as a belief in the falsehood of p. Formally, Z.,:(p(...)) =
p(...) + t and Eqp(—p(...)) = p(...) : £ (=~ p(...) : t). The second, ontologic embedding,
Zont, interprets negation —p, in a much stronger sense — as not believing that p is true. Thus, in
contrast to the epistemic embedding, =,,; views S not as a collection of beliefs, but ontologically, as
knowledge about what the reasoner believes in or does not. Formally, ZEon¢(p(...)) = p(...) : t and
Eont(7p(...)) = —p(...) : t. Both embeddings extend to formulas homomorphically, by commuting
with quantifiers, V, and A.

Closely related to these embeddings is a mapping = from semantic structures for PC into
the set of semantic structures for APC. Let I =< D, Ip, Ip > be a semantic structure of PC,
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where Ip interprets predicate symbols as relations. Then E(I) =< D, Ip, Ip: >, i.e. it shares
with I the domain D and the interpretation of function symbols, Ir; Ip: is defined as follows:
for each predicate symbol p and every tuple ay,...,a, € D, Ip:(p)(ai,...,an) = t if and only if
Ip(p)(a1, ...,an) = true; Ip:(p)(ai,...,an) = £if and only if Ip(p)(ay,...,an) = false.

As seen from the definition, = yields a special kind of semantic structures for APC — those
where each atom is known to be either true or false (but not both). We say that an APC semantic
structure, I =< D, Ip, Ip >, is a tf-structure if for each n-ary predicate symbol, p, and every
tuple a1, ..., a, € D, either Ip(p)(ai,...,a,) = t or Ip(p)(a1,...,a,) = f. For Herbrand
interpretations this means that for every ground atom p, either p: t € I, or p: £ € I, but not
both.

It is easy to verify that for every PC semantic structure 7, Z(7) is a tf-structure. Furthermore,
for a given PC language L and a semilattice BSL, let Lpsy denote the corresponding language
of APC. Then = is a 1-1 mapping from semantic structures of L onto the set of tf-structures
of Lpsr,. The inverse mapping T : {tf-structures of Lgsr} — {semantic structures of L} is
defined as follows: Let I' =< D, Ir, I > be a tf-structure of Lpsz. Then (1) Y(I') = I, where
I =< D, Ip, Ip > interprets constants and function symbols of L the same way as I’; and (2)
Ip(p(ai,...,an)) = true if and only if Ip:/(p)(ay,...,an) = t; Ip(p(ai,...,a,)) = false if and only
if Ip:(p)(a1,...,a,) = f. This mapping is well defined, since I’ is a tf-structure.

Theorem 4: Let S be a set of formulas in PC. Let M(S) denote the set of models of S, Mto}”(S)

be the set of all tf-models of Z,,:(S), and let Mff,”(S) be the same for =.,;(S). Then
1. Mf?t(S) = Mff,”(S) (hereafter denoted just as My¢(S)).
2. E: M(S) = Mys(S) is a 1-1 mapping onto My (.5).

3. SE ¢ if and only if M | E.pi(¢) if and only if M | E,,4(¢), for every M € My (.5).

Proof: (1) and (2) are proved by a simple (but tedious) induction on the structure of the formulae
in S. (3) is also proved by induction on the structure of ¢. We will only show the basic step.

Suppose ¢ = p for some ground atomic formula p. Then E.p;(p) = Eoni(p) = p : t. By the
definition of E, S |= p if and only if I |= p for every model I of S if and only if E(/) Ep: t.

If ¢ = —p then E.pi(¢) = p: £ while Z,,4(¢) = —p : t. By the definition of =, S = —p if and
only if (1) Ep: f and E(I) £ p: tif and only if =(1) E E.,i(¢) and E(I) | Eont(¢) for every
model [ of S.

Since E is a bijection between M(S) and Mi¢(S), Eepi(¢) and Eont($) are true in every model
from My¢(S). O

Informally, Theorem 4 says that for consistent sets of formulae S, APC does not buy us much
new: both embeddings, E.,; and =,,;, yield essentially the same results, and the set of PC-models
of S can be naturally identified with a representative subclass My¢(S) of models of Z,,+(S) and
Eepi(9).

However, when S’ is inconsistent, then both M(S’) and M;¢(S’) are empty, and this is one of
the situations when APC becomes useful.

Theorem 5: A set of PC formulas S is inconsistent if and only if =,,,:(.S) is o-inconsistent.

Proof: It is easy to see that under Z,,;, each resolution step applied to a pair of clauses,
ap(ty, ..., tn)VCyr and p(s1, .. ., $,)VCy, yielding C1oVCq0, where o = mgu(p(t1, ..., tn), p(S1,. .-, Sn)),
translates into a resolution step applied to —p(t1,...,%,) : tV Epnt(C1) and p(s1,...,8n)
tV Eont (C2), yielding Eont (C1)oV Eont(C2)o (= Eont(Cro V Ca0)).

Similarly, factorization in PC translates into factorization in APC. It is now easy to see that
every derivation of an empty clause from S (in PC) translates under =Z,,; into a derivation of an
empty clause from Z,,:(S). Hence, inconsistency of .S implies o-inconsistency of E,,:(S).

Conversely, suppose E,,:(S) is o-inconsistent. Then it has no model in APC. In particular,
M;(S) is empty. But then, by Theorem 4, the set of models of S (in PC) is also empty, hence S
is inconsistent in PC. O
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According to Theorem 5, E,,¢ is a faithful interpretation of PC inside APC in the following

sense:

Corollary 2: S |= ¢ in PC if and only if E,,:(S) |E Eont(6) in APC.

Proof: Tt is easy to see that ZE,,:(7¢) = = Esne(¢). Thus, S | ¢ if and only if S U {=¢} is
inconsistent if and only if (by Theorem 5) the set E,n:(S) U {Eont(—6)} is inconsistent if and only
if Eont(S) U{-Eont(@)} is inconsistent if and only if Z,,:(S) |E Eont(¢). O

In particular, =,,; does not let one reason about inconsistency in PC, which is not surprising,
since this mapping regards S as a collection of ontologically correct statements about reasoner’s
beliefs (that cannot be inconsistent), rather than as an “internal state” of reasoner’s beliefs (that
may be inconsistent).

