
1

A Visual Analytics Approach to Model Learning

Supriya Garg, I.V. Ramakrishnan, and Klaus Mueller

Computer Science Department, Stony Brook University

ABSTRACT

The process of learning models from raw data typically requires a
substantial amount of user input during the model initialization
phase. We present an assistive visualization system which greatly
reduces the load on the users and makes the process of model
initialization and refinement more efficient, problem-driven, and
engaging. Utilizing a sequence segmentation task with a Hidden
Markov Model as an example, we assign each token in the
sequence a feature vector based on its various properties within
the sequence. These vectors are then clustered according to
similarity, generating a layout of the individual tokens in form of
a node link diagram where the length of the links is determined by
the feature vector similarity. Users may then tune the weights of
the feature vector components to improve the segmentation,
which is visualized as a better separation of the clusters. Also, as
individual clusters represent different classes, the user can now
work at the cluster level to define token classes, instead of
labelling one entry at time. Inconsistent entries visually identify
themselves by locating at the periphery of clusters, and the user
then helps refine the model by resolving these inconsistencies.
Our system therefore makes efficient use of the knowledge of its
users, only requesting user assistance for non-trivial data items. It
so allows users to visually analyze data at a higher, more abstract
level, improving scalability.

KEYWORDS: Visual Knowledge Discovery, Visual Knowledge
Representation, Data Clustering, Human-Computer Interaction.

INDEX TERMS: H.5.2 [Information Interfaces and Presentation]:
User Interfaces—Graphical user interfaces; I.2.6 [Artificial
Intelligence]: Learning—Concept Learning; I.5.3 [Pattern
Recognition]: Clustering—Similarity Measures.

1 INTRODUCTION

With the tremendous growth in physical and online data collection
technology, we are now experiencing an explosion of digital
information. Since a large amount of these data are unstructured,
various machine learning techniques have been developed to
assign structure to these data to make them machine readable.
This process can allow the machine to reason with and draw
insight from data almost automatically. However, all such tasks
depend heavily on large amounts of user-tagged data as the
starting point, and use various semi-supervised learning methods
[19]. Due to the high user input required, such tagged data is
difficult to construct. Further, data is dynamic, and as a dataset
grows and changes, we might need to supplement the tagged data
from time to time. We propose to make this task simpler and
interactive by designing a system where the user can obtain a
visual overview of the dataset, and in that visual interface only

tags those data elements that the system cannot easily resolve
itself.

One crucial idea behind our system is that given good feature
vectors to represent each data point, points that are similar will be
close-by in the feature vector space. Here, we mean data-points
which though rich in semantics, do not have an explicit high-
dimensional feature vector automatically attached to them. In such
cases we need to design feature vectors to represent the semantics
and structure of the data-points. We aim to achieve this in our
system by designing feature vectors which encompass a data
point’s structure, context, and location in the dataset. If some sort
of semantic information is available, that can be added to the
feature vectors as well.

Based on the above feature vectors, we design a visual interface
where data is displayed in 2D space based on their feature vector
similarity. This gives the users an overview of the dataset, and
they can easily observe sets of data points which form spatial
clusters. At this stage, we can apply clustering algorithms which
arrange similar points closer together.

Clustering as we know is a general approach which can help
users explore and analyze large data sets since it lets users work
with groups of objects, rather than individual objects which can be
large in number. Clustering associates objects in groups such that
the objects in each group share some properties (similar feature
vectors) that hold to a lesser degree for the other objects. Spatial
clustering builds clusters from objects being spatially close or
having similar spatial properties. However, clustering methods
when run automatically can give non-intuitive results. Therefore,
we allow the user to tweak the parameters of both the clustering
algorithm and the data’s feature vector to improve results.

We can use any well-known clustering algorithm to subdivide
the points into clusters. This can help provide the initial biasing
for any classification algorithm. However, the model learnt
initially is a very rough estimation of the actual model, and needs
fine-tuning to improve performance. For this purpose, we keep the
user in the loop and utilize human insight to resolve
inconsistencies. Overall, our visualization system allows the
analyst to: (1) identify the classes in the data and communicate
these to the model learning system; (2) assess the fitness of the
generated model by the structure it imposes on the data; and (3)
refine the model by communicating misrepresented patterns back
to the model learning system.

