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ABSTRACT

Triangulated Irregular Networks (TINs) have been used for sur-
face approximation in many applications. A hierarchical
representation is often desirable if the surface is to be rendered
at different resolutions. Past work has emphasized techniques
where a coarse triangulation is refined by focusing on plane
geometry using very little the surface data. For example, a new
point is introduced where the deviation of the surface is max-
imum and the triangle is subdivided into four others. Variants
of Delauney triangulations have also been used. We propose a
technique where we look more carefully into the features of the
surface to be approximated. For example, if there is a ridge, the
original triangle is divided by a line along the ridge and one of
its vertices is used to subdivided the resulting quadrilateral. In
this way the number of very thin triangles (slivers) is
significantly reduced. Such triangles produced undesirable
effects in animation. In addition the number of levels of the
TIN tree is reduced which speeds up searching within the data
structure. Tests on data with digital elevation input have
confirmed the above theoretical expectations. On eight such
sets the average ‘‘sliveriness’’ with the new method was
between 1/5 and 1/10 of old triangulations and number of levels
was about one third. There was an increase in the number of
descendants at each level but the total number of triangles was
also lower.

Note: Because of space limitations many details and examples
have been omitted from this version of the paper. Interested
readers should request from the authors a technical report with
the same title providing full details of the method, as well as
additional examples of implementation than poresented here.

1. Introduction

Triangulation is a popular technique for approxi-
mating surfaces. Many cartographic applications rely on
triangulated terrain models for simulation, visualization,
and analysis. Applications such as the finite element
method, medical imaging, and graphics in general
(including animation) also utilize triangulated surfaces.
Triangulations are popular because triangles are simple
geometric objects that are simple to manipulate and
render. Triangulated Irregular Networks (TINs) offer
additional advantages because they are not bound by
regularity constraints. Hence TINs can approximate any
surface at any desired level of accuracy with a minimal
number of polygons.

In general treatises on triangulation fall into two
groups: those that search for efficient algorithms to tri-
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angulate a given polygon and those that emphasize the
application of the triangulation to approximate surfaces.
In the former category, [1] outlines a greedy triangulation
for polygons using dynamic programming, and [2,3,4]
outline even faster algorithms. Reference [5] describes an
algorithm for triangulating a polygon with the constraint
that no obtuse angles are allowed.

However, we are more interested in approximating
surfaces with triangulation. Since triangulation of a sur-
face is done once and the results are used repeatedly,
computational efficiency of the triangulation is not as
critical. Instead, we strive to produce the triangulation
that best approximates the surface. A good surface tri-
angulation meets given accuracy requirements while
minimizing the number of triangles used to model the
surface. A good triangulation also minimizes the number
of very thin, slivery triangles which produce artifacts in
renderings of surface models. Surface triangulation algo-
rithms fall into two sub-categories: those that triangulate
a set of isolated points, and those that triangulate a set of
connected points (critical lines) by adding non-
intersecting connections.

Triangulation algorithms for isolated points are
numerous, although many are a variation on the
Delaunay triangulation scheme. References [6,7]
describe only a few of these. Triangulations of both
points in a plane and simple polygons is covered in [8]
while a survey of greedy, Delaunay, and optimal triangu-
lations of isolated points (the last of which is still an open
problem) is found in [9] . Other algorithms for triangu-
lating points on the plane can be found in [10,11] . Yet
many surfaces -- especially natural ones -- form continu-
ous patterns which aren’t adequately represented by iso-
lated points. Because these algorithms ignore the third
dimension, they can produce triangle edges that contrad-
ict the topology of the actual surface.

Triangulations of planar graphs -- i.e. points with
initial connections -- are more likely to produce accurate
models because the lines describing surface topology are
given. Some papers such as [12,13] deal with triangulat-
ing cross-sections from tomographic scans, although the
methods of both of these papers require human interven-
tion when the contours get complex. Other triangulations
of cartographic critical lines have been recently pub-
lished [14,15,7] .



This paper describes a hierarchical triangulation
built from a digital elevation model (DEM) in grid form.
Each level in the hierarchy corresponds to a different
level of detail that approximates the surface within a
given tolerance (i.e. maximum error). The top level is the
coarsest, containing the smaller number of triangles
which approximate the surface within some tolerance .
The i +1% level is related to the i* level as follows.
Tolerance ¢;,, is smaller than ¢;. For each triangle T} of
the i* level there exists a set of triangles T}*!, - -+, T}"!
at the i +1% level, such that "

n

T =T

k=1

The number of descendent triangles n can be any
integer, possibly 1. Such a hierarchical triangulation
allows easy implementation of such operations as zoom-
ing when viewing the surface. It also facilitates search-
ing and other geometrical operations such as finding the
intersection of two surfaces. Furthermore, it makes real-
time simulation and visualization possible for applica-
tions that can represent less important areas with less
detail in mixed-resolution models.