As we have already mentioned, many existing logical theories are too sensitive to contradictory
information. Tt may happen that the addition of an elementary piece of data (like a unit clause)
to a large knowledge base S makes it inconsistent, and hence destroys the meaningful information
contained in S. One of the goals of this work is therefore to show that APC is able to isolate
that information (which humans would intuitively regard as the “cause of inconsistency”) from
the information that intuitively has nothing to do with the inconsistency, thereby preserving the
original meaning of the “unspoiled” data in S. In the rest of this section we formally show that the
epistemic interpretation of PC within APC, E,,;, results in the desired isolation of inconsistency.
Thus, our claim that APC’s way of modeling inconsistency closely corresponds to human reasoning
will be supported by a host of rigorous arguments, not only by a number of carefully selected
examples, which is quite rare in Al literature.

It is easy to see that every set R is mapped by E.p; into an o-consistent set R'. Thus, =.,;
permits full tolerance of inconsistency in the reasoner’s beliefs. By Theorem 4, if R is inconsistent
then R’ has no tf-model. Thus, in this case every model of R’ necessarily contains T-annotated
literals. Therefore, inconsistency in R is reflected by the occurrences of T in the models of R'.
Moreover, an appearance of a p : T in a most e-consistent model of R’ indicates that p may be a
reason for inconsistency in R. We formalize this observation below.

In the ensuing discussion we will restrict ourselves to the case of formulae in Skolemized form.
We do not have a characterization of the cause of inconsistency in the general case. However,
this restriction seems satisfactory for many practical purposes, since Skolemization is routinely
performed in resolution-based proof procedures. Once Skolemized, we can assume without loss of
generality that all formulae are in clausal form. Since, by Herbrand’s Theorem, for every inconsis-
tent set S of clauses there is a finite inconsistent set of ground instances of S, we can further limit
our discussion to the case of ground clauses.

Consider a (consistent or inconsistent) set, R, of ground clauses in PC. A ground atom, p, is a
suspect with respect to R (a “suspected cause” of inconsistency in R) if there are consistent subsets
Ri, R2 C R such that Ry = p and Ry = —p. Any set of formulae, E| such that Ry URy C E C R
(in particular, R itself) is called an indictment against p in R. F indicts S, where S is a set of
atoms, if and only if F is an indictment against one of the atomsin S.

The notion of a “suspect” does not suffice to characterize the cause of inconsistency. To see
why, consider the following example. Let R be {p, =p, =¢, g<—p}. Then R indicts both p and gq.
However, intuitively, p seems more of an inconsistency cause than ¢, since p is suspected regardless
of what are the suspicions about ¢. In other words, removing clauses involving ¢ does not make R
consistent because p and —p can still be derived. The following definitions formalize this intuition.

An atom p implicates a set of atoms S if every indictment F against p is also an indictment
against S. According to this definition, nonsuspects are true paranoiacs: since no indictment
exists against them, every nonsuspect implicates everybody, including self. A gang (of culprits of
inconsistency in R) is a set, G, of atoms occurring in formulas in R, such that:

(1) Every atom in R implicates G; and
(2) No proper subset of G possesses property (1).

Since any nonsuspect can be dropped from a set of atoms without affecting property (1), it follows
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that every gang-member is a suspect. Thus, a gang is a minimal set of suspects that is implicated by
everybody. Clearly, R has gangs if and only if it is inconsistent. Furthermore, if R is inconsistent,
it may have more than one gang. The following example illustrates these notions.

Example 1: For the set of clauses p, —=p, =¢, ¢¢p mentioned earlier, both p and ¢ are suspects, as
p, 7q, g<p indicts both. Also, ¢ implicates p, since every indictment against ¢ is also an indictment
against p (verified directly). Since also p (trivially) implicates {p}, the latter is a gang. On the
other hand, ¢ is not a gang, since it is not implicated by p (p, —p is an indictment against p, but
not against ¢).

The following set of formulae {p, q, r, ~g<p, —r<—q, —p+r} has three gangs: {p, ¢}, {q, r},
and {r, p}. The set {p, q, —q4p} is an indictment against ¢ and p, the set {q, r, =r<—q} is an
indictment against ¢ and r, and so on.

For yet another example, consider the set of formulae R = {q, —q, r, =7, p<—q, —-p<r}. Here
the only gang is {q, r}. Although p is also a suspect, it implicates this gang, which can be verified
by considering all indictments against p. For instance, consider the following indictment against p:
q, 7, p<—q, ~p<r. This is also an indictment against ¢ and r. To see this, say, in case of ¢, consider
Ry = {q} and Ry = {r, p<—q, —p<r}. Clearly, both Ry and Rs are consistent and Ry |= ¢ while
R2 ': -q.

On the other hand, {p, 7} is not a gang, since an indictment {g, —¢} against ¢ does not indict
{p, r}. 0

It is interesting to note that our treatment of the cause of inconsistency follows the standard
prescription for defining logical entailment. The notion of an “indictment” corresponds to the
concept of a model in logical theories. The notion of “gang-implication” then becomes identical to
logical entailment once the term “model” is replaced by the term “indictment.” Thus, a “gang”
is a minimal set of suspects “logically entailed” in that sense by everybody. This intuition is
strengthened by the theorems below; they say that it is precisely the gang members of R (the
gangsters) who may be mapped by E.p; into inconsistent beliefs in one of the most e-consistent
models of R. In particular, by (1) and (2) of Theorem 6, S is consistent in PC if and only if each of
the most e-consistent models of E.,;(S) is also an e-consistent semantic structure. In other words,
Eepi 1s a faithful translation of the cause of inconsistency in PC into e-inconsistency in APC.
Theorem 6: Let S be a set of ground clauses in PC. Then the following holds true.

(1) If G is a gang in S, then there is a model M of =.,;(S) such that G ={p | M Ep: T} and

M is most e-consistent within the class of models of E.p;(5).
(2) Let M be a most e-consistent model of Z.,;(S). Then the set {p | M Ep: T}is a gangin S.

For instance, in Example 1 we have S = E.,;(S’), and p and ¢ are gangs in S’. Thus, every

model of S (cf. my, ma, mgz, my) contains either p : T or ¢ : T. In contrast, r is not a cause of
inconsistency in S” and, indeed, 7 : T does not belong to any most e-consistent model (namely, ma,
my) of S.
Proof: First observe that for every semantic structure I, the set of atoms Iy = {p : s | [ =p : s}
is a Herbrand interpretation. Furthermore, for any clause C,* I = C if and only if Iy = C; hence
I is a most e-consistent model of C' if and only if so is Iy. We can thus restrict our attention to
Herbrand interpretations and models.