The model learning system uses the visualization to explain the
model to the analyst. While most communication of the analyst is
gesture-driven, editing facilities are available to directly specify or
refine the model. We call this iterative model building process
data-driven, user-assisted model sculpting or model debugging.

After we have learnt an initial model, we apply it to the dataset
to segment it. The user can then examine the visualization for
possible misclassifications, and reclassify the data points. To
guide the refinement of the model, we develop an interface similar
to a step debugger in a common software development
environment. Here, the model’s structural graph represents the
program script while the visualization is the program output.
Users can step through the model’s graph, examine the visual
model explanations, and refine the corresponding rules if required.

The main contribution of our work is that it lightens the huge
burden of individually hand tagging data, and allows users to tag

Email: {sgarg, ram, mueller}@cs.sunysb.edu

IEEE Conference on Visual Analytics Science and Technology (VAST), Salt Lake City, October, 2010

2

data at a higher level, with greater interactivity. Our approach can
provide a solution to a large range of segmentation and
classification problems in the presence of complex and ambiguous
data. This includes the audio/video domain where we want to
segment the input by speakers, scenes, moods, etc, and the image
domain where we classify images by content type, or segment an
image into objects.

On the other end of the spectrum are methods which try to learn
important feature vectors for data classification automatically
[16]. However, they are highly time intensive. By using our
approach, we can let the user into the loop, and allow him to guide
the system making the process much more efficient.

Our paper is structured as follows. Section 2 presents related
work, Section 3 describes relevant theoretical aspects, Section 4
provides details on implementation, Section 5 presents results, and
Section 6 ends with conclusions and pointers for future work.

2 RELATED WORK

This work follows the general Visual Analytics idea of combining
human domain knowledge with automatic data analysis
techniques by providing users with interactive visual interfaces,
whereby ‘interactive’ means that users can actively participate in
the analytical process as it evolves. Though our main focus is on
allowing users to facilitate the process of model learning, visually
guided data clustering is an integral part of it. There has been
some work related to this field, including some in Visual
Analytics. The approach described by Schreck et al. [17] allows
users to leverage existing domain knowledge and user
preferences, arriving at improved cluster maps. Zhang et al. [19]
present a paradigm for visual exploration of clusters. Further, to
make sense of the cluster results, visual representations are
necessary. Projection-based approaches as presented in [8, 4] are
common. We use a Multidimensional Scaling (MDS) approach in
this paper.

Learning models from patterns is an active research topic in

various branches of computer vision. But there the pattern

examples in most cases originate directly from image analysis,

promoting unsupervised learning where subtle anomalies (the

unexpected data) or new families of patterns which the model

parameters cannot capture often go undetected. Visual analytics,

on the other hand, aims to be more flexible in the data

constellations encountered, appealing to the complex pattern

recognition apparatus of humans and their intuition, creativity,

and expert knowledge to point out unusual configurations for

further testing and model refinement. Papers recognizing this are

currently emerging. Janoos et al. [9] used a visual analytics

approach to learn models of pedestrian motion patterns from

video surveillance data, in order to distinguish typical from

unusual behavior in order to flag security breaches in outdoor

environments. Their semi-supervised learning approach in which

users interact with video stream data improves upon the standard

unsupervised learning schemes that are typically used in these

scenarios.

There has been little work in the field of visually assisted

machine learning. The last few years at VAST has seen some

papers in this domain. Our own work on Model-Driven Visual

Analytics [6] describes a visual analytics system for high-

dimensional data analysis. In this system, users visually explore

the data in a high-dimensional space, and mark example patterns

to iteratively learn rules using Logic Programming. The paper on

LSAView [3] provides a visual analytic framework to analyze the

model parameters in Latent Semantic Analysis, hence promoting

model learning and debugging. Andrienko et al. [1] present an

approach to extracting meaningful clusters from large databases

by combining clustering and classification, which are driven by a

human analyst through a visual interface.

3 THEORY

We shall use a text segmentation application as an example to

illustrate our work. Important here are the concepts of document

and token. In text segmentation we then have a collection of

documents that contain the text and the tokens are the words

appearing in these text items (each token is composed of a

collection of letters). But we may just as well perceive a set of

images (or even videos) as a collection of documents and coherent

image regions as tokens (which are then further composed into

individual pixels). So we see that these concepts are quite general.

