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ABSTRACT 

The process of learning models from raw data typically requires a 
substantial amount of user input during the model initialization 
phase. We present an assistive visualization system which greatly 
reduces the load on the users and makes the process of model 
initialization and refinement more efficient, problem-driven, and 
engaging. Utilizing a sequence segmentation task with a Hidden 
Markov Model as an example, we assign each token in the 
sequence a feature vector based on its various properties within 
the sequence. These vectors are then clustered according to 
similarity, generating a layout of the individual tokens in form of 
a node link diagram where the length of the links is determined by 
the feature vector similarity. Users may then tune the weights of 
the feature vector components to improve the segmentation, 
which is visualized as a better separation of the clusters. Also, as 
individual clusters represent different classes, the user can now 
work at the cluster level to define token classes, instead of 
labelling one entry at time. Inconsistent entries visually identify 
themselves by locating at the periphery of clusters, and the user 
then helps refine the model by resolving these inconsistencies. 
Our system therefore makes efficient use of the knowledge of its 
users, only requesting user assistance for non-trivial data items. It 
so allows users to visually analyze data at a higher, more abstract 
level, improving scalability. 
 
KEYWORDS: Visual Knowledge Discovery, Visual Knowledge 
Representation, Data Clustering, Human-Computer Interaction. 
 
INDEX TERMS: H.5.2 [Information Interfaces and Presentation]: 
User Interfaces—Graphical user interfaces; I.2.6 [Artificial 
Intelligence]: Learning—Concept Learning; I.5.3 [Pattern 
Recognition]: Clustering—Similarity Measures. 

1 INTRODUCTION 

With the tremendous growth in physical and online data collection 
technology, we are now experiencing an explosion of digital 
information. Since a large amount of these data are unstructured, 
various machine learning techniques have been developed to 
assign structure to these data to make them machine readable. 
This process can allow the machine to reason with and draw 
insight from data almost automatically. However, all such tasks 
depend heavily on large amounts of user-tagged data as the 
starting point, and use various semi-supervised learning methods 
[19]. Due to the high user input required, such tagged data is 
difficult to construct. Further, data is dynamic, and as a dataset 
grows and changes, we might need to supplement the tagged data 
from time to time. We propose to make this task simpler and 
interactive by designing a system where the user can obtain a 
visual overview of the dataset, and in that visual interface only 

tags those data elements that the system cannot easily resolve 
itself. 

One crucial idea behind our system is that given good feature 
vectors to represent each data point, points that are similar will be 
close-by in the feature vector space. Here, we mean data-points 
which though rich in semantics, do not have an explicit high-
dimensional feature vector automatically attached to them. In such 
cases we need to design feature vectors to represent the semantics 
and structure of the data-points. We aim to achieve this in our 
system by designing feature vectors which encompass a data 
point’s structure, context, and location in the dataset. If some sort 
of semantic information is available, that can be added to the 
feature vectors as well. 

Based on the above feature vectors, we design a visual interface 
where data is displayed in 2D space based on their feature vector 
similarity. This gives the users an overview of the dataset, and 
they can easily observe sets of data points which form spatial 
clusters. At this stage, we can apply clustering algorithms which 
arrange similar points closer together. 

Clustering as we know is a general approach which can help 
users explore and analyze large data sets since it lets users work 
with groups of objects, rather than individual objects which can be 
large in number. Clustering associates objects in groups such that 
the objects in each group share some properties (similar feature 
vectors) that hold to a lesser degree for the other objects. Spatial 
clustering builds clusters from objects being spatially close or 
having similar spatial properties. However, clustering methods 
when run automatically can give non-intuitive results. Therefore, 
we allow the user to tweak the parameters of both the clustering 
algorithm and the data’s feature vector to improve results.  