Call any clause of the form p; : TV...Vpr : T — a T-clause. We will need the following three

claims whose proofs appear in Appendix A.
Claim 1 (Corollary Al in Appendix A): Let S be a set of ground clauses, and C be a possibly
infinite set of ground literals of the form ¢ : T. Suppose also that C has the following intersection
property: For each model M of Z¢;(S), M NC # B. Then S is inconsistent (in PC), and there is a
minimal (with respect to the above intersection property) finite subset C' of C, such that for every
element ¢ : T € (', q is a suspect of inconsistency in S.

“Note: a clause, not just any formula. Absence of existential quantifiers in the prenex normal form is essential here.
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Claim 2 (Lemma A2 in Appendix A): If £ is an inconsistent subset of clauses of S then there is a
T-clause, C =¢1 : TV ...V¢y : T, where n > 1, such that Z.,;(E) = C and E is an indictment
against every one of the qq, ..., qp.

Claim 3 (Lemma A3 in Appendix A): Let G be a gang of culprits of inconsistency of S. Then

1) For each p € GG there is a T-clause C' of the form p : T V C’ such that Z.,;(S C and C'
P

contains no gangsters from G.
1) If C is a T-clause such that =.,;(S C' then C contains at least one gangster from G.
P gang

Assuming the above claims, we return to the proof of the theorem.

(1) Let M be a Herbrand model of EZ.,;(S) such that p: T € M if and only if p € G. Such a
model exists, for if not, it would be the case that every Herbrand model of Z.p;(S) contains a literal
of the set C' = {q: T | ¢ is a literal of the Herbrand base that is not in G}. But then, Claim 1
guarantees that there is a minimal finite subset C of C that intersects every model of Eepi(S). By
(2) of Claim 3, C' contains one of the gangsters from G, contrary to the construction of C.

The fact that M is a most e-consistent model of S holds by the following argument. Suppose
there is a strictly more e-consistent model N, i.e. for some p € G,p: T € N and {q|q: T €
N}CG. Let p: TV C' be a T-clause such that Z.,;(S) Ep: TV’ and C’ does not contain any
member of G. Such a clause exists by (1) of Claim 3. But then this clause is falsified by N and
hence N cannot be a model of Z.;(S5).

(2) Let M be a most e-consistent model of Z.;(S) and G = {q | ¢: T € M}. We will show that ¢
is a gang.

Consider an arbitrary element gqo € G and a set S’ C S consisting entirely of clauses that contain
no atoms from G — {qo}. Let C = {p: T | p is ground, and either p & G or p = ¢q¢}. Notice that,
by construction, ¢ : T € C. Furthermore, C has the following intersection property: C' intersects
every model N of E.,;(S’). Indeed, let N be a Herbrand model of Z,,;(S’) such that N N C' = §.
Then NU{p: T |p€G, p+# qo} is a model of Z.,;(S5) that is strictly more e-consistent than M.
Also, every minimal subset of C that has the above intersection property contains ¢o : T, since M
is a model of S such that M NC ={gy : T}.

Now, consider such a minimal subset C’ of C', which exists by Claim 1. Since qo : T € C’, qo
is a suspect, by Claim 1. As ¢y was chosen arbitrarily, every member of GG is a suspect in S.

To show that every suspect implicates GG, consider some suspect p along with an indictment E
against p in S. By Claim 2, there is a clause C' =¢; : T V...V ¢, : T such that =.,;(S) = C and
E is an indictment against ¢q, ..., ¢,. Since M is a model of =E.,;(S), C is satisfied by M; hence
one of the ¢;s must be in G. Thus, F is an indictment against one of the members of G. Since F
is an arbitrarily chosen indictment against p, it follows that p implicates G.

Finally, G is a gang: If it were not, there would be a gang G’ C G. By (1) of Theorem 6, there
would then be a model N of S such that G’ = {p| N =p: T}, which is strictly more e-consistent
than M — a contradiction. O
Corollary 3: Let S be a set of ground clauses in PC. It is inconsistent if and only if every model
Zepi(S) 1s epistemically inconsistent (i.e. implies at least one inconsistent belief — see Section 3.1).
Proof: S is inconsistent if and only if it has a gang. Theorem 6 then says that every most
e-consistent model of S (hence every model) is e-inconsistent. O

Our next result shows that Z.,;, in a well defined sense, “salvages” part of the information that
still can be viewed as undamaged by the inconsistency. First, we need a number of definitions.

Let S be, as before, a (possibly infinite) inconsistent set of ground clauses. Consider a literal,
l, of the form p or —p, where p is a ground atomic formula. We say that [ is spoiled by the
inconsistency in S, if p belongs to every gang; it is supported if there is a consistent subset S’ of S
that entails [: S |={. In this case we say that S’ is an evidence for [. A literal [ is recoverable if
either

(i) ! is supported and non-spoiled, and for every gang G in S, either p € G (here p is the atom
such that either [ = p or [ = —p), or there is an evidence S’ for [, such that S’ mentions no
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gangster from G;° or

(i1) ! is a negation of a literal that satisfies (i), i.e., negation of a recoverable literal is also recov-
erable.

Finally, a supported literal is damaged (by the inconsistency in S) if it is neither spoiled nor
recoverable.

We will see that the spoiled literals cannot be assigned any meaning other than that of an
inconsistent belief. Recoverable literals, as their name suggests, can be viewed as the “robust” part
of S: They still can be assigned a consistent truth value, even though their supporting evidences
may rely on gangster’s testimonies. Intuitively, the robustness of recoverable literals comes from the
fact that their supporting evidences do not depend on any one gang, which makes those evidences
sufficiently credulous.

On the other hand, a damaged literal can be viewed as a literal that may have had a meaning
before S became inconsistent (since it still has supporting evidences), but that meaning cannot be
reliably recovered, because all these evidences depend on the same gang (which cannot be trusted).
For instance, if S = {q, —¢q, p<q, —p, r¢<—q, —ri—q}, the set {q} is the only gang and hence q is
spoiled. It can be also verified that p and —p are recoverable, while r, —r are damaged. The
ability to recover the meaning of —p can be intuitively explained by the fact that inconsistency in
q precludes deriving p, which leaves us with —p. Informally, =p can be viewed as a true statement
“despite the inconsistency.” Its negation, p, can then be thought of as a false statement. Observe
also that deleting —¢ from S would make {p, r} a gang and so ¢ will no longer be a spoiled atom.
Instead, ¢ and —¢ will become recoverable, while the other literals will retain their old status. The
next theorem justifies our definitions.

Theorem 7: Let S be an arbitrary inconsistent set of clauses and [ be a literal of the form p or

—p, where p is a ground atom. Then

(1) ! is spoiled if and only if E.p;(S) rp: T.