The data segmentation task involves working on multiple

documents, which are further divided into tokens to do any

processing and calculations. A document is the unit which is

subject to either classification or segmentation. For text, it can be

a single string (an address), a story (news entry), or an entire web

page. A token is usually the smallest semantically meaningful unit

in the document, and can vary depending on your approach. For

text, it is usually a word; for images, it can be a pixel, or a

contiguous iso-value region. For video, the natural unit is a frame.

We observe that if there is a well-known boundary, then it is easy

to extract tokens. In cases where such boundaries are missing, a

multi-scale approach can work well.

 Given the tokenized dataset, we often need to start with a coarse

segmentation. This segmentation gets refined as we apply the

learning algorithm, and possibly involve the user in the loop. This

windowing approach has been used in the segmentation of audio

broadcast news into stories [18]. In the absence of a numeric way

to define data tokens, these windows provide a simple way to

define a feature vector.

Segmentation is the process of converting the data in a raw

stream of information into structured records. Given a schema

consisting of n attributes and an input string, the problem of

segmenting the input string involves partitioning the string into

contiguous sub-strings and assigning each sub-string a unique

attribute from the n attributes. For example, given the address

schema consisting of the five attributes <COMPANY, STREET,

CITY, STATE, PHONE> and the input string “Adieu Travel 117

Franklin St Dansville NY (716) 335-2222”, the task of

segmentation is to convert the string into the address record:

<Adieu Travel, 117 Franklin St, Dansville, NY, (716) 335-2222>.

Further difficulties may emerge when the records appear in

different order in different strings. The running example in our

paper uses the BigBook business address dataset [3] which

contains approximately 3000 business addresses from New York

State.

Information on the web (such as product listings, audio/video

collections, or newscast) exists in an unstructured format.

Segmentation into structured records is necessary to facilitate

efficient query processing and analysis. The same goes for images

and video for content-based image retrieval.

Segmentation techniques either use rules for identifying

attributes or employ statistical models. Rule-based approaches

require domain experts to create and maintain a set of rules for

each application domain. It is difficult to anticipate all possible

variations in the documents to be segmented and design rules

accordingly. Further, noise in the data can compound the

difficulty. Therefore rule-based approaches are neither scalable

nor robust. In contrast, statistical approaches automatically learn a

statistical model for each application domain. The variability and

noise in the input text data are elegantly dealt with by the

statistical characteristics inherent in such approaches.

3

Table 1: Feature vector table. Each matrix entry represents

the presence or absence of a token in a document. Each row

represents the feature vector for the corresponding token.

Figure 1: This image shows the layout of points representing people’s names (a) randomly, and (b) based

on the window based approach. The user interacts with the graph in (b), and marks people who belong

together (here based on nationality), giving us (c).

(a) Random layout (b) Window based layout (c) Clustered Layout (a) Random layout (b) Window-based layout (c) Clustered layout

3.1 Hidden Markov Models

Without loss of generality, we use a Hidden Markov Model

(HMM) [15] to learn the segmentation model. The HMM is a

widely used statistical model used for data segmentation. It is a

generative model since it captures the probability distribution of

observations (e.g. the input strings in ase of text segmentation).

HMMs are commonly used to represent a wide range of

phenomena in text, speech, and even images (using 2D HMM

[10,12].). An HMM consists of a set of states S, a set of

observations (in our case words or tokens) W, a transition model

specifying P(st|st−1), the probability of transitioning from state st−1

to state st, and an emission model specifying P(w|s) the

probability of emitting word w while in state s.

To compute hidden state expectations efficiently, we use the

Baum Welch algorithm. Emission models are initialized using the

approximate classification done using the visual interface. The

transition model consists of a completely connected graph with

uniform probabilities. Finally, we use the Viterbi algorithm with

the learned parameters to label the test data.

3.2 Overall Concept

The main idea behind this project is that humans with specific

domain knowledge can easily spot the pattern in data, something

which is very difficult for a machine to do. However, to make use

of this expert knowledge, the data should be displayed such that

the task for the user becomes easier. A good approach is to

identify terms that exhibit similar characteristics, and display

them together. This essentially means that we need to find

appropriate feature vectors for each term and then cluster them

together. In data segmentation and classification tasks, the

location and neighborhood of a word has a great bearing on its

classification. We observe two distinct cases:

I. Data belonging to the same class appears together within

documents (e.g. when they belong to the same news topic),

or

II. Data belonging to the

same class appears in

similar locations across

documents (e.g. city

names appearing in

addresses).