2. Past Work

Previous work on triangulations by one of the
authors has researched techniques to find critical points
and lines [16] , triangulate them [15] , and then refine
those triangulations to produce a hierarchy of detail lev-
els for fast spatial search with maximum accuracy [17] .
These algorithms represent significant improvements
over other algorithms, producing good triangulations.
However, the above algorithms do not allow for
refinement down to a specified level of accuracy.

Although several refinement techniques have been
suggested in the literature [18,19,20] , these algorithms
can introduce artifacts to a terrain model because they
consider only the locality of points in a 2D plane instead
of actual terrain topology. Consider, for example,
DeFloriani’s first algorithm for triangle refinement [19]
which splits a triangle by connecting its corners to a
selected interior point (usually, the point of maximum
distance between the surface and the plane defined by the
vertices of the triangle). The algorithm ignores the
coherence of cartographic features: valleys or ridges
have a linear structure. Figure 1 shows the results of
ignoring such coherence. We assume that a ridge (its
points marked by small circles in (a)) crosses the triangle.
(b) shows that the maximum point triangulation will pro-
duce an unreasonably large number of triangles. Even
worse, the triangles will have very sharp angles, which is
an undesirable property [S] . Such triangulations may
cause numerical stability problems in finite element
methods and also produce undesirable display artifacts.
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In contrast, if we realize that we deal with a ridge and
introduce a dividing line along it as shown in (c) we will
end up with fewer triangles, none of them very sharp. We
should point out that triangles with very sharp angles
may be inevitable for some types of data. For example, if
we have a steep cliff we will see large differences in the
value between adjacent elevation points. Then triangles
with very sharp angles cannot be avoided.

3. New Method

A generalization of the critical line method could
produce better accuracy with fewer triangles. We have
implemented such a strategy as follows. We start with a
coarse triangulation produced by techniques outlined in
Scarlatos’ three papers. Our refinement technique pays
particular attention to terrain characteristics, approximat-
ing critical lines at each step. To accomplish this, we find
for each triangle four error values: one inside the triangle,
and one on each of the three edges.

Figure 2 shows the five ways that a triangle may be
refined. In all cases our goal is to approximate the surface
form by splitting edges if necessary, thereby reducing
the number of splits or refinements required to achieve a
desired level of detail. If an isolated peak or pit resides
within the triangle, it is split at that central peak or pit
point as shown. If a single ridge or channel line travels up
to that peak or pit, the triangle is split where that line
crosses the edge of the triangle and at the central peak or
pit point. If, however, a single ridge or channel line
enters the triangle and ends at a saddle point or flat, then
the center point is insignificant and the triangle is split by
one edge as shown. If a ridge or channel line passes
through the triangle, significant errors will be found on
two edges of the triangle. A line connecting these points
approximates the topographical line, and an additional
edge splits the remaining quadrilateral. Finally, if a tri-
angular patch corresponds to a rapidly fluctuating sur-
face, many points are likely to have significant errors.
Splitting this type of triangle on all edges segments the
high-frequency regions which may then be further
refined.

During triangulation, special care must be taken to
avoid quantization artifacts caused by vertices falling
between grid points. This topic is discussed in our techni-
cal report of the same title.

We repeatedly split the triangles until they ail meet
the given accuracy requirements for the current level of
detail. This accuracy is checked by projecting all original
grid points to the surface of the triangulated model and
measure the difference. Intermediate triangles, used to
produce but not included in the final triangulation for the
current level of detail, are discarded. This reduces the
number of levels in the hierarchy and the number of tri-



angles within each level, making faster search, display,
and processing possible. If polygon constraints are more
important than the level of error, we can easily check the
polygon count and terminate a level when the limit is
approached.

4. Implementation of the Algorithm

Here we outline the implementation of the algo-
rithms associated with our method. Each point in the ori-
ginal elevation matrix has an associated ground position
(also used as an array index) and elevation. Two global
functions, GET_POINT_INDEX and GET_ROW_COL,
respectively return a point index given row and column
numbers, and row and column numbers given a point
index. Each point also is associated with zero, one or two
triangles in a Membership list. Triangle vertices are asso-
ciated with no triangles. If a point is associated with 2 tri-
angles, then it belongs to an edge and a distance to that
edge is stored. Otherwise, the point is within a single tri-
angle. Three point indices define a triangle. Each triangle
is associated with a level of detail and contains pointers
to its parent, its children, its siblings, and its three neigh-
bors (ie the triangles that share its edges). In addition, tri-
angles have temporary structures keeping track of their
splitting points, the maximum error found within them,
and the number of edges to be split. A flag indicates
whether the triangle meets the accuracy standards of the
current level.