We can use any well-known clustering algorithm to subdivide 
the points into clusters. This can help provide the initial biasing 
for any classification algorithm. However, the model learnt 
initially is a very rough estimation of the actual model, and needs 
fine-tuning to improve performance. For this purpose, we keep the 
user in the loop and utilize human insight to resolve 
inconsistencies. Overall, our visualization system allows the 
analyst to: (1) identify the classes in the data and communicate 
these to the model learning system; (2) assess the fitness of the 
generated model by the structure it imposes on the data; and (3) 
refine the model by communicating misrepresented patterns back 
to the model learning system. 

The model learning system uses the visualization to explain the 
model to the analyst. While most communication of the analyst is 
gesture-driven, editing facilities are available to directly specify or 
refine the model. We call this iterative model building process 
data-driven, user-assisted model sculpting or model debugging.  

After we have learnt an initial model, we apply it to the dataset 
to segment it. The user can then examine the visualization for 
possible misclassifications, and reclassify the data points. To 
guide the refinement of the model, we develop an interface similar 
to a step debugger in a common software development 
environment. Here, the model’s structural graph represents the 
program script while the visualization is the program output. 
Users can step through the model’s graph, examine the visual 
model explanations, and refine the corresponding rules if required.  

The main contribution of our work is that it lightens the huge 
burden of individually hand tagging data, and allows users to tag 
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data at a higher level, with greater interactivity. Our approach can 
provide a solution to a large range of segmentation and 
classification problems in the presence of complex and ambiguous 
data. This includes the audio/video domain where we want to 
segment the input by speakers, scenes, moods, etc, and the image 
domain where we classify images by content type, or segment an 
image into objects.  

On the other end of the spectrum are methods which try to learn 
important feature vectors for data classification automatically 
[16]. However, they are highly time intensive. By using our 
approach, we can let the user into the loop, and allow him to guide 
the system making the process much more efficient. 

Our paper is structured as follows. Section 2 presents related 
work, Section 3 describes relevant theoretical aspects, Section 4 
provides details on implementation, Section 5 presents results, and 
Section 6 ends with conclusions and pointers for future work. 

2 RELATED WORK 

This work follows the general Visual Analytics idea of combining 
human domain knowledge with automatic data analysis 
techniques by providing users with interactive visual interfaces, 
whereby ‘interactive’ means that users can actively participate in 
the analytical process as it evolves. Though our main focus is on 
allowing users to facilitate the process of model learning, visually 
guided data clustering is an integral part of it. There has been 
some work related to this field, including some in Visual 
Analytics. The approach described by Schreck et al. [17] allows 
users to leverage existing domain knowledge and user 
preferences, arriving at improved cluster maps. Zhang et al. [19] 
present a paradigm for visual exploration of clusters. Further, to 
make sense of the cluster results, visual representations are 
necessary. Projection-based approaches as presented in [8, 4] are 
common. We use a Multidimensional Scaling (MDS) approach in 
this paper. 

Learning models from patterns is an active research topic in 

various branches of computer vision. But there the pattern 

examples in most cases originate directly from image analysis, 

promoting unsupervised learning where subtle anomalies (the 

unexpected data) or new families of patterns which the model 

parameters cannot capture often go undetected. Visual analytics, 

on the other hand, aims to be more flexible in the data 

constellations encountered, appealing to the complex pattern 

recognition apparatus of humans and their intuition, creativity, 

and expert knowledge to point out unusual configurations for 

further testing and model refinement. Papers recognizing this are 

currently emerging. Janoos et al. [9] used a visual analytics 

approach to learn models of pedestrian motion patterns from 

video surveillance data, in order to distinguish typical from 

unusual behavior in order to flag security breaches in outdoor 

environments. Their semi-supervised learning approach in which 

users interact with video stream data improves upon the standard 

unsupervised learning schemes that are typically used in these 

scenarios.  

There has been little work in the field of visually assisted 

machine learning. The last few years at VAST has seen some 

papers in this domain. Our own work on Model-Driven Visual 

Analytics [6] describes a visual analytics system for high-

dimensional data analysis. In this system, users visually explore 

the data in a high-dimensional space, and mark example patterns 

to iteratively learn rules using Logic Programming. The paper on 

LSAView [3] provides a visual analytic framework to analyze the 

model parameters in Latent Semantic Analysis, hence promoting 

model learning and debugging. Andrienko et al. [1] present an 

approach to extracting meaningful clusters from large databases 

by combining clustering and classification, which are driven by a 

human analyst through a visual interface. 