We propose to treat each

document as a sequence of

tokens. For the case where

each document contains one

topic, the feature vector for

the tokens is simply a binary

vector with a 1 representing

presence, and a 0 absence.

An example is shown in Table 1 where each column is a

document, and each row is a token. Here our vocabulary contains

the letters (A,B,C,D,E,F), and we can clearly see the three clusters

(A,B), (C,D) and (E,F). A better way to see patterns in a large

dataset is to calculate the similarity between the feature vector of

the tokens (using the dot product, or some other well-known

method), and laying them out in 2D using Multidimensional

Scaling (MDS) [11]. When tokens belong to exactly one topic, the

classification task is quite simple. However the fact that most

tokens belong to multiple topics makes the task harder, and often

impossible to solve for the machine.

 In Figure 1, we show an example to illustrate the value of this

approach. In Figure 1(a), the tokens from our dataset are laid out

randomly. Briefly looking at it makes it clear that these nodes

represent male first names. However, in Figure 1(b) which shows

the points laid out using the windowed approach, a user can see

the further pattern that these names belong to different

nationalities, and in fact this property (same nationality) causes

nodes to be laid out close by. Figure 1(c) shows the words colored

and circled according to their classification by the user. This task

could not be done automatically since even though tokens in the

same class occur close by, tokens belonging to different classes

are also at a similar distance in multiple instances. Only the

domain knowledge of a user can help resolve such ambiguities.

 For case II, i.e. when tokens in the same class appear in similar

locations across documents, we need to capture the locations they

appear within all documents. To do so, we divide the tokens in

each document into equal numbers of windows (Nw), i.e. each

token is assigned a window according to its relative position

within the document. Given document di , token tokj, number of

tokens in the document num(di) and the location of the token

loc(tokj), its window number is:

(1)

 (e.g.)

 The above example shows how a document with 6 tokens is

divided into 3 windows. We construct the feature vector of each

token as the histogram summarizing the frequency with which a

token has appeared in different windows. An ideal window size is

data and task dependent, and is best chosen while interacting with

the visual layout of the data. For visualization, we can again

calculate token similarity by taking a dot product between feature

vectors, and display them in 2D using MDS.

 An example of using windows for the initial segmentation of

4

Figure 2: An example of using a coarse segmentation
(windowing) to initialize the image segmentation process.

(a) Initial
segmentation

(b) After 1st

iteration
(c) Final

segmentation

Figure 3: Overall system. (Left): Flowchart outlining our approach. The red boxes represent user-interaction steps. (Right): An overview of
the system. (c) The entities are laid out in a node-link diagram, along with the clusters; (a) and (b) show sliders used by the user in step 4.
(a) Sliders to filter the graph, (b) Sliders to adjust the weights of the feature vector components, (d) The interface showing segmentation
results that fulfil certain inconsistency criteria – the user then interacts with the system (step 9) to resolve these inconsistencies.

data is shown in Figure 2. Here our task is to segment the colored

image into its constituent blocks (Fig 2(c)). Initially we divide the

image into 4 4 sub-images. This starts off the learning algorithm,

and after a few iterations gives the required result. Note that the

window sizes are at a similar scale to the final segments. If we

start off with windows too large (larger than the largest segment),

then the results might not be even close to expected. On the other

hand, windows that are too small increase the problem size,

making it longer (and harder) to solve.

This windowing approach is similar to the one used in [14]

which use bigrams and trigrams as basic units for document

visualization.

4 IMPLEMENTATION

The basic approach of our system is as follows: we take tokenized

data documents, calculate the relevant feature vectors, and allow

the user to help initialize and refine models to cluster the data. As

mentioned, we use HMMs as an example of a learning approach.

An overview of our system is shown in the flowchart in Figure 3.

 Initially the data is preprocessed, and tokenized. So each

document will contain a sequence of tokens which need to be

labeled. We consider all identical tokens to be instances of the

same entity, and our feature vector calculations are based on these

entities.

5

Figure 4: Graph evolution based on node dissimilarities (as
shown along the edges)

Figure 5: Graph structure: As we change the cutoff values for node-pair similarity from 0.5 to 0.85, the graph goes from being

almost a single mass of nodes on the left, to one displaying more clusters on the right

Reduce edges with low
similarity values to

reveal more structure

 Observing the datasets led us to the realization that there are

three important properties which can help us classify a token –

(a) Its structure. For text this includes – is it a word, is it a

number, its length etc.