The main program retrieves the input data, calls the
appropriate triangulation routines, and writes out the
results to a data base.

The level of error within a triangle is found by tak-
ing all grid points within the boundaries of that triangle,
projecting them to the surface of the triangle, and com-
paring the results to the original elevation values. Errors
are found in four regions on a triangle: on each of the
three edges, and within the triangle. The errors found by
this routine determine how the triangle will be split (if at
all) later on.

The procedure FIND_SPLITS relies on several
local routines to do its work. Routine PROJECT calcu-
lates the elevation of a point projected to a given triangle.
The procedure SORT uses the quicksort method to
reorder LIST and DISTLIST so that the values in DIST-
LIST appear in descending order; and the point indices in
LIST are the ones corresponding to the appropraite DIST-
LIST values.

Routine SIGNIFICANCE returns TRUE if the
given error value is significant enough to merit splitting
at the related point. This may be calculated in two ways.
Using the first way, if the given value is greater than the
threshholded error for the current level of detail, then that
point is significant. Using the other way, if the given
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value is more than some percentage of the maximum
error found within a triangle, then that point is
significant. In either case, a point is insignificant if its
error falls at or below the threshhold fer the current level
of detail.

Although each of the five regular triangulation
algorithms is different, they all follow the same pattern of
steps.

There are two important local procedures for
adding edges to the triangulation. The first is
ADD_EDGE which connects two previously uncon-
nected vertices. MEMBER values are updated for points
on and alongside the new line. Endpoints are given null
MEMBER values. The second routine, SPLIT_EDGE,
splits an existing edge into two new edges, possibly
adding a bend in the middle. If the edge has not already
been split, it calls ADD_EDGE twice. Otherwise, it finds
the new neighbors added by the split and returns those.

GEN_TRIANG generates a new triangle number.
To save space, the current triangle number is recycled,
becoming the first child of T. ADD_TRIANG actually
generates the new triangle.

When a splitting point on one edge is colinear with
another edge, special triangulation must take place.

5. Data Base Structure

This algorithm produces all of the information
required to both render the 3D surface and search for spa-
tial relationships. A header record includes information
such as a ground position for the lower-left corner of the
triangulation; spacing between posts in the original grid;
elevation ranges in the triangulation; number of levels.
This is followed by the level records. Each level has a
threshhold of allowable error, used to produce the tri-
angulation. It also has a number of points, number of tri-
angles, and a list of triangles. Each triangle is defined by
3 point indices, and has a parent pointer, child pointers,
and neighbor pointers. All this is followed by a single
point list. Only points that appear in the triangulation are
written to the data base; all others are unnecessary. Points
are ordered such that if level L uses N points, then it uses
points 1, - - - N. This reduces retrieval time for a level of
detail.

6. Results

To test our algorithm, we implemented and ran it
on several test cases. We selected eight (8) areas of
interest (AOI) as test data, each covering 75x75 elevation
points. These areas, representing various terrain types,
come from the Defense Mapping Agency’s Digital Ter-
rain Elevation Data (DTED Level 1).t A triangulation

+ DTED Level 1 elevation points are three seconds of an arc



employing all 5625 points in an AOI would contain
10,952 triangles.

We implemented our algorithm with varying
parameters to see which behaved best. The first parame-
ter is how we determine the significance of point p’s error
e,. Error e, may be considered significant compared to 1)
tolerance value #; for level i, so that e, > ¢;, or 2) a per-
centage N of the maximum error e, found for current
triangle ¢, so that ¢, > e, . The second parameter deter-
mines when we split a triangle at one edge and a
significant center (as shown in Figure 2). Center point ¢
may be considered significant compared to 1) the error e,
of splitting point v on the edge of the triangle, so that
e. > e,, or 2) the significance value used to determine the
significance of all other points, as determined by the first
parameter. Hence we ran four optional programs. Option
1 uses tolerance to determine significance, and requires a
center point to be at least as significant as an edge point
in order to be used. Option 2 uses 75% of the maximum
error within a triangle to determine significance, and also
requires a center point to be at least as significant as an
edge point. Options 3 and 4 are like options 1 and 2
respectively, except that a center point’s significance is
determined by the usual measures. As a basis of com-
parison, we implemented DeFloriani’s first algorithm
[19] and ran it with the same test data.

All four options and the basis algorithm were exe-
cuted on the eight AOIs, producing triangulations with a
minimum error of 10 meters. All tests demonstrated that
our algorithm works well. Table 1 shows some of our
results.