3 THEORY 

We shall use a text segmentation application as an example to 

illustrate our work. Important here are the concepts of document 

and token. In text segmentation we then have a collection of 

documents that contain the text and the tokens are the words 

appearing in these text items (each token is composed of a 

collection of letters). But we may just as well perceive a set of 

images (or even videos) as a collection of documents and coherent 

image regions as tokens (which are then further composed into 

individual pixels). So we see that these concepts are quite general.  

The data segmentation task involves working on multiple 

documents, which are further divided into tokens to do any 

processing and calculations. A document is the unit which is 

subject to either classification or segmentation. For text, it can be 

a single string (an address), a story (news entry), or an entire web 

page. A token is usually the smallest semantically meaningful unit 

in the document, and can vary depending on your approach. For 

text, it is usually a word; for images, it can be a pixel, or a 

contiguous iso-value region. For video, the natural unit is a frame. 

We observe that if there is a well-known boundary, then it is easy 

to extract tokens. In cases where such boundaries are missing, a 

multi-scale approach can work well. 

 Given the tokenized dataset, we often need to start with a coarse 

segmentation. This segmentation gets refined as we apply the 

learning algorithm, and possibly involve the user in the loop. This 

windowing approach has been used in the segmentation of audio 

broadcast news into stories [18]. In the absence of a numeric way 

to define data tokens, these windows provide a simple way to 

define a feature vector. 

Segmentation is the process of converting the data in a raw 

stream of information into structured records. Given a schema 

consisting of n attributes and an input string, the problem of 

segmenting the input string involves partitioning the string into 

contiguous sub-strings and assigning each sub-string a unique 

attribute from the n attributes. For example, given the address 

schema consisting of the five attributes <COMPANY, STREET, 

CITY, STATE, PHONE> and the input string “Adieu Travel 117 

Franklin St Dansville NY (716) 335-2222”, the task of 

segmentation is to convert the string into the address record: 

<Adieu Travel, 117 Franklin St, Dansville, NY, (716) 335-2222>. 

Further difficulties may emerge when the records appear in 

different order in different strings. The running example in our 

paper uses the BigBook business address dataset [3] which 

contains approximately 3000 business addresses from New York 

State. 

Information on the web (such as product listings, audio/video 

collections, or newscast) exists in an unstructured format. 

Segmentation into structured records is necessary to facilitate 

efficient query processing and analysis. The same goes for images 

and video for content-based image retrieval.   

Segmentation techniques either use rules for identifying 

attributes or employ statistical models. Rule-based approaches 

require domain experts to create and maintain a set of rules for 

each application domain. It is difficult to anticipate all possible 

variations in the documents to be segmented and design rules 

accordingly. Further, noise in the data can compound the 

difficulty. Therefore rule-based approaches are neither scalable 

nor robust. In contrast, statistical approaches automatically learn a 

statistical model for each application domain. The variability and 

noise in the input text data are elegantly dealt with by the 

statistical characteristics inherent in such approaches. 



3 

 

Table 1: Feature vector table. Each matrix entry represents 

the presence or absence of a token in a document. Each row 

represents the feature vector for the corresponding token. 
  

Figure 1: This image shows the layout of points representing people’s names (a) randomly, and (b) based 

on the window based approach. The user interacts with the graph in (b), and marks people who belong 

together (here based on nationality), giving us (c). 

 

(a) Random layout (b) Window based layout (c) Clustered Layout   (a) Random layout                                 (b) Window-based layout                         (c) Clustered layout 

 

  
  

  

  

3.1 Hidden Markov Models 

Without loss of generality, we use a Hidden Markov Model 

(HMM) [15] to learn the segmentation model. The HMM is a 

widely used statistical model used for data segmentation. It is a 

generative model since it captures the probability distribution of 

observations (e.g. the input strings in ase of text segmentation). 