(b) Its context, e.g. the tokens that appear before and after it,

(c) Its location in the document.

Structure and context can also include information beyond the

information contained in the tokens themselves. This includes

meta-data which comes attached. Webpage data though not

necessarily machine readable already exhibits some structure via

html meta-data. The non-visual web browser presented in [13]

uses the meta-data to segment webpages into semantically related

regions.

We numerically capture the above properties in each entity’s

feature vector. This means that a feature vector contains multiple

high-dimensional vectors. When we calculate the similarity

between any two entities, we need to calculate similarities based

on each property separately, and then combine them into a final

value.

A survey on cluster data mining techniques [2] concludes that

data specific attribute selection has yet to be invented. Recent

work on unsupervised feature learning [16], confirms that user

interaction can greatly reduce the learning time. To help alleviate

this problem to some extent, we give the power of assigning the

weights of the feature vector elements to the user. The similarities

due to different elements are all normalized to ranges between [0,

1]. Given two entities x and y, and similarity values simi(x, y) and

weights wi due to the three properties, the final similarity between

them is:

(2)

4.1 Initialization Stage

The entities are displayed as a node-link diagram using a force-

directed layout algorithm [7]. This algorithm considers a spring-

like force for every pair of nodes (x, y) where the ideal length δxy

of each spring is proportional to the graph-theoretic distance

between nodes x and y. Minimizing the difference between

Euclidean and ideal distances between nodes is equivalent to a

metric multidimensional scaling problem. Here we use the

dissimilarity between nodes as the ideal distance between two

nodes. The dissimilarity is simply the inverse of similarity:

 (3)

Figure 4 shows the graph evolution, and finally patterns emerge

showing the overall structure of the dataset. At this stage, the user

can modify the weights of the feature vectors. This updates the

node similarities as well as the graph layout.

Note that any pair of nodes will have a similarity measure, but

keeping all the edges will give us an extremely dense graph with

no discernible structure. Removing edges between nodes with low

similarity (< 0.5) helps this structure to emerge better. The

optimal cutoff value depends on the data density and the feature

vector selection (i.e. weights). We allow the user to select this

cutoff value to find the appropriate optimal value. Figure 5 shows

an illustration of how the graph layout changes with the removal

of edges representing low similarity. The one disadvantage is that

some nodes become isolated, i.e. are not connected to any other

node. We can handle this by either allowing the user to assign

them to a cluster after we call the clustering algorithm. Else, the

HMM can classify them during the learning stage, and they get

displayed in the corresponding cluster during the refinement

stage.

6

Users can affect the graph layout, and the clustering using the

following inputs:

(a) Modifying the weights of the feature vector elements

(b) Modifying the similarity cutoff – this removes the edges

representing low similarity, and also reveals a clearer

structure of the dataset.

(c) Modifying the frequency cutoff of the data points. This

leaves only the most prominent nodes behind, which act as

representative nodes, and give the users a good idea of the

classes present in the dataset.

(d) Modifying the “fineness” level of clustering – this controls

how many clusters the data gets split into. Getting the most

appropriate number of clusters will reduce the load on the

user during the sculpting stage. (Step 6 in Figure 3).

Further, we notice that the visualization reveals more structure

when we display entities from the entire dataset, rather than from

a smaller subset. This is because in the smaller dataset most low

frequency entities do not cluster well. As we increase the number

of documents, some of these frequencies improve, and the entities

become better defined.

When the various settings work together to produce a

semantically meaningful structure, the user can call the clustering

algorithm. A good choice of weights at this early stage will

minimize the work required from the user at later stages –

especially at the cluster sculpting stage, and relabeling the tokens

at the refinement stage. In most cases, a range of values gives

decent results, hence carefully updating the weights and observing

the visualization can take care of this problem.

We use the Markov Cluster Algorithm (MCL), an unsupervised

cluster algorithm for graphs based on the simulation of stochastic

flow in graphs [5]. Only those similarity values that are above the

cutoff specified by the user are passed to the clustering algorithm.

This has a similar effect as it has on the visualization – it helps

segment the data better, i.e. divides them into more classes. Once

the clusters are calculated, they are displayed by forming a

convex-hull boundary around the data points they contain.