(2) ! is recoverable if and only if Z.p;(S)  p : T and either Z.p;(S) R Eepi(l) or Eepi(S) R~
Eepi(l).

Proof: (1) If / is spoiled, it belongs to every gang and, by (2) of Theorem 6, p : T holds true in

every most e-consistent model of S. Hence =.,;(S) ke p: T. Conversely, if E.p;(S) R p: T then

p: T belongs to every most e-consistent model of S and, by (1) of Theorem 6, p belongs to every

gang.

(2) “Only if”: Suppose [ is recoverable. If Z.,;(S) ke p: T then, by (1), { is spoiled contrary to the

assumption that it is recoverable. Therefore, Z.,;(S) fFp: T

Next, since Egpi(—l) =~ Egpi(l), it suffices to establish the case when ! is recoverable due to
condition (i) in the definition of recoverability. So, suppose [ is such a literal, and consider a most
consistent model M of Z.,;(S). Let G={¢: T | M E¢: T}. By (2) of Theorem 6, G is a gang.
If pe Gthen M Ep: T hence M = E., ().

So, suppose that p € G. Since [ is recoverable, there is a consistent evidence S’ C S that does
not mention atoms from G and S’ |= . Since both S’ and [ are ground, the factorization rule does
not need to be applied, and there exists a derivation (in PC) by binary resolution® of { from ’.

Under E.p;, this derivation translates into a derivation by reduction of a clause of the form
Eepi(l) Vg1 : TV...Vgy: T, where the ¢;s are some of the atoms mentioned in S’. Because of
soundness of the reduction rule, E.p;(S) E Eepi({) Vg1 : TV...Vgy : T. Since S’ does not mention
members of GG, none of the ¢;s belongs to G. Therefore, by the construction of GG, each of the ¢; : T
is false in M. It remains that M | E.p(l). Since M is arbitrary, Eepi(S) R Eepi(l).

5Since I is non-spoiled, there is at least one such evidence.

6Note: we are talking here about derivation from S’  not refutation of S’. That is, here we are dealing with a set of
clauses c1, ..., cx, such that cx = and each c;;1 either belongs to S’ or is derived by a resolution step from {ci, ..., ¢},
1=1,...,k—1.
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“If”: In the other direction, suppose that E.p;(S) R Ecpi(l) and Eepi(S)  p: T. Then [ is non-
spoiled, and we can find a gang, GG, such that p € G. Consider a most consistent model, M, such
that G = {q| M = q: T}, it exists by (1) of Theorem 6.

Let S’ be a subset of these clauses in S that do not mention any member of G. Then S’ is
nonempty. Indeed, if it were empty, then every clause in S would have contained either ¢ or —q as
a disjunct, for some ¢ € . But then every clause in =,,;(S) would have contained ¢ : t or ¢ : f.
Since M = q: T, theset GU{r: L|r ¢ G} would then be a most e-consistent model of =,;(S5)
that falsifies p : t and p: f, contrary to the assumption that =.p;(S) epistemically entails Z.p;(l).

Furthermore, S’ is consistent. To see that, consider a Herbrand interpretation M’ that coincides
with M on the atoms in the complement to G and assigns the annotation L to the atoms in G.
Since M is a model of E.,;(S) and M’ differs from M only on the atoms from G, M’ is a model of
Eepi(S’). It is an e-consistent model, since M associates the T-annotations only with the elements
of G. Now, M’ can be made into a tf-model of =.,;(S’) by adding, say, r : t to M’ for every atom r
for which M [£r: t and M [£ 7 : f both hold. This can be done because the ontological negation,
“=” does not appear in the clauses of =.,;(S’). Now, since E.p;(S’) has a tf-model, S’ has a model
in PC, by (2) of Theorem 4, and, therefore, is consistent.

It remains to show that S’ = {. Consider a tf-model, I, of Z.,;(S’); its existence is guaranteed
by Theorem 4, since S has just been shown to be consistent. By the construction of S/, N =
ITU{q:T | q€ G} is amodel of Z.p;(S). It is a most e-consistent model, since if there were a
model of =.,;(S) that is strictly more e-consistent than N, then M would not have been a most
e-consistent model either — a contradiction. Now, since N is a most e-consistent model of Z.p;(5),
it follows that N = Eepi(l), as Eepi(S) R Eepi(l) by the assumption. Since p € G, it also follows
that 7 = Ecpi(l). Because of the arbitrariness of I, we conclude that Z.,;({) is true in every tf-model

of Zcpi(S’). Then, by (3) of Theorem 4, 5" 1. O

Finding the recoverable part of the information is at least as hard as the problem of logical
entailment itself. This is because if S is consistent, recoverability reduces to logical entailment. In
general, detecting whether a literal is recoverable requires a proof procedure for epistemic entail-
ment. At present, we have such procedure only for a special case when S is a logic program, which
will be reported elsewhere. On the other hand, spoiled literals are easy to detect:

Corollary 4: A ground literal [ is spoiled in S if and only if both [ € S and =l € S.

Proof: Without loss of generality, assume that | = p for some ground atom p. If p is spoiled,
(1) of Theorem 7 yields Z.,;(S) & p : T. But then also =.,;(S) = p : T holds true, since if an
inconsistent belief is held in every most e-consistent model of S then it is held in every model of
S. Hence, since we are dealing only with ground literals and clauses and because Z,;(S) mentions
no ontological negation, there must be a derivation by reduction of p : T from =.,;(S). Indeed,
resolution, factorization, elimination, and reduction are complete, factorization is inapplicable due
to groundedness, while elimination and resolution do not apply because the ontological negation
does not occur in E.p;(S). But since reduction does not decrease the size of a clause, p : T can be
derived by reduction from E.p;(S) only if both p : t and p : f are in E.p;(S), which is equivalent
to saying that p, -p € S.

In the other direction, if p, -p € S then p: t,p: £ € Ecpi(S). Hence, M = p: T for every
model of =.,;(S). But then, (1) of Theorem 6 implies that p belongs to every gang. O

7 Generalizations

By a simple inspection of proofs, the reader can find out that the condition lub(t, f) = T in BSL
is used only in Section 6; it is irrelevant to the proof theory of APC.