HMMs are commonly used to represent a wide range of 

phenomena in text, speech, and even images (using 2D HMM 

[10,12].). An HMM consists of a set of states S, a set of 

observations (in our case words or tokens) W, a transition model 

specifying P(st|st−1), the probability of transitioning from state st−1 

to state st, and an emission model specifying P(w|s) the 

probability of emitting word w while in state s.  

To compute hidden state expectations efficiently, we use the 

Baum Welch algorithm. Emission models are initialized using the 

approximate classification done using the visual interface. The 

transition model consists of a completely connected graph with 

uniform probabilities. Finally, we use the Viterbi algorithm with 

the learned parameters to label the test data. 

3.2 Overall Concept 

The main idea behind this project is that humans with specific 

domain knowledge can easily spot the pattern in data, something 

which is very difficult for a machine to do. However, to make use 

of this expert knowledge, the data should be displayed such that 

the task for the user becomes easier. A good approach is to 

identify terms that exhibit similar characteristics, and display 

them together. This essentially means that we need to find 

appropriate feature vectors for each term and then cluster them 

together. In data segmentation and classification tasks, the 

location and neighborhood of a word has a great bearing on its 

classification. We observe two distinct cases: 

I. Data belonging to the same class appears together within 

documents (e.g. when they belong to the same news topic), 

or 

II. Data belonging to the 

same class appears in 

similar locations across 

documents (e.g. city 

names appearing in 

addresses). 

We propose to treat each 

document as a sequence of 

tokens. For the case where 

each document contains one 

topic, the feature vector for 

the tokens is simply a binary 

vector with a 1 representing 

presence, and a 0 absence. 

An example is shown in Table 1 where each column is a 

document, and each row is a token. Here our vocabulary contains 

the letters (A,B,C,D,E,F), and we can clearly see the three clusters 

(A,B), (C,D) and (E,F). A better way to see patterns in a large 

dataset is to calculate the similarity between the feature vector of 

the tokens (using the dot product, or some other well-known 

method), and laying them out in 2D using Multidimensional 

Scaling (MDS) [11]. When tokens belong to exactly one topic, the 

classification task is quite simple. However the fact that most 

tokens belong to multiple topics makes the task harder, and often 

impossible to solve for the machine. 

 In Figure 1, we show an example to illustrate the value of this 

approach. In Figure 1(a), the tokens from our dataset are laid out 

randomly. Briefly looking at it makes it clear that these nodes 

represent male first names. However, in Figure 1(b) which shows 

the points laid out using the windowed approach, a user can see 

the further pattern that these names belong to different 

nationalities, and in fact this property (same nationality) causes 

nodes to be laid out close by. Figure 1(c) shows the words colored 

and circled according to their classification by the user. This task 

could not be done automatically since even though tokens in the 

same class occur close by, tokens belonging to different classes 

are also at a similar distance in multiple instances. Only the 

domain knowledge of a user can help resolve such ambiguities. 

 For case II, i.e. when tokens in the same class appear in similar 

locations across documents, we need to capture the locations they 

appear within all documents. To do so, we divide the tokens in 

each document into equal numbers of windows (Nw), i.e. each 

token is assigned a window according to its relative position 

within the document. Given document di , token tokj, number of 

tokens in the document num(di) and the location of the token 

loc(tokj), its window number is: 

 
 

(1) 

  (e.g.)      

 

 The above example shows how a document with 6 tokens is 

divided into 3 windows. We construct the feature vector of each 

token as the histogram summarizing the frequency with which a 

token has appeared in different windows. An ideal window size is 

data and task dependent, and is best chosen while interacting with 

the visual layout of the data. For visualization, we can again 

calculate token similarity by taking a dot product between feature 

vectors, and display them in 2D using MDS. 

 An example of using windows for the initial segmentation of 
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Figure 2: An example of using a coarse segmentation 
(windowing) to initialize the image segmentation process. 