Further, we relax the strength of edges across clusters to reduce

their spatial overlap. (See Figure 6)

 The physical boundaries between clusters, might lead the user

to discover some semantic discrepancies – this usually occurs due

to entities which are ambiguous and can occur in multiple classes,

or in cases where the feature vector is not able to classify an entity

correctly. In this case, a user can visually sculpt the clusters – this

involves splitting and merging clusters, dragging nodes from one

cluster to another, or duplicating nodes into different clusters (for

example, the token ‘York’ may appear in ‘Street’, ‘State’, ‘City’,

and even ‘Company’ depending on context). The visualization

assists the user at this stage by highlighting the nodes that have

more than 99% of edges to nodes within the same cluster. At the

end of this stage, the number of states in the HMM is assumed to

be the number of clusters in our visualization. Further, the

emission probabilities are calculated based on these clusters –

entities with a higher frequency in the original dataset have a

higher emission probability. To allow the model learning

algorithm to assign a word to a different class from that in the

above cluster, we assign a small emission probability value to all

the words in all the states other than the one they appear in. This

approach also allows the Baum-Welch algorithm to learn fairly

accurately for words which appear in multiple classes. We go

through the first round of HMM training to learn our initial model,

and then use Viterbi algorithm to segment the strings.

Figure 6: Result. The four panels show the evolution of the clusters as the user reclassifies the segmentation of some address entries, and

the HMM relearns the model taking this into account

7

4.2 Refinement Stage

At this stage the user can help resolve inconsistencies in the

segmentation, and help debug the model. To make this more

intuitive, we first need the user to give the clusters semantic

names. This is done by highlighting the nodes in all clusters which

has a very low similarity to nodes in other clusters. In case the

presence of some entity makes the identity of the class

ambiguous, the user can choose to see some strings where the

entity appears. For e.g. if Washington appears in a cluster with

what mostly appears to be street names, seeing it in context will

help the user be sure that the given cluster indeed contains street

names, not cities or states. Two examples are given below:

1. D Sacilotto 399 Washington St New York NY (212) 966-

7274

2. Burke & Casserly PC 255 Washington Avenue Ext Albany

NY (518) 452-1961

At this stage, we have named clusters and a trained HMM.

Now, we can involve multiple users in the refinement stage. Just

as interaction with users can quickly help define models,

misclassifications at any stage can slow the process down. Hence

involving multiple users at the refinement stage can help remove

mistakes made by a user due to either lack of knowledge, or

uncertainty.

 We pick documents that contain tokens that did not cluster well

– i.e. had a lot of highly similar nodes in other clusters. These are

the entities which belong to multiple classes in a dataset. The user

resolves this inconsistency, and if such a token is indeed classified

into more than one class by the user, we duplicate it to represent

various identities of a single entity. This also reduces the edges

across clusters, making the model better defined. We ask the user

to reclassify a few documents at a time, and then retrain the HMM

to reflect these changes.

During this debugging stage, the user can highlight the

consecutive tokens in the graph layout. When a specific token is

selected, the corresponding node(s) in the graph are highlighted.

Also, the cluster to which it has been classified is also highlighted.

This helps the user see the possible classes the token could belong

to. The user can traverse forwards and backwards along a given

document to establish if there is any misclassification.

The visualization where the clusters are marked often excludes

entities with low frequency – either because they were filtered out

by the user, or they were not assigned a cluster due to low

similarity to any cluster. However, after the HMM is trained, all

the entities in the dataset will be assigned emission probability

values. Further, if we want to display duplicates for entities

belonging to multiple clusters, the visualization will become too

dense. To overcome this problem, after the initialization stage, we

only display the entities which have very few high similarity

edges to nodes in other clusters. These are called the inner nodes,

and are the representatives of their classes. When a certain token

is selected during debugging, its corresponding node(s) are also

visualized. The user can still use our interface to display more

nodes if required.

5 RESULTS

The system we described can help in the classification of varied

types of datasets. As a starting step, we worked with text-based

datasets since they require minimal preprocessing, and can show

the utility of our method. In this section we will see a running

example of learning a model (HMM) for the business address

dataset. The BigBook business address dataset contains

approximately 3000 business addresses from New York State.

