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Abstract

We explore real time volume rendering of multichan-
nel data for volumes with color and multi-modal infor-
mation. We demonstrate volume rendering of the Visible
Human Male color dataset and photo-realistic rendering
of voxelized terrains, and achieve high quality visualiza-
tions. We render multi-modal volumes utilizing hardware
programmability for accumulation level mixing, and use CT
and MRI information as examples. We also use multi-board
parallel/distributed rendering schemes for large datasets
and investigate scalability issues. We employ the Volume-
Pro 1000 for real time multichannel volume rendering. Our
approach, however, is not hardware-specific and can use
commodity texture hardware instead.
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functions, multi-modal, volume mixing, Visible Human,
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image compositing, VolumePro 1000, graphics hardware.

1. Introduction

Many volumetric datasets in medical and scientific ap-
plications have multichannel information. Examples in-
clude the Visible Human Male (VHM) dataset from the Na-
tional Library of Medicine, which has CT, MRI as well as
color information from photographs. Other examples are
aerial or satellite color ortho-photographs of terrains (used
in height-field visualization systems), and multi-spectral
(remote-sensing) satellite data. This type of data offers ex-
citing possibilities for photo-realistic volume visualization
as well as better understanding of the data due to the multi-
channel information. In this paper, we explore hardware as-
sisted volume rendering of multichannel data with examples
taken from the VHM and terrain rendering applications.

Direct volume rendering is expensive in terms of compu-
tation and memory in comparison with surface based ren-
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dering. Volume rendering is preferred for medical visual-
ization because of its ability to explore the internal struc-
tures such as bones and tissues. Polygon based rendering
has been traditionally the choice for terrain visualization as
terrains are mostly flat surfaces which can be modelled well
with polygons and real time rendering can be achieved with
texture mapping hardware using various LOD techniques
[7]. Volume rendering still has many advantages for terrain
visualization as the elevation maps can be easily voxelized
into very high-resolution 3D volumes. Also, the voxel-
based model is scene complexity independent, and offers
a better representation for amorphous phenomena such as
clouds, haze and fire. Therefore, volume rendering has been
successfully applied to terrain visualization [3, 18].

Interactive rendering speed is required for the ease of
exploration of large volumetric datasets and had been re-
stricted for some time to high-end graphics workstations,
due to the requirement of trilinear interpolations for image
quality. Direct volume rendering with commodity 2D tex-
ture mapping [1, 5, 16] as well as 3D texture mapping have
been successfully exploited for volume rendering. How-
ever, most PC platform texture mapping hardware have a
limited on-board texture memory (typically 64-128MB) and
slow texture-memory access rates, especially for 3D tex-
tures, limiting the size of volumes that can be rendered in-
teractively in a single pass.

The above factors make special purpose hardware attrac-
tive for direct volume rendering of large volumes. The spe-
cial purpose volume rendering hardware VolumePro 500
[13], which evolved out of our Cube-4 architecture [14],
supports real time frame rates (30 frames/sec) for a2563

volume. The second generation hardware, the VolumePro
1000, is able to associate multiple channels of information
(vector) with a voxel, not just a scalar density. It also has the
capability of rendering super-volumes (i.e., volumes larger
than the on-board memory) in real time with multi-pass ren-
dering, and its pipeline is programmable, similar to com-
modity hardware. Given that this hardware is in its initial
years of development, we hope that with future develop-
ments, the price/performance ratio will be more attractive.



In this paper, we demonstrate a post-classified single
pass volume rendering of multichannel data (e.g., RGBα
color volumes and multi-modal rendering of CT and MRI
data) with graphics hardware, and multi-board real-time
rendering for large datasets. We employ the VolumePro
1000 for real time rendering of multi channel data. How-
ever, our approach is not specific to VolumePro and can be
implemented on commodity texture hardware as well.

Section 2discusses the modeling and rendering of the
VHM color volume and issues with transfer functions and
gradients for multichannel data. We also explore multi-
modal visualization of the CT and MRI datasets of the
VHM in Section 3. Multi-board rendering for large datasets
is discussed in Section 4. In Section 5, we briefly discuss
the rendering pipeline of the VolumePro 1000 and some im-
plementation issues. Alternative texture mapping hardware
rendering schemes are also proposed. Finally, we discuss
realistic terrain modeling and navigation as an application
in Section 6.

