Data Center Network Architecture

- 1. Two-stage Dual-mode forwarding
- 2. Load Balance Routing

Cheng-Chun Tu Prof. Tzi-cker Chiueh

Goal

A network architecture that carries:

- 1 million VMs
- ~50,000 physical machines

Properties:

- Scalable
- Efficient
- Manageable
- Reliable

Outline

Find where the problem is:

- L3 + L2 Architecture
- Ethernet's scalability problems
- Cost Analysis

Solve the problem:

- CCMA All-L2 Network
 - Topology
 - Two-stage dual-mode forwarding
 - Fault-tolerant routing

L2 + L3 problem1: Efficiency

Tree topology, Spanning Tree Protocol

L2 + L3 Architecture: more problems

Problem2: Configuration:

- Routing table in the routers
- IP assignment
- DHCP coordination
- VLAN and STP

Problem3: Scale up not Scale out:

Equipment higher in the hierarchy cost more and more efforts made at availability

4. Limited forwarding table size: Commodity switch 16-32k

All We Need Is Just A Huge L2 Switch!

What's Wrong with Ethernet?

Broadcast and flooding bootstrap protocol

Mac-in-Mac +
Directory Service

- DHCP, ARP protocol rely on broadcast
- Locating unknown destination based on flooding
- Lack of broadcast traffic scoping

Spanning Tree-based ensures loop free

Route Server

- Not all physical links are used
- No load-sensitive dynamic routing
- Fail-over latency is high

Populate forwarding table by self-learning

Route Server

- Table size is limited
- Commodity switch with only 16 32k entries

Cost Analysis: Cisco's Two-Tier Model

Goal: interconnect 9,216 servers using 8-way ECMP with 8 core node. Oversubscription: 3.6:1, 277Mbps per server

Chassis+8 port line card + switch

6 switches, 48 port = 288 servers

4948: 48-port 10Gb (7K)

Cost: 24K + 24K + 7K *6 = 90K

Core: 216K US

Access: 90K * 32 = 2880K US

Total cost: 3096K = 3M US

Ö

Cost Analysis: Cisco's FSS

Goal: interconnect 8,192 servers using FabricPath Switching

System (FSS), 10 Gbps

8192 x 10Gbps

Nexus 7000 Chassis: 14K US

Nexus 7000 32 port 10Gb switch: 43K US

Each chassis consists of 256 ports to servers = 16 switches

Total cost: 48*14K + 16*48*43K = 33696K US = 33M US

Can we take the best of all?

Features \ Architectures	Ethernet Bridging	IP Routing	CCMA L2
Configuration overhead			
Host mobility			
Path efficiency			
Forwarding table usage			
Tolerance to loop			

Outline

Find where the problem is:

- L3 + L2 Architecture
- Ethernet's scalability problems
- Cost Analysis

Solve the problem:

- CCMA All-L2 Network
 - Topology
 - Two-stage dual-mode forwarding
 - Fault-tolerant routing

CCMA All-L2 Design

Dual-mode forwarding

Reduce latency penalty caused by two-stage forwarding

Two-stage forwarding

Separation of VMMAC address domainSolve limitedforwarding table sizeproblem

All-L2 Topology Load balance fault tolerant routing

Load balance the networkto support maximum flowsReduce fail-over latency toless than 50ms

Mesh network topology provides nearly 1:1 oversubscription

CCMA All-L2 Network Topology

Container Computer supporting 480 servers with 1:1 oversubscription rate.

Two Stage Forwarding

Summary

Benefits

- Switch routes according to IDA, not DA
- VM mac is invisible to Intermediate switch
- Flexible and backward compatible compared with other tagging techniques

Drawbacks:

- Switch has limited computational power
 - Deploy at Dom0

Dual-mode Forwarding

- Problems of two-stage forwarding:
 - Control plane packet processing in commodity switches is too slow
- Solution: Dual-mode forwarding
 - Direct: source → destination
 - Indirect: source → intermediate → destination
- Effect:
 - Performance of direct route and generality of indirect mode
- Direct routing optimization:
 - When two VMs frequently talk to each other, create a direct route for them (how?)