The least element of BSL, L, is used in Section 6 only in the proof of Theorem 7. However, the
arguments in this proof go through also if we assumed the existence of some lower bound of t and
f, which is much weaker than requiring BSL to have the least element. The annotation, L, is also
used in the proof of Proposition Bl in Appendix B (completeness of ground deduction).
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In knowledge representation, it is often convenient to associate different BSLs with different
predicates. For instance, for a predicate grade, the four valued lattice of Figure 1(a) seems quite
adequate, since a fact such as grade(john, ¢s100, F') can be easily verified and it is unlikely that
someone would want to speculate about the “likelihood” of the fact that John’s transcript contains
“F” for the course ¢s100. In contrast, it is more difficult to talk categorically about facts of the
type causes(cause, life_style, desease), and finer lattices* may be more appropriate here.” Tt is
easy to verify that degrees of belief annotating different predicate symbols do not interact with each
other and, therefore, we could associate different BSLs with different predicate names, essentially
without changing anything in the definitions and proofs.

Finally, we note that even the very requirement that BSL must form an upper semilattice can
be dropped. Instead of postulating that every finite set of elements must have a lub, we could
require the existence of a finite number of minimal upper bounds (mub’s). For the proof theory
of Section 5 to be sound and complete we would only have to change the reduction rule to:

From p(t) : sV ¢ and p(¢') : s’ V4 infer p(£)0 : r1 V...V p(¢)f : 1, V $0 V 40, where 6
is the mgu of p(f) and p(¥'), and r1, ..., r,, are all the mub’s of s and s'.

However, such generalization comes at a price: multiple mub’s lead to added complexity of proofs.
For instance, from a pair of facts, p : s and p : s’, by reduction one can infer a disjunction,
p:riV...Vp: r,. Therefore, the class of Horn clauses is not closed under the inference rules,
and no efficient proof strategy, such as SLD-resolution, is likely to exist. In contrast, an analogue
of SLD resolution is known to exist for Horn clauses in APC [31] Thus, our restriction on BSL to
be a semilattice was motivated by the desire to keep the proof theory simple.

8 An Alternative Semantics

It was noted in Section 5 that Herbrand’s theorem does not hold for APC in its full generality,
and the restrictions in Theorems 2 and 3 are necessary. In this section we provide an alternative
semantics for which the analogues of these theorems hold without the corresponding restrictions;
this semantics leads to essentially the same proof theory and entailment relation |= for sets of clauses
that involve only a finite number of annotations (i.e. that satisfy the restrictions of Theorems 2
and 3).

The “traditional” semantics of Section 2.2 was used in [3, 16] in the context of logic programs.
However, it turned out that adhering to this semantics makes the operator Tp (which is commonly
used in logic programming) to be discontinuous. This lead Blair, Kifer, and Subrahmanian to
restrict consideration to special subclasses of logic programs. With the new semantics, Tp can be
shown to be continuous and the problem disappears. Furthermore, Corollary 5 below ensures that
the results of [3, 16] carry over to the new semantics.

Semantic structures in the new semantics are similar to the old ones, i.e., they are triples
< D, Ip, Ip >, where D and Ip have the same meaning, as before. However, Ip now interprets
each predicate symbol, p, by a function Ip(p) : D™ — I(BSL), where I(BSL) is a set of all
tdeals of BSL. A subset r of BSL is an ideal if it is:

1. Downward closed ,i.e. if d € r and e < d then e € r; and
2. Closed with respect to finite lub’s, i.e. if d1, d2 € r then lub(dy, ds) € r.

The only change in the definition of }=, with respect to Section 2.2 concerns atomic formulas:
Iy p(t1, ..., tg) - s if and only if s € Ip(p)(v(t1), ..., v(tk)).

To see the connection with the old notion of semantic structure, notice that each element of
BSL, r, determines a principal ideal of BSL, ideal,, in the usual way: ideal, = {s | s <r}. Thus,
each semantic structure in the old sense can be viewed as a structure in the new sense, but not
vice versa. For instance, a mapping Ip that maps p into the set {t, | 0 < r < 1} in Example 8 of

"E.g., a lattice of pairs [a, b], where 0 < a, b < 1; [a, b] < [¢, d] if and only if a < ¢ and b < d (see, for instance, [15].
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Section 5 is legal according to the new definition of semantic structures but not according to the
old one: In the old definition, Ip(p) would map D™ into a proper subset of [(BSL) consisting of
all principal ideals.

As mentioned, the reason for developing the new semantics is our desire to find a theory for
which both Herbrand’s theorem (Theorem 2) and the completeness theorem (Theorem 3) hold
without restrictions. The main result of this section is that, for the new semantics, a refutation
procedure consisting of resolution, factorization and reduction rules is sound and complete, even
for sets of clauses involving infinite number of annotations. Interestingly, the elimination rule is no
longer sound with respect to the new semantics: —p : L is satisfied by every semantic structures
that assigns to p the empty ideal, {}.

Theorem 3’: Under the new semantics, a refutation procedure that involves resolution, factor-
ization, and reduction alone is sound and complete for testing o-inconsistency of arbitrary sets of
clauses. O

An easy inspection of the proof of Theorem 3 in Appendix B shows that modifications are
necessary in the proofs of Herbrand’s theorem (Theorem 2) and Proposition B1. In Proposition B1
the only change is that there is no need to apply the elimination rule. All the rest goes without
change. Herbrand’s theorem for the new semantics is re-proved below.

It should be noted that the restriction in Theorem 3 stems from the corresponding restriction
in Theorem 2. So, once we show that with respect to the new semantics Herbrand’s theorem holds
without restrictions, so will the completeness theorem.

Theorem 2’ (Herbrand’s theorem for the new semantics): Let S be an arbitrary set of clauses.
Then it is o-inconsistent if and only if so is some finite subset of ground instances of S.

Proof: Instead of modifying the old proof (which is not so easy to do), we will use a technique
borrowed from [7] where it was used for proving the compactness theorem for propositional calculus.

First note that, by Lemma 1 (whose proof requires no modification), S is unsatisfiable if and
only if so is the set S’ of all ground instances of S. Therefore, without loss of generality we can
assume that S is ground. To prove the theorem we will show that if every finite subset of S is
satisfiable then so is S.

Notice that each atomic formula in the Herbrand base of APC can be viewed as a proposition.
Therefore, the above statement becomes identical to the compactness theorem of predicate calculus.
Without repeating every detail of the proof in [7], we will sketch its most salient points and indicate
where minor modifications are needed.

Let us call a ground set of formulas of APC finitely satisfiable whenever every finite subset of
this set is satisfiable. We thus have to show that every finitely satisfiable set is satisfiable. The
proof consists of two steps. First, given a finitely satisfiable set S, a mazimal finitely satisfiable
superset S* of S is constructed by the same process as in [7]. In the second step, we show that S*
is a Herbrand interpretation of S (in the new sense). The proofs require only minor modifications
with respect to [7], such as showing that if p : r € S* and s < r then p : s € S*, and that if
p:r,p:s €S* then p: lub(r, s) € S.