(a) Initial 
segmentation 

(b) After 1st 

iteration 
(c) Final 

segmentation 

Figure 3: Overall system. (Left): Flowchart outlining our approach. The red boxes represent user-interaction steps. (Right): An overview of 
the system. (c) The entities are laid out in a node-link diagram, along with the clusters; (a) and (b) show sliders used by the user in step 4.   
(a) Sliders to filter the graph, (b) Sliders to adjust the weights of the feature vector components, (d) The interface showing segmentation 
results that fulfil certain inconsistency criteria – the user then interacts with the system (step 9) to resolve these inconsistencies. 

data is shown in Figure 2.  Here our task is to segment the colored 

image into its constituent blocks (Fig 2(c)). Initially we divide the 

image into 4 4 sub-images. This starts off the learning algorithm, 

and after a few iterations gives the required result. Note that the 

window sizes are at a similar scale to the final segments. If we 

start off with windows too large (larger than the largest segment), 

then the results might not be even close to expected. On the other 

hand, windows that are too small increase the problem size, 

making it longer (and harder) to solve. 

This windowing approach is similar to the one used in [14] 

which use bigrams and trigrams as basic units for document 

visualization.  

4 IMPLEMENTATION  

The basic approach of our system is as follows: we take tokenized 

data documents, calculate the relevant feature vectors, and allow 

the user to help initialize and refine models to cluster the data. As 

mentioned, we use HMMs as an example of a learning approach. 

An overview of our system is shown in the flowchart in Figure 3. 

  Initially the data is preprocessed, and tokenized. So each 

document will contain a sequence of tokens which need to be 

labeled. We consider all identical tokens to be instances of the 

same entity, and our feature vector calculations are based on these 

entities. 
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Figure 4: Graph evolution based on node dissimilarities (as 
shown along the edges) 

Figure 5: Graph structure: As we change the cutoff values for node-pair similarity from 0.5 to 0.85, the graph goes from being 

almost a single mass of nodes on the left, to one displaying more clusters on the right 

Reduce edges with low 
similarity values to 

reveal more structure 

 Observing the datasets led us to the realization that there are 

three important properties which can help us classify a token – 

(a) Its structure. For text this includes – is it a word, is it a 

number, its length etc.  

(b) Its context, e.g. the tokens that appear before and after it,  

(c) Its location in the document. 

Structure and context can also include information beyond the 

information contained in the tokens themselves. This includes 

meta-data which comes attached. Webpage data though not 

necessarily machine readable already exhibits some structure via 

html meta-data.  The non-visual web browser presented in [13] 

uses the meta-data to segment webpages into semantically related 

regions. 

We numerically capture the above properties in each entity’s 

feature vector. This means that a feature vector contains multiple 

high-dimensional vectors. When we calculate the similarity 

between any two entities, we need to calculate similarities based 

on each property separately, and then combine them into a final 

value. 

A survey on cluster data mining techniques  [2] concludes that 

data specific attribute selection has yet to be invented. Recent 

work on unsupervised feature learning [16], confirms that user 

interaction can greatly reduce the learning time. To help alleviate 

this problem to some extent, we give the power of assigning the 

weights of the feature vector elements to the user. The similarities 

due to different elements are all normalized to ranges between [0, 

1]. Given two entities x and y, and similarity values simi(x, y) and 

weights wi due to the three properties, the final similarity between 

them is: 

 

 
 

 

(2) 

4.1 Initialization Stage 

The entities are displayed as a node-link diagram using a force-

directed layout algorithm [7]. This algorithm considers a spring-

like force for every pair of nodes (x, y) where the ideal length δxy 

of each spring is proportional to the graph-theoretic distance 

between nodes x and y. Minimizing the difference between 

Euclidean and ideal distances between nodes is equivalent to a 

metric multidimensional scaling problem. Here we use the 

dissimilarity between nodes as the ideal distance between two 

nodes. The dissimilarity is simply the inverse of similarity:  

 

  (3) 

   

Figure 4 shows the graph evolution, and finally patterns emerge 

showing the overall structure of the dataset. At this stage, the user 

can modify the weights of the feature vectors. This updates the 

node similarities as well as the graph layout.  