2. Multichannel Color Volume Rendering

Color photographic volumes greatly simplify the task of
creating realistic volume rendered images as the appropriate
color for each voxel is already known from the photographs.
Photographic volumes however offer a new challenge: de-
termining the opacity for each voxel in the dataset. In tra-
ditional volume rendering, the design of effective color (1D
to 3D mapping) and opacity (1D to 1D mapping) transfer
functions for meaningful exploration of the data has been
challenging [15]. In contrast, volume rendering from pho-
tographic data requires an opacity transfer function from the
vector color fields (3D to 1D) and which is complicated by
the non-linear nature of color spaces.

A way to solve this problem is to associate opacity values
for the color voxels from an auxiliary density volume, such
as CT, if available. There are two problems with this ap-
proach: a modality such as CT is good for external bound-
aries but does not capture internal details such as soft tissues
well and the density volume has to be registered with the
photographic volume. Registration of a large volume such
as the VHM is difficult to automate.

Hence, we approach the direct volume rendering of the
VHM color volume from the photographic information it-
self. We use the CIEL* u* v* color space to obtain a percep-
tually uniform representation of the color volume [4]. The
L* component corresponds to the linear lightness of color,
and hence has high values for bright areas of the volume
(e.g., bones, skin and light colored organs such as the brain)
(see Fig. 1a). Theu* component captures the chromatic
changes in the red-green colors. Hence, it is sensitive to
changes in the “redness” of tissues (e.g., muscle to bone)
(see Fig. 1b). Our hardware rendering of the VHM is able
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Figure 1. Multichannel volume rendering: (a)
L* color component used as the density. (b)
u* color component used as the density.

to accurately simulate these properties of the color space.
Currently, graphics hardware can store information in up
to four fields, typically meant for RGBα. We assign the
RGB information from the slices and the density informa-
tion from the correspondingL* or u* color component that
we calculate in a pre-process.

We propose a way to incorporate color difference gra-
dients for shading in hardware rendering. Gradients can
be calculated in hardware based on the voxel information.
Hardware programmability allows us to access information
of the neighboring voxels, which we can use for various
kinds of gradient calculation. The changes in color values
alongX, Y andZ, expressed as the triple (grad.x, grad.y,
grad.z), is the color difference gradient vector. We imple-
ment color difference gradient magnitude calculation with
hardware (see Fig. 2a) by using the difference of the in-
formation in the Red channel across a voxel along theX
direction asgrad.x, and likewise for the other two color
channels. The perceptual difference between two colors is
to a good approximation proportional to the Euclidean dis-
tance between them. This is specially true for the CIELUV
space. For color difference gradients in the CIELUV space,
we sacrifice the true color volume rendering due to the lim-
ited number of color channels and render only with pseudo
colors from an RGBα transfer function (see Fig. 2b).

We also incorporate gradient boundary enhancement by
using first and second order directional derivatives along the
gradient direction [11]. The first derivative in the direction
of the gradient is the gradient magnitude itself and the sec-
ond directional derivative can be well approximated by the
gradient of the gradient magnitude. The first directional
derivative can be currently calculated in hardware render-
ing. For the second directional derivative, we pre-calculate
the first directional derivative and store them in separate
channels. Then, using the existing algorithm, calculate the
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Figure 2. Multichannel volume rendering with
hardware assisted gradients: (a) Color differ-
ence gradients of RGB color space. (b) Gra-
dients of LUV space with second derivative
along gradient direction.

gradient based on the information in these channels, result-
ing in second directional derivative on the fly (see Fig. 2b).