It is a simple yet useful exercise for the motivated reader to find out where the second step of
this proof fails for the old notion of Herbrand interpretations, which made it necessary to place
restrictions on S (e.g. why S* in Example 8 of Section 5 is not an Herbrand interpretation of S in
the old sense, but is an interpretation in the new sense). O
Corollary 5: Let S be a set of APC formulas involving only a finite number of annotations and ¢
be a formula. Suppose also that neither S nor ¢ has literals of the form —p : L. Then S Epep ¢ if
and only if S =44 ¢. In other words, the old and the new semantics give the same results on the
subset of formulas for which Theorem 3 holds, provided that the elimination rule does not need to
be applied.

Proof: Theorems 3 and 3’ deal with exactly the same proof procedure, except that the elimination
rule is not used in Theorem 3’. Both proof procedures are sound and the one in Theorem 3’ is
also complete. The proof procedure used in Theorem 3 is also complete under the restrictions
listed in the Corollary. The claim therefore follows form these facts and since, by assumption, the

22



elimination rule does not need to be applied. O

9 Conclusions

We have presented a logic capable of handling inconsistent beliefs. Several extensions to APC
are possible. First, without any additional apparatus one can associate different semilattices to
different predicates. This may be useful when granularity of degrees of beliefs differs from predicate
to predicate.

Second, it 1s possible to relax the restriction that in a literal, p : s, the annotation “s” is a
semilattice constant. Instead, a number of monotonic semilattice functions and variables could be
allowed, which would bring in the terms of the form p: f(X, Y, a). Variables over semilattices can
be quantified, which adds more power to the language, for instance, allowing rules like

VX VY (flies(X) :~Y « penguin(X) : V).

Unfortunately, we are not aware of any complete refutation procedure for such an extended
logic. The difficulty here is that one cannot assume semilattice functions to be uninterpreted (as
in the theory of Logic Programming), since for the most part lattices are finite. In [15] complete
proof procedure was developed for a restricted logic in which only Horn-like rules are permitted
and body literals may have only lattice variables and constants as annotations. The same ideas
can be adapted for a subset of APC and some results in this direction are reported in [16].

Third, the framework of APC can be used to reason about elementary beliefs of multiple agents
by attaching multiple annotations to literals. For instance, the literal p :;; t :; f can be viewed as
a statement that the reasoner j does not believe that the reasoner 7 believes in p. We leave this
issue for the future research.

In a broader perspective, APC can be regarded as a technique for extending the scope of many
“conventional” logics (including modal logics) to dealing with inconsistency. In this sense, the
present work is an example of applying that technique to the standard predicate calculus. We also
conjecture that the concepts of gangs and recoverable literals developed in Section 6 can be made
into useful heuristics for driving belief revision processes in truth maintenance systems.
Acknowledgements: We thank V.S. Subrahmanian for the pointers to several papers on para-
consistent logics and for many helpful suggestions. Joseph Tashjian found several inaccuracies in
the earlier draft of this paper, and Anita Wasilewska pointed out a connection with Post algebras.
We are especially grateful to one of the referees for the very detailed report. The help of other
referees is also appreciated.

Appendix A: Gang-related Matters

Lemma Al: Let S be a possibly infinite set of ground clauses and C' = p; : TV...Vp, : T be
a ground clause such that =.,;(S) = C and no proper subclause of C' (i.e. a disjunction in which
some of the literals p; : T are omitted) is implied by E.p;(S). Then S is inconsistent (in PC) and
every literal p;, 1 = 1,...,n, is a suspect of inconsistency.
Proof: Consider a set of clauses, 5‘7 that is a minimal inconsistent (in PC) subset of S and such
that the clauses in S mention only the literals p1, ..., po. If S did not exist then the subset S’
of clauses that mentions only p1, ..., pn would be consistent. Let N be a tf-model of =.,;(5’),
which exists by Theorem 4. Being a tf-model, N necessarily falsifies the T-clause C'. Then the
interpretation, M = NU {g : T | ¢ is not one of the p;} is a model of Z.,;(S) but is not a model
of C, contrary to the assumption that =.,;(S) | C. Thus S does exist. Tt is also finite, since it
involves only a finite number of literals. Since S D S, S is also inconsistent.

Next, we show that Eepi(g) E C and no proper subclause of C' is implied by Eepi(g). Since
S is inconsistent, there exists a PC-derivation of an empty clause from S that uses the resolution
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rule alone. Under Z.,; this translates into a derivation by reduction (in APC) from Eem’(S’) of a
T-subclause of C (it is a subclause of C' because S involves only the literals mentioned in C'). Thus,
Zepi(S) = C. No proper subclause of C' is implied by Z,,;(5), since otherwise this subclause would
have been implied by =,;(S), contrary to the minimality of C'.

To complete the proof, we will show that each one of the literals p1, ..., p, is a suspect. Consider,
say, p1 and suppose it is not a suspect. Then either for every consistent subset Sy of S it is the case
that So [~ p1, or for each such subset Sy b= 1 holds. Let us assume the former, for definiteness.
Consider a partition of S into a pair of sets, Sﬂpl and Srest The former set contains all clauses of
S that contain the literal —p1, while the latter contains the rest of the clauses in S,

The set gﬂpl is nonempty. For if it were, then p; cannot be deleted (by resolution) from any
of the clauses in Speys¢, hence it is not necessary for any clause containing p; to participate in a
derivation of the empty clause from S. Under Eep; this derivation transforms into a derivation by
reduction of a proper subclause of C' from Eepl-(SA') (since no clause in this derivation mentions p;)
— contrary to the minimality of C'.