This dataset contains a large number of distinct integers, and each

separate integer does not have a special meaning, but usually just

represents a street or building number or is a part of a business

name. To make sure that the HMM is able to learn well, and apply

the model to addresses with new tokens, we replace each integer

with the term DIGIT-<i> where “i” is the length of the integer.

After the initial preprocessing, we calculate feature vectors

based on the three properties of structure, context and location:

 The feature vector on structure contains the following

information: does it contain a letter, does it contain a digit,

does it contain a non-alphanumeric symbol, does it begin

with a capital letter, is it all caps, and its length. Except for

the last element, the others are binary.

 The feature vector on context contains a summary (i.e.

histogram) of the structure based feature vectors of the

tokens that appear immediately before and after the given

entity in all the documents.

 Finally, for the feature vector on location, we use the

windowing approach as presented in Section 3.2. Initially, if

we know the number of classes (Nc) in the dataset, we use its

multiples as the number of windows. In the absence of this

information, the window size is decided by the document

lengths (i.e. number of tokens in the document).

Now the data is displayed on the screen, and as the user plays with

the similarity cutoff slider, the graph goes from being one main

cluster with all nodes interconnected, to one which shows the

inbuilt structure of the data. At this point, the user clusters the

dataset. Since there is a lot of overlap between the terms in

ADDRESS and CITY (see Figures 4 and 6), there is an extra

cluster which contains these common tokens. The user organizes

and splits this cluster to the best of his knowledge, and merges the

corresponding halves with the two clusters.

 Next we highlight the inner nodes in the dataset, which shows

the user the representative terms for each cluster, and he is able to

name them. Figure 7 shows an example of these inner nodes. Now

we initialize the emission probabilities for all states based on the

clusters. If an entity belongs to a cluster, its emission probability

Figure 7: Graph showing the inner entities/nodes in green.
These nodes help the user both during the cluster sculpting
stage, and during the cluster naming stage.

8

is the ratio between frequency of the entity and the total frequency

of the entities in the cluster. As mentioned in Section 4.1, we

assign a small probability value to all the entities not belonging to

the cluster. At this stage the Baum-Welch algorithm is called to

learn an initial model.

 Now the user is shown strings with one token that has high

similarity to nodes in multiple clusters. Given that the token has

high similarity to entities in classes c1 and c2, we:

(a) Assign a positive value if the classification was correct

(b) If the classification in class ci is deemed incorrect, and

reclassified to class cj, then we assign a heavy penalty to ci

and a heavy bonus value to cj.

The accumulated values at the end of a reclassifying round are

used to modify the emission tables learned by the Baum-Welch.

Further, based on this, we also split the nodes if they are classified

into different classes in the cluster. The user helps in the

debugging process till the clusters become better defined, as

shown in Figure 6. After four rounds of refinement based on the

tokens with high presence in multiple clusters, we get a good

model for classification. The time taken between iterations

depends on the complexity and implementation of the algorithms

used to learn the model, and segment the strings – in this case the

Baum Welch, and Viterbi algorithm respectively.

6 CONCLUSIONS

In this paper we have presented a general approach to

visualization-assisted model learning for data segmentation and

classification tasks. The driving motivation for our approach is

that the typical manual tagging of data is very resource intensive.

Further, even if one uses just a small dataset for tagging to boot-

strap the learning process, if the chosen subset is not a good

representative of the entire dataset, then the models learnt might

not be robust. On the other hand, completely automated methods

which take a brute force approach by using large feature vectors

for classification have the drawback of being very time intensive,

and small misclassifications can cause the model learnt to be less

than ideal. In this case user interaction at various stages can help

the machine stay on track, and so will improve the speed as well.

As part of our future work, we aim to extend this approach to

varied data types and with different clustering and classification

algorithms. This promises to give further insight into semi-

automatic design of feature vectors for other domains. In this

paper, we have demonstrated the use of our system for a fairly

constrained problem – the segmentation of business addresses

using HMMs. Work is currently underway that extends the use of

our system to other model building tasks, such as classifiers, using

the categorization of large image collections and documents as a

driving application.

In future work, we plan to optimize the usability aspects if the

system by ways of focused user studies. In particular, we would

like to study and precisely quantify how much faster a model of

equal quality can be derived with our framework, as opposed to

more traditional non-interactive approaches. Further, we also wish

to study if the visual analytics approach we have proposed here

allows domain experts to produce models that are more accurate

than those derived automatically since the user is actively

involved in the model-sculpting task.