3. Multi-Modal Volume Rendering

In this section, we describe real-time multi-modal vol-
ume rendering. Various levels (image, accumulation and il-
lumination) of volume mixing and rendering pipelines have
been proposed for multi-modal rendering [2]. Image level
intermixing is not efficient as it requires one rendering pass
per volume and an additional merging, and also does not
produce good quality visualization. Though accumulation
level mixing produces good quality visualization, it is a
slow process (mixing happens on a per sample basis along
the ray) and our aim is to accelerate this using hardware. In
our scheme, each modality is associated with a color chan-
nel for single-pass rendering in hardware. This scheme also
ensures a color coding scheme for information from the dif-
ferent modalities. For the purpose of demonstration, we use
information from two kinds of volumes, CT and MRI of the
VHM dataset. However, our scheme is generic enough to
be used for other multi-modal datasets.

A simple but lossy scheme for mixing data from two
modalities such as CT and MRI is to sample from both us-
ing a density threshold, assigning value to the voxel from
CT if the corresponding CT density is above the threshold
(high density for bones and surfaces) and from MRI other-
wise (low density for soft tissues). Hence, we get the best of
both modalities. We use red color for MRI (density infor-
mation replicated to Red andα channels) and gray for CT
(density information replicated to all four RGBα channels)
(see Fig. 3a) as our color coding scheme.
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Figure 3. (a) Simple multi-modal volume mix-
ing of CT and MRI data by sampling based on
density threshold. Mixing with arithmetic op-
eration: (b) gradients specified on CT while
MRI is rendered as a point cloud, and (c) ren-
dering with gradient modulation.

The above approach has the drawback of information be-
ing lost due to the thresholding during sampling. A better
way to implement mixing would be to let the user select
the threshold while exploring the data. We achieve this by
employing the arithmetic and logical operation supported in
hardware. We store the CT and MRI information in separate
fields (color channels in hardware) of the voxel. Then, we
compute CT - MRI and MRI - CT simultaneously and out-
put the results of this Diff operation (with negative values
clamped) on two separate color channels (green and blue
in our case). The result is that for every voxel, only the
greater of the two components of the voxel contributes to
the final accumulation along the ray. This scheme is not
lossy and the segmentation can be dynamically altered us-
ing transfer functions for data exploration. One issue that
arises is that gradients need to to be calculated across the
different modalities separately since they represent differ-
ent volumes and this may not be supported in hardware.
Hence, we specify gradients to be calculated only from one
modality (voxel field) at a time, and not on the entire (multi-
modal) voxel (see Fig. 3b). The above mixing scheme is
used for the color channels only (for color coding), while
we use Max(CT, MRI) for theα channel for well defined
iso-surfaces using gradient modulation (see Fig. 3c).

Another approach to mixing is inclusive opacity, where
all the volumes contribute to the voxel final color and/or
opacity. A convenient way to identify voxels overlapped by
both CT and MRI is by rendering them using a third or-
thogonal color (red in our case). We render the multi-modal
volume with the function 1 - (CT - MRI) - (MRI - CT) for
the red channel corresponding to voxels with information
from both modalities. We still use the Diff operator for the
green and blue channels and the Max operator for theα
channel (see Fig. 4). More sophisticated operations such as
conditionals should be soon available in graphics hardware
adding flexibility to the volume mixing schemes.
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Figure 4. Multi-modal volume rendering with
inclusive opacity: (a) Voxels with information
from both CT and MRI; (b) Voxels with more
CT.

4. Multi-Board Rendering

We utilize multiple units for rendering large volumetric
datasets interactively. Many such visualization systems ex-
ist, ranging from those using multiple CPUs and graphics
pipes in parallel [6] to cluster-based systems using special-
purpose hardware such as VolumePro 500 [8, 12]. Here, we
investigate the efficient parallelization of multiple graphics
hardware boards on the PC platform.

We implement image-partitioned rendering by loading
the entire volume on all the available boards, but restrict-
ing the range of the image and depth buffers to be filled by
each board. This way, we distribute the rendering task to
the boards uniformly. A limitation of this approach is that
the size of the volume that can be rendered is limited by the
memory size of the each board. Therefore, super-volumes
have to be rendered using object-partitioned parallelism. A
super-volume is divided into multiple sub-volumes, each of
which can fit on one on-board memory. Each board renders
its sub-volume and the resulting images have to be compos-
ited in order of depth. Hence, object-ordered parallelism
seems more useful for large datasets.