Since S—-p1 is nonempty, Spest 18 a proper subset of S, and thus it is consistent in PC and
S’rest £ p1, by the earlier assumption about subsets of S. In partlcular Srest has a model M
in which P is false. By Theorem 4, E.p; maps M into a tf-model M of _epZ(Srest) such that

. f € M. But M is also a model for HepZ(S_.pl) since all clauses in _epZ(S_.pl) are of the form

: v ... Thus, M is a tf-model of Hem(S). On the other hand, M falsifies C, since each p; : T,

z' =1,...,n,is false in M (because Misa tf-model). This contradiction shows that p; is a suspect.
O
Corollary A1l: Let S be as before, and C be a possibly infinite set of ground literals of the form
q : T. Suppose also that C has the following intersection property: For each model M of Z.,;(S),
M NC # §. Then S is inconsistent (in PC), and there is a minimal (with respect to the above
intersection property) finite subset C' of C' such that for every element ¢ : T € C, ¢ is a suspect of
inconsistency in S.
Proof: If S were consistent, then it would have had a model. The E.p;-image of that model would
have been a tf-model of Z.,;(S) with an empty intersection with C' — a contradiction. As in the
proof of Lemma Al, consider S — a subset of S that consist of clauses that are built only of
those non-annotated atoms that are mentioned in C. As in Lemma A1, this set can be shown
nonempty and inconsistent (the assumption that M N C # () for every model M is used here, but
the minimality of C' with respect to this intersection property is not required).

Any derivation by resolution of an empty clause from S corresponds under Eepi to a derivation
by reduction of a finite disjunction C' = p; : TV...V p, : T, where the p;s are some of the literals
mentioned in S, i.e. Eepi(9) Eepi( A) E C. By the construction of S, each p;, i = 1,...,n, is
also mentioned in C. Since C is a finite disjunction, it has a minimal subdisjunction, C = pi,
TV...Vp; : T,such that Z.p; (S ) E C. The problem now reduces to that of Lemma Al. O
Lemma A2: If F is inconsistent then there is a clause C = ¢ : TV ... Vg, : T, where n > 1,
such that =.,;(E) = C and E is an indictment against every one of the ¢, ..., ¢5.

Proof: There is a derivation by resolution of an empty clause from E. As observed earlier,
this derivation gets transformed into a derivation by reduction of a nonempty T-clause C’ from
Eepi(E). By the soundness of reduction, E.p;(E) E C’. Consider a minimal subclause of C’,
C=g¢1 :TV...Vgy: T,such that Z.,;(E) |E C. By Lemma Al, every literal, ¢;, in C is a suspect
of inconsistency of E. Thus, E is an indictment against every one of them. O

Lemma A3: Let G be a gang of culprits of inconsistency of S. Then:

1. For each p € G there is a T-clause C of the form p : T V C’ such that Z.,;(S) = C and C’
contains no gangster from G.

2. If C is a T-clause such that =Z.,;(S) | C then C contains at least one gangster from G.

Proof: (1) Suppose, to the contrary, that each T-clause implied by Z.,;(S) that contains p : T
also contains ¢ : T for some ¢ € G, ¢ # p. We will show that then p implicates a smaller set,
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G' = G — {p}, contrary to the assumption that G is a gang and p € G.

Since Eepi(S) = C implies Z.,;(S) | p @ TVC, the contraposition of (1) just assumed means that

every T-clause implied by E.p;(S) contains some member of G'. Consider an indictment E against p
in S. Since E is inconsistent, by Lemma A2 it follows that there isaclause C' =¢; : TV.. Vg, : T
such that Z.,;(F) = C’ and E is an indictment against each one of the ¢, ..., ¢,. Since E C S,
it follows that Z.p;(S) | Eepi(E), hence E.p;(S) E C’. By the above, one of the ¢; must be a
member of G’. Since F is an arbitrary indictment against p, p implicates G’.
(2) Suppose to the contrary that there is a T-clause, C', such that =.,;(S) |E C but none of the
members of C' belongs to the gang G. Let S’ be a subset of S consisting of clauses that are built
only of those non-annotated atoms that occur in C. As in the earlier proofs, S’ is a nonempty
inconsistent set and E.p;(S’) = C. By Lemma A2, S’ is an indictment against at least one of the
literals mentioned in C'. On the other hand, it does not indict any of the gangsters in GG, since none
of these gangsters is mentioned in the clauses of S’. Thus, G is not implicated by every atom in S,
contrary to the assumption that G is a gang. O

Appendix B: Proof of Completeness

We are following the proof of [4] with the modifications from [19]. First we have to adapt the
definition of semantic trees to the model theory of APC.

Apart from the Herbrand base of APC, it will be also convenient to consider the set of ground
atoms of PC that is obtained from the atoms in the Herbrand base by stripping off the annotations.
We will call the resulting set a pure Herbrand base. Given a pure Herbrand base B over some
language L and a belief semilattice BSL, a semantic tree T in APC is a possibly infinite tree such
that:

(i) For every non-leaf node, v, its outgoing edges stand in a 1-1 correspondence with the elements
of {p, : | a € BSL}, where p, is a pure ground atomic formula from B corresponding to
v. Each edge is labeled by the corresponding atom p, : «.

(i1) For each p € B and every branch of T, p labels exactly one edge on the branch (i.e., it appears
only once with some annotation).

Note that in APC, semantic trees may have infinite branching factor since belief semilattices may
be infinite. Thus, unlike in PC, semantic trees may be infinite even if the corresponding pure
Herbrand base is finite.

Each branch of the tree is a truth assignment to the atoms of B and each such assignment
determines a Herbrand interpretation of APC in which an atom ¢ : « is true if and only if some
q : A, where a < A, appears on the branch. Conversely, each Herbrand interpretation of B
corresponds to some branch. It is also clear that for every v € T, the path from the root of T' to
v determines a partial interpretation T'(v).

Given a set of ground clauses, S, a pure Herbrand base of S, Bg, and a corresponding semantic
tree Tg, a failure node for S is a node v € T such that the partial interpretation Tg(v) falsifies
some clause in S and no node on the path from v to root is a failure node for S. Thus, if v is
a failure node then every interpretation corresponding to the branches of T containing v falsifies
some clause from S.

If S is unsatisfiable and T is a semantic tree for S then each branch of Ts has a failure node.

A failure tree for an unsatisfiable set S is obtained from a semantic tree for S by trimming off all
branches beneath the failure nodes.
Theorem 2 (cf. Herbrand’s theorem): Consider a set of possibly nonground clauses S that involves
only a finite number of different belief annotations (this condition is always satisfied when BSL is
finite, or when S itself is finite, e.g. a logic program). Then S is o-inconsistent if and only if so is
some finite subset of its ground instances.
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Proof: The “if-direction” is trivial. “Only if”: Let S’ be a set of ground instances of S and T
be a corresponding semantic tree. Since S is unsatisfiable, so is S’ and we can construct a failure
tree FTs: out of Ts:. In the classic logic we could have stopped here since by Ko:nig’s lemma it
would follow that FTs is finite and thus falsifies a finite number of clauses of S’. However, this
argument is not immediately applicable to APC since the branching factor here may be infinite.
To overcome this problem we need to do some extra work.