A better triangulation will produce fewer slivery
triangles. The table shows how slivery the resulting tri-
angles were. We measured sliveriness with the following
ratio, calculated for each triangle in the triangulation:

Perimeter?
Area

(For equilateral triangles this ratio equals 20.78.) We
then calculated the average sliveriness for the entire
structure, and divided the result by the sliveriness ratio
for an equilateral triangle. A lower sliveriness value is
better. Note that on the average most of the triangles have
much sharper angles than sixty degrees. Using the basis
case, some angles are as small as 0.25 degrees. Notice
how much better our algorithm performed, using all four
options. Options 1 and 2 seem to work about equally
well, indicating that the best measure of point
significance is determined by data characteristics.
Options 3 and 4 consistently performed a little worse.
This leads us to conclude that a center point should only

apart, about 100 meters.
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be included in the division of a triangle if it is more
significant than the edge point.

A better triangulation will permit fast spatial
search. The time required for a search is determined by
the number of levels that must be searched, and the
number of child nodes that must be examined at each
level. DeFloriani’s algorithm, which always splits a
parent triangle into 2 or 3 children, has an average of
about 2.5 children per parent node. The number of levels
in a hierarchy depend on the number of iteration levels
required to build the triangulation. Our algorithm, on the
other hand, guarantees a fixed number of levels in the
hierarchy, but can split a parent triangle into any number
of children. Although one may presume that a very large
number of children will be produced, table 7 shows that
this is not the case. In this table, the "old" algorithm is the
basis case, and the "new" algorithm is our option 1. Table
2 shows that search times using our hierarchy will be as
fast as, or faster than, the other. Additional results can be
found in our technical report.

Figure 3 demonstrate the significances of the
improvements our algorithm makes. Figure 3a shows a
view of AOI 1 using the original grid data, represented by
10,952 triangles each. Figure 3b shows the same views of
the data triangulated with DeFloriani’s algorithm (the
basis case), containing 1714 and 2318 triangles respec-
tively for a maximum error of 10 meters. Figure 3c
shows the same views of our algorithm (using option 1),
containing 1836 and 1979 triangles respectively for a
maximum error of 10 meters.

While Delaunay triangulations have been proposed
as means for reducing the number of very sharp triangles
within hierarchical structures, [20] Delaunay triangula-
tions have serious drawbacks as discussed in [14] . In
some cases, using Delaunay triangulation to add points
can actually increase error levels in the model, even
though the model contains more triangles. The algorithm
of [5] while it avoids generating obtuse triangles, it gen-
erates far too many points and triangles for our purposes.

7. Conclusions

We have presented an algorithm that produces a
hierarchy of triangulations in which each level of the
hierarchy corresponds to a guaranteed level of accuracy.
Because our algorithm focuses on the topology of a sur-
face, it minimizes the number of triangles, and produces
fewer long and slivery triangles, within each level of
detail. These features add up to a triangulation that pro-
vides great accuracy in a model that can be rapidly
searched, rendered, and otherwise manipulated.

We plan to extend this work by using triangulation
for representing other data besides terrain. Finite element
methods, for example, use triangulations extensively, yet



suffer from occurrences of slivers. We will consider what
the triangulation criteria are for related applications.
Other data such as images may also be triangulated. We
will address numerous issues in this area, such as how to
fuse disparate triangulations such as a terrain model with
a Landsat overlay.
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Table 1

Measures of Sliveriness*

AOI || Basis | Option1 | Option2 | Option3 | Option 4
1 32.294 5.037 5.071 6.301 6.578
2 52.487 9.864 12.107 11.074 11.107
3 35.889 6.047 5.739 6.398 5.998
4 50.682 11.619 11.164 12.581 12.854
5 56.835 15.054 8.521 14.329 8.676
6 40.932 5.461 5.578 7.376 7.437
7 51.261 4336 5.029 6.089 7.367
8 39.925 5.873 6.112 6.805 7.153

* normalized to 1 for an equilateral triangle
Table 2
Comparison of Hierarchies
Number of | Average Number
AQI Levels* of Children**

Old | New Old New
1 15 5 25 2.8
2 17 5 25 24
3 17 5 25 36
4 17 5 2.5 3.6
5 19 5 25 24
6 18 5 2.5 25
7 17 5 2.5 24
8 18 5 2.5 23

* number of levels specified for new algorithm

** number of children assumed to be 2.5 for old algorithm

i3
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Figure 1: (a) Elevation points along a ridge intersecting the triangle, (b) results of triangula-
tion with respect to maximum error point, (c) results of triangulation using cartographic coher-
ence.

AN/AVAN

Split in center Split on 1 edge Split on 1 edge
(significant center) (insignificant center)
Split on 2 edges Split on 3 edges

Figure 2: Split strategies for preserving cartographic coherence.
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