We investigated distributed rendering on multiple PCs
with one rendering engine per node as PC architecture does
not commonly support multiple graphics boards. We setup
one node as the master (control) and the others as rendering
slaves. The master distributes the viewing parameters per
frame to the slaves and collects the rendered images from
them for compositing and display on a per frame basis. The
slaves render their corresponding sub-volume after receiv-
ing the viewing parameters and send the rendered image to
the master once every frame. This setup requires a high
bandwidth low latency interconnect and network interface
technology, such as Myrinet or Gigabit Ethernet, to support
the sustained heavy network traffic.

Image compositing of rendered sub-volumes can be a
computationally expensive task as the compositing opera-
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Figure 5. Multi-board volume rending: (a)-(b)
rendered sub-volumes; and (c) image com-
posited on texture mapping hardware

tor has to be applied over every pixel of the image. We
utilize the register combiner units on the texture mapping
hardware (GeForce2) to carry out this per-pixel composit-
ing and display at the master node in an efficient hardware
accelerated fashion (see Fig. 5). The available sustained
network bandwidth as well as the loading of the image data
into texture memory are the overhead in this distributed ren-
dering scheme and cost a few frames in performance.

We can also use multiple boards to cache large volumes
ahead of rendering and at run-time only render the desired
sub-volume. This is useful for terrain visualization (see
Section 6) where the terrain may be large but only portions
are visible at any point. Caching has been utilized for walk-
throughs for reusing previously rendered images in subse-
quent frames [17]. We divide the terrain volume into slabs
that can fit in the on-board memory. This way, we maintain
real time frame rates for a fly-through by rendering only rel-
atively small slabs at a time. This scheme also helps over-
come the loading-unloading latency during fly-through as
all required slabs are already on-board.

5. Implementation with VolumePro 1000

VolumePro 1000 supports real-time volume rendering
of up to 5133 volumes. The hardware performs the fol-
lowing basic operations on data at voxel or sample points:
(1) Gradient estimation (central difference), (2) Classifica-
tion/Interpolation (trilinear), (3) Illumination, and (4) Com-
positing. Alpha correction, accumulation, and early ray ter-
mination are included in the compositing process. The vox-
els in VolumePro memory are composed of up to a maxi-
mum of 4 fields. The classification function of VolumePro
consists of transfer functions for color andα lookup and
arithmetic and logical units.

We implement multichannel volume rendering with Vol-
umePro 1000, utilizing calls of the Volume Library Inter-
face (VLI) (C++ API for VolumePro). We render the color
and multi-modal volumes on the VolumePro by assigning
8 bits per color channel or modality to a separate field of



the voxel. These fields can also be used to tag segmented
data. Mapping of the voxel fields through transfer function
LUTs is supported in VolumePro. This can be implemented
with commodity texture hardware using multi-texturing and
dependent texture lookups. The ALU units of VolumePro
provide additional programmability, similar to the register
combiner units of commodity graphics hardware.

We down-sampled the original VHM photographs from
a resolution of2048 × 1216 pixels to 512 × 256 pixels.
Our color space conversion was performed by first convert-
ing RGB to CIE XYZ space using theXYZitu601-1 (D65)
standard conversion matrix, and then converting to CIEL*

u* v* color space.
For multi-modal volume rendering, we modulated each

voxel field with a separate transfer function and used the
ALU units for implementing the Diff and Max operation for
volume mixing. CT slices from the VHM are of512× 512
resolution and the MRI slices are256×256. Hence, we first
interpolate the MRI slices to512 × 512 resolution. Also,
the MRI data is available for every fourth slice of the CT.
Therefore, we interpolate between slices with a large filter
support to smooth out the staircase effect.

Though we experimented with multi-board VolumePro
1000 rendering on a single machine, we discovered it to be
inefficient due to the PC architecture. We solve this issue
by switching to distributed rendering with object ordered
parallelism. Our test bed is a dual node PC cluster with one
VolumePro per node. The nodes are connected with a high-
speed 1 Gbps Myrinet point-to-point connection and we use
the low level API GM for packet transfer over the Myrinet.