If the belief semilattice is finite then the branching factor in each node is also finite and we

could use Ko:nig’s lemma to conclude that FTs: is finite, as in predicate calculus. If BSL is infinite
then consider some finite subsemilattice BSLg of BSL containing all the annotations mentioned
in S (BSLg exists because the number of annotations in S is finite). Since S’ is unsatisfiable with
respect to BSL, it is unsatisfiable with respect to BSLg. But then, by the above, some finite
subset of S’ is unsatisfiable with respect to BSLgs. Its unsatisfiability with respect to BSL follows
from Lemma B1 below. O
Lemma B1: Let S be a set of ground clauses and BSLs a finite subsemilattice of BSL containing
all annotations in S® Then S is unsatisfiable with respect to BSL if and only if it is unsatisfiable
with respect to BSLg.
Proof: The “only if” direction is trivial. In the other direction, we need to show that unsatisfiability
with respect to BSLgs implies unsatisfiability with respect to BSL. Suppose to the contrary that
S is satisfied with respect to BSL. Then there is a Herbrand model M of S with respect to BSL.
This implies that for each clause C in S there is a literal of C' that is true in M. We will show that
there is a model Mg with respect to BSLg, such that every clause of S is true in Mg if and only
if it 1s true in M.

We construct Mg as follows. Consider a non-annotated atomic formula p mentioned in a clause
in Sandlet p : a1, ..., p : ay, 7p : P1, ..., 7p : Bm be all the literals that occur in S, share p

as their non-annotated part, and are true in M. Let a denote lub of a;, ¢ = 1,...,n. Since the
above n positive literals are true in M, p : « should be true in M. However, since the m negative
literals are also true, o must be strictly smaller or incomparable to 8;, j=1,...,m. Makep : a a

true literal in Ms with a being the highest degree of belief in p. Clearly, all of the aforementioned
literals are then true in Ms. Repeating this procedure for every atomic formula in S we obtain Mg
that possesses the required property. O

Example 8 of Section 5 shows that the requirements of Herbrand’s theorem are necessary. In
general, Lemma B1 and Theorem 2 do not hold if BSLg is infinite. Next, we establish completeness
of resolution for the ground case.

Proposition B1: Suppose S is a possibly infinite unsatisfiable set of ground clauses such that
there is a finite subsemilattice BSLgs that includes all annotations occurring in clauses in S. Then
there is a refutation of S.

Proof: By Herbrand’s Theorem we can assume that .S is finite. Furthermore, we can always close .S
under all possible applications of resolution, factorization and reduction while preserving finiteness.
So, we assume that S is closed in this sense. Since S is finite, it has a finite failure tree F'T" with
respect to BSLg. Call a node of FT an inference node if all its children are leaves of FT (i.e.
failure nodes).

Any failure tree contains an inference node unless the tree consists of a single node. In the
latter case, since a single-node failure tree can falsify only the empty clause, S must contain such
a clause and we are done. So assume that F'T" consists of more than one node.

Let v be an inference node, p1, ..., gyn be all its children, and p, : a1, ..., p, : @, be the labels
on the edges < v, pu1 >, ..., < v, p, >. We will arrive at a contradiction by showing that v cannot
be an inference node. Hence F'T cannot have more than one node, so the empty clause must be in
S.

Since the p;s are failure nodes, let C4, ..., C, be the clauses of S falsified by interpretations
FT(p1), ..., FT(pn), respectively. We assume that the elimination rule has been applied to remove

8Notice that since BSLs is a subsemilattice of BSL, it also contains all the lub’s of the annotations mentioned in S.
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all literals of the form —¢ : L.
Since v is not a failure node, each C; must be of the form C; U {l;}, where [; is of the form
Py : 7y or p, @ ~; and
(i) each CY is falsified by FT(v),
(i1) pv @ a; £l or, equivalently, I; is not satisfied in FT'(u;).

Assume for definiteness that {; = p, : f;, when 1 <i<s—1(1<s<n),andl; =-p, : B, when
s <7 < n. Notice that there has to be at least one positive and one negative literal among the I;’s,
for if all of them were positive, take an edge labeled with p, : T, say < v, p;, >, and verify that
FT(ui,) satisfies all the [;s and hence Cj,, contrary to the assumption. Similarly, there is an edge
< v, pi, > labeled with p, : L and, if all the /; were negative, FT(u;,) would have satisfied Cj,.
Let C' be the result of reducing C1, ..., Cs_1 on p,. Denoting lubfz_llﬁi by /3, we can represent
C as follows: C' = Uf:_lle U{p, : B}. Clearly, C is falsified by each of the FT(y;), where i =
1,...,s—1. By the definition of semantic trees, there is an arc labeled with p, : 8, say < v, pug >,
where k < s, Since this arc satisfies all the I;s, i < s, it has to falsify some Iy, = =p, : Bi,, ko > s.
Hence, 8 > B, and C can be resolved with Cy, yielding C — a clause in which p, does not
occur. But then FT(v) falsifies C'. Hence, v is a failure node for S, not an inference node — a
contradiction. O
Lemma B2 (Lifting Lemma): Suppose Cf and C} are instances of clauses Cy and Cl, respec-
tively. Let C% be a resolvent (or reductant) of Cf and C%. Then there is a clause C5 that is obtained
by factorization and resolution (resp., reduction) from C; and C3 such that C% is an instance of
Cs. Similarly, if C’ is an instance of C' and C’ is a factor (or an eliminant) of C’ then there is a
factor (resp., eliminant) C' of C such that C’ is its instance.
Proof: The proof is identical to that of the lifting lemma for predicate calculus, except for the
simple modification needed to account for the reduction rule and the annotations. This modification
is straightforward, since annotations are constants drawn from BSL and variables are not allowed
to range over them. O
Theorem 3: Refutation is a sound and complete procedure for testing o-inconsistency of sets of
clauses that involve only a finite number of different annotations. That is, if .S is such a set then
it is o-inconsistent if and only if there is a refutation of S.
Proof: The proof proceeds as in predicate calculus [4]. Let S be a possibly infinite unsatisfiable
collection of clauses with a finite number of different annotations and let S’ be the set of ground
instances of clauses in S, which is also unsatisfiable. By Proposition B1, there is a refutation of
S" and by Lemma B2 this refutation can be lifted to S (note: the lift of the empty clause is also
empty). As in predicate calculus, the need in factorization becomes apparent only at the point
when one needs to lift ground refutations to the nonground ones. O
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