Traffic-based Algorithm to Optimize Forwarding Table Usage

- Traffic Matrix: NxN, where N is the number of physical nodes and switches
 - Each entry represents traffic volume from X node to Y node
- 1. Order all traffic matrix entries in decreasing order
- For each <S,D> pair, assign a forwarding table entry in each switch along the path from S to D
- 3. Continuing on with the remaining traffic matrix entries until they are exhausted or all forwarding table entries are depleted

Mac-in-Mac Kernel Module

IMPLEMENTATION

Mac-in-Mac Implementation

Mac-in-Mac Implementation

Performance

Testbed:

- 4 Inventec server
- 1 Edgecore switch

Performance

Protocol	Number of pkt	Packet Size (byte)	MB/Sec (with MIM)	MB/sec (No MIM)
UDP	1,000,000	1024	128	128
UDP	2,000,000	1024	122	121
UDP	3,000,000	1024	120	119
ТСР	1,000,000	1024	128	128
TCP	2,000,000	1024	120	122
TCP	3,000,000	1024	119	118

Outline

Find where the problem is:

- L3 + L2 Architecture
- Ethernet's scalability problems
- Cost Analysis

Solve the problem:

- CCMA All-L2 Network
 - Topology
 - Two-stage dual-mode forwarding
 - Load balance routing

Dynamic Load Balancing Routing Algorithm for Data Center Network

Goal

- Given a mesh network and traffic profile
 - Load balance the network resource utilization
 - Prevent congestion by balancing the network load to support as many traffic load as possible
 - Provide fast recovery from failure
 - Provide primary-backup route to minimize recovery time

Factors

- Only hop count
- Hop count and link <u>residual capacity</u>
- Hop count, link residual capacity, and link expected load
- Hop count, link residual capacity, link expected load and <u>additional forwarding table entries</u> required

How to combine them into one number for a particular candidate route?

Route Selection: idea

Which route is better from S1 to D1?

Link C-D is more important! Idea: use it as sparsely as possible Route Selection: hop count and Residual capacity

Using Hop count or residual capacity makes no difference!

Determine Criticality of A Link

Determine the importance of a link

= fraction of all (s, d) routes that pass through link l

Expected load of a link at initial state

= Bandwidth demand matrix for s and d

Criticality Example

Consider a network with three host A, B, and C, each connects to the switch network

Criticality Example

From B to C has four possible routes.

Expected Load

Assumption: load is equally distributed over each possible routes between S and D.

Cost Metrics

Cost metric represents the expected load per unit of available capacity on the link

Forwarding Table Metric

Consider using commodity switch with 16-32k forwarding table size.

from being exhausted

Route Selection: recap

How do we start? S1->D1 first or S2->D2?

Route Selection Order

- 1. Order the <S, D>s in decreasing traffic volume order
- 2. Start with the big guy until a threshold
- 3. The remaining <S, D>s are routed via a random routing algorithm -> reduce computational overhead!

Route Selection Process

Step1.

Order all traffic matrix entries in decreasing order.

Step2.

For each <S, D> pair in the matrix, find all possible routes between <S, D>.

Step3.

Pick a pair of disjoint routes (primary and backup) from it by calculating the the value v.

Step4.

Update expected load on each link and forwarding table entry on each node.

Step5.

Continue on the remaining traffic matrix until they are exhausted.

Incremental Routing

- Route Engine trigger incremental route when
 - Link congestion (by SNM)
 - Link/Switch down (by SNMP trap)
 - New VM boot-up or VM Migration (RPM)
- Incremental Routing
 - Figure out the affected pairs
 - Compute new route for them

Route Engine

IMPLEMENTATION

Implementation of Route Engine

Full routes or incremental routes

Route Selection Algorithm

- Load balance metric:
 - Load-balanced: the variation of link usage is minimized
 - Take standard deviation of all link usages
- Algo1: mini hop
 - Pick the route with minimum hop count
- Algo2: WSP
 - pick the route with the maximum of the minimum of all links in each candidate route
- Algo3: K shortest path
 - Pick the route with minimum sum of cost, and that requires the smallest number of additional forwarding table entries.

Verification: route

Performance Result of Route Selection Order

Performance of Algorithms

Future Work

- Apply more topologies and traffic matrix
- Route selection algorithms
 - Pick the route that renders the resulting link expected load the closest to the original
- Tradeoff between computation overhead and load balance degree
 - "intelligently" route X percent of <S, D> pairs and achieve 90 percentage of load balance degree

Thank you

END

BACKUP SLIDE

Two-stage Forwarding

- Source → Intermediate → Destination
 - Intermediate: TOR Swicth(Dest) or Physical Machine (Dest)
- Every Intermediate knows how to route to every VM in its scope
 - Intermediate needs to be notified when VM leaves or joins its scope
- Directory Server: Host → Intermediate(Host)

Switch only learns MAC addresses from:

- 1. TOR switches or
- 2. Physical MachinesNo visibility to VM's MAC!