ACKNOWLEDGEMENTS

This research was supported by NSF grants CCF-0702699 and

CNS-0627447. We also thank all reviewers for their useful

suggestions.

REFERENCES

[1] G. Andrienko, N. Andrienko, S. Rinzivillo, M. Nanni, D.

Pedreschi and F. Giannotti. Interactive visual clustering of large

collections of trajectories. Proc. IEEE Symp. Visual Analytics

Science and Technology (VAST), pp. 3-10, 2009.
[2] P. Berkhin. A survey of clustering data mining techniques.

Grouping Multidimensional Data. pp. 25–71, 2006.

[3] P. Crossno, D. Dunlavy, T.Shead. LSAView: A Tool for Visual
Exploration of Latent Semantic Modeling. Proc. IEEE Symp.

Visual Analytics Science and Technology (VAST), pp. 83-90, 2009.

[4] I.S. Dhillon, D.S. Modha and W.S. Spangler. Class visualization
of high-dimensional data with applications. Computational

Statistics and Data Analysis. 41(1): 59–90, 2002.

[5] S.V. Dongen. Graph clustering by flow simulation. PhD Thesis,
University of Utrecht, The Netherlands. 2000.

[6] S. Garg, J.E. Nam, I.V. Ramakrishnan, K. Mueller. Model-Driven

Visual Analytics. Proc. IEEE Symp. Visual Analytics Science and
Technology (VAST), pp. 19-26, 2008.

[7] J. Heer, S. Card, J.A. Landay. Prefuse: a toolkit for interactive

information visualization. Proc. SIGCHI Conference on Human
Factors in Computing Systems, pp. 421–430, 2005.

[8] A. Hinneburg, D. Keim, M. Wawryniuk. HD-Eye: Visual mining

of high-dimensional data. IEEE Computer Graphics and
Applications. 19(5): 22–31, 1999.

[9] F. Janoos, S. Singh, O. Irfanoglu, R. Machiraju, R. Parent.

Activity Analysis Using Spatio-Temporal Trajectory Volumes in
Surveillance Applications. Proc. IEEE Symp. Visual Analytics

Science and Technology (VAST), pp. 3-10, 2007.
[10] J. Jiten, B. Merialdo. Semantic Image Segmentation with a

Multidimensional Hidden Markov Model. Advances in Multimedia

Modeling. 4351: 616–624, 2007.
[11] J.B. Kruskal and M. Wish. Multidimensional scaling. Sage

Publications, Inc. 1978.

[12] J. Li, A. Najmi, R. Gray. Image classification by a two-
dimensional hidden Markov model. IEEE Trans. on Signal

Processing. 48(2): 517–533, 2000.

[13] J.U. Mahmud, Y. Borodin, I.V. Ramakrishnan. Csurf: a context-
driven non-visual web-browser. Proc. 16th International

Conference on World Wide Web, pp. 31-40, 2007.

[14] Y. Mao, J. Dillon. G. Lebanon. Sequential Document
Visualization. IEEE Trans. on Visualization and Computer

Graphics. 13(6): 1208-1215, 2007.

[15] L.R. Rabiner. A tutorial on hidden Markov models and selected
applications in speech recognition. Proceedings of the IEEE.

77(2): 257–286, 1989.

[16] R. Raina, A. Battle, H. Lee, B. Packer, A. Ng. Self-taught
learning: transfer learning from unlabeled data. Proc. 24th

International Conference on Machine Learning, pp. 766, 2007.

[17] T. Schreck, J. Bernard, T. Tekusova, J. Kohlhammer. Visual
cluster analysis of trajectory data with interactive Kohonen maps.

Proc. IEEE Symp. Visual Analytics Science and Technology

(VAST), pp. 3–10, 2008.
[18] A. Vinciarelli, S. Favre. Broadcast News Story Segmentation

using Social Network Analysis and Hidden Markov Models. Proc.

15th International Conference on Multimedia, pp. 264-267, 2007.
[19] K.B. Zhang, M. Huang, M. Orgun, Q. Nguyen. A Visual Method

for High-Dimensional Data Cluster Exploration. Proc.16th

International Conference on Neural Information Processing, pp.
699–709, 2009.

[20] X. Zhu. Semi-Supervised Learning Literature Survey. Technical

Report 1530, 2005.