6. Applications and Results

We create realistic visualization of volumetric terrain as
another application of multichannel color volume rendering
on VolumePro 1000. One of the primary sources of data in
terrain visualization is the terrain height field and the cor-
responding texture of the terrain. The latter is typically ob-
tained from an aerial or satellite ortho-photograph. We con-
struct the terrain dataset by first voxelizing the height-field
data, creating an iso-surface of voxels. We scale all heights
in our height-field data to a maximum height of 64 voxels
as terrains do not generally have sharp variations in altitude.
The terrain dataset is constructed as an RGBα volume, with
one channel per field. At location (x, y, z), we obtain RGB
information from the corresponding (x, z) location of the
terrain ortho-photograph (texture) (see Fig. 6a). For theα
channel we assign a constant high value in order to make
the surface opaque.

Finally, we utilize VolumePro 1000 ability to embed
polygonal objects within volumes to create the visual ef-
fect of an F-15 flying over volumetric terrain (see Fig. 6b).
Though great for visualization, this is a costly process. We
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Figure 6. (a) Original ortho-photograph ( 512×
512) of the terrain; (b) High quality multichan-
nel volume rendering of terrain ( 1024 × 64 ×
1024) with embedded polygonal F-15.

Figure 7. Multichannel volume rendering of
volumetric terrain with amorphous clouds

also produce high quality rendering of terrain with amor-
phous phenomenon such as clouds (see Fig. 7) and achieve
interactivity with hardware volume rendering.

Our experiments are conducted using VolumePro 1000
boards with 1GB of on-board memory. Some of this mem-
ory is allocated for on-board image and depth buffers.
Hence, we restrict the largest 32-bit RGBα color volume
in a single pass to 950MB. For the visible Human Male,
this evaluates to512 × 256 resolution per slice and a total
of 1871 slices. We divide the terrain volume into slabs, and
restrict the slab size to1024 × 64 × 1024. We cache three
such slabs on one board at a time for a total volume size of
3072× 64× 1024.

For our parallel rendering experiments, we have exper-
imented with up to four boards in parallel PCI (33MHz-
32bit) slots of a Pentium III 1GHz machine, as well as in
parallel PCI (66MHz-64bit) slots of an Athlon 1.2 GHz
machine (see Table 1). Higher bandwidth of the 66MHz-
64bit PCI bus gives consistently better performance. Un-
fortunately, the PCI slots on these machines share the same
PCI bus and hence the performance does not scale well with
the number of boards. Our distributed rendering experi-



Table 1. Frame rates for multi-board parallel
rendering of VHM on one PC

PCI bus Single Board 2 Boards 4 Boards
on 1 PC on 1 PC

33MHz-32bit 8 14 18
66MHz-64bit 14 19 24

ment with VHM was configured using two nodes each with
512 × 256 × 936 sub-volume and one or two boards. The
frame rates for a 66MHz-64bit PCI bus are 25 for 1 board
and 33 for 2 boards per node. Tiling smaller slabs of size
1024× 64× 1024 within each board for volumetric terrain
visualization provides real-time performance of 32 and 48
frames/sec for 32MHz-32bit and 66MHz-64bit PCI bus, re-
spectively.

7. Conclusions and Future Work

We have demonstrated high-quality visualization of mul-
tichannel data with volume rendering through proper mod-
eling of the data and hardware assisted single pass render-
ing. We achieve various mixing schemes for single pass
multi-modal volume rendering using hardware units. In-
teractive speed has been achieved for super-volumes using
multi-board rendering. Though we have used special pur-
pose VolumePro 1000, our approach is generic and can be
realized on commodity texture hardware too.

We are in the process of setting up a visualization PC
cluster, initially with 12 rendering nodes and a display
client. One issue that we need to resolve in this cluster is
that of fast image composition, maybe using the efficient bi-
nary swap composition strategy [9]. We intend to overcome
the slow reads of image data from the rendering unit using
special-purpose compositing hardware [10, 12], in order to
match the compositing speed with that of the rendering.
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