Encapsulation and Decapsulation

Encapsulation: Place DA and SA in the Ethernet source address field

Decapsulation: extract DA and put it in the Ethernet destination address field

- Each VM's and PM's MAC address is effectively only 3 bytes long (as opposed to 6 bytes long)
- The most significant half of the Ethernet source address field signifies whether it is "encapsulated"

SA: Source address, DA: Destination address

IDA: Intermediate Destination address

Direct Routing Optimization

- Idea: When destination VMs are popular, they should be reached via direct routing
- Reserve some forwarding table entries for physical machines and switches, and leave the rest for directly routing
- How to allocate forwarding table entries
 - Total destination popularity/load of each VM
 - Load of each <source VM, destination VM> pair
 - Leverage traffic matrix information

Related Work

- Shortest path routing
 - Select minimum hop paths
 - Unaware of traffic load
 - Some perform ad hoc load balancing and congestion management
- Hop-by-hop routing schemes (OSPF, BGP)
 - No explicit control over end-to-end route
- Valiant-load balancing
 - Unaware of traffic load

Goals for Data Center Network

Efficient

- Achieve wire-speed
- No oversubscription
- Non-blocking

Manageable

- Ease of configuration
- Ease of management
- Resilient to frequent changes

Reliable

- Failure aware
- Fast recovery

Data Center Network Requirements

- Host mobility (VM migration)
 - no IP re-assignment
 - no TCP reconnect
- Easy administration and configuration
- Path efficiency (No oversubscription)
 - Any end host achieves wire speed
- No forwarding loops

802.1ah Mac-in-Mac

- Known as Provider Backbone Bridges (PBB)
- Meant for tunneling and nested VLAN
- Too much control plane set-up
 - Hierarchical VLAN (S-VID, B-VID) ... need to be managed and configured
- Commodity switch rarely supports
- All PBB bridges must support 802.1ah
 - We provide both a hardware (switch) and software(dom0) mac-in-mac solution.

Outline

Find where the problem is:

- Ethernet's scalability problems
- L3 + L2 Architecture
- Cost Analysis
- 802.1ah is not a good fit

Solve the problem:

- CCMA L2
 - Topology
 - Two-stage dual-mode forwarding
 - Fault-tolerant routing

Encapsulation and Decapsulation

- (1) Data packets are encapsulated at PM1. (SA=VM1, DA=VM4, IDA=Switch)
- (2) The MIM switch forwards the frame based on IDA.
- (3, 4) The MIM switch detects the mac-in-mac packets and do decap at MIM. Mac address of VM4 is now at Ethernet destination header (DA)
- (5) The virtual switch at PM2 forwards this frame to VM4.

Reallocation of Direct Route When VM Migration

- Problem: What happen when VM migrates to other physical machine?
 - The forwarding table entries allocated to a destination VM need to be explicitly removed.

Solution:

- The route server first allocates forwarding table entries for new location.
- Then the route server removes the invalid forwarding table entries along the old path.

Conclusion

With Two-stage, dual-mode forwarding:

- Scale to 1 million VMs using commodity switch with only 16K to 32K entries
- Optimize the switch performance by direct and indirect route strategy.

Outline

Find where the problem is:

- Ethernet's scalability problems
- L3 + L2 Architecture
- Cost Analysis
- 802.1ah is not a good fit

Solve the problem:

- CCMA L2
 - Topology
 - Two-stage dual-mode forwarding
 - Dynamic Load Balancing Routing

Goal

- Given a mesh network and traffic profile
 - Maximize the network resource utilization
 - Prevent congestion by balancing the network load to support as many traffic load as possible
 - Provide fast recovery from failure
 - Provide primary-backup route to minimize recovery time

Related Work

- Shortest path routing
 - Select minimum hop paths
 - Unaware of traffic load
 - Some perform ad hoc load balancing and congestion management
- Hop-by-hop routing schemes (OSPF, BGP)
 - No explicit control over end-to-end route
- Valiant-load balancing
 - Unaware of traffic load

Quantify Load Balance Metric

Network-wide load balancing metric:

Route Selection Algorithm

Given the following information:

- Traffic matrix: NxN, where N is the number of physical nodes.
- Take the following metrics:
 - Hop count for each path (M1)
 - Cost of each link (M2)
 - Load balance value (M3)
 - Fwd on each node (M4)
- Find an optimized value that represents best route

Route Selection Process

Step1.

Order all traffic matrix entries in decreasing order.

Step2.

For each <S, D> pair in the matrix, find all possible routes between <S, D>.

Step3.

Pick a pair of disjoint routes (primary and backup) from it by calculating the the value v.

Step4.

Update expected load on each link and forwarding table entry on each node.

Step5.

Continue on the remaining traffic matrix until they are exhausted.

Primary Route Selection Example

Conclusion

- Provide a route selection algorithm to maximize link utilization
- Provide a backup route for fast recovery
- Achieve maximum link utilization by load balancing the requests
- Define a quantitative metric based on
 - Hop count
 - Criticality
 - Load balance
 - Forwarding table size

L2 + L3 Architecture

- 1. Hierarchical network; 1+1 redundancy
- 2. Equipment higher in the hierarchy cost more and more efforts made at availability

Dynamic Load Balancing Routing Algorithm for Data Center Network

Cheng-Chun Tu

L2 + L3 Architecture

TODO List

- Routing adds node fails
- The network is flat