Note that any pair of nodes will have a similarity measure, but 

keeping all the edges will give us an extremely dense graph with 

no discernible structure. Removing edges between nodes with low 

similarity (< 0.5) helps this structure to emerge better. The 

optimal cutoff value depends on the data density and the feature 

vector selection (i.e. weights). We allow the user to select this 

cutoff value to find the appropriate optimal value. Figure 5 shows 

an illustration of how the graph layout changes with the removal 

of edges representing low similarity. The one disadvantage is that 

some nodes become isolated, i.e. are not connected to any other 

node. We can handle this by either allowing the user to assign 

them to a cluster after we call the clustering algorithm. Else, the 

HMM can classify them during the learning stage, and they get 

displayed in the corresponding cluster during the refinement 

stage.  
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Users can affect the graph layout, and the clustering using the 

following inputs: 

(a) Modifying the weights of the feature vector elements 

(b) Modifying the similarity cutoff – this removes the edges 

representing low similarity, and also reveals a clearer 

structure of the dataset. 

(c) Modifying the frequency cutoff of the data points. This 

leaves only the most prominent nodes behind, which act as 

representative nodes, and give the users a good idea of the 

classes present in the dataset. 

(d) Modifying the “fineness” level of clustering – this controls 

how many clusters the data gets split into. Getting the most 

appropriate number of clusters will reduce the load on the 

user during the sculpting stage. (Step 6 in Figure 3). 

Further, we notice that the visualization reveals more structure 

when we display entities from the entire dataset, rather than from 

a smaller subset. This is because in the smaller dataset most low 

frequency entities do not cluster well. As we increase the number 

of documents, some of these frequencies improve, and the entities 

become better defined.  

When the various settings work together to produce a 

semantically meaningful structure, the user can call the clustering 

algorithm. A good choice of weights at this early stage will 

minimize the work required from the user at later stages – 

especially at the cluster sculpting stage, and relabeling the tokens 

at the refinement stage. In most cases, a range of values gives 

decent results, hence carefully updating the weights and observing 

the visualization can take care of this problem. 

We use the Markov Cluster Algorithm (MCL), an unsupervised 

cluster algorithm for graphs based on the simulation of stochastic 

flow in graphs [5]. Only those similarity values that are above the 

cutoff specified by the user are passed to the clustering algorithm. 

This has a similar effect as it has on the visualization – it helps 

segment the data better, i.e. divides them into more classes. Once 

the clusters are calculated, they are displayed by forming a 

convex-hull boundary around the data points they contain. 

Further, we relax the strength of edges across clusters to reduce 

their spatial overlap. (See Figure 6) 

 The physical boundaries between clusters, might lead the user 

to discover some semantic discrepancies – this usually occurs due 

to entities which are ambiguous and can occur in multiple classes, 

or in cases where the feature vector is not able to classify an entity 

correctly.  In this case, a user can visually sculpt the clusters – this 

involves splitting and merging clusters, dragging nodes from one 

cluster to another, or duplicating nodes into different clusters (for 

example, the token ‘York’ may appear in ‘Street’, ‘State’, ‘City’, 

and even ‘Company’ depending on context). The visualization 

assists the user at this stage by highlighting the nodes that have 

more than 99% of edges to nodes within the same cluster. At the 

end of this stage, the number of states in the HMM is assumed to 

be the number of clusters in our visualization. Further, the 

emission probabilities are calculated based on these clusters – 

entities with a higher frequency in the original dataset have a 

higher emission probability. To allow the model learning 

algorithm to assign a word to a different class from that in the 

above cluster, we assign a small emission probability value to all 

the words in all the states other than the one they appear in. This 

approach also allows the Baum-Welch algorithm to learn fairly 

accurately for words which appear in multiple classes. We go 

through the first round of HMM training to learn our initial model, 

and then use Viterbi algorithm to segment the strings. 

Figure 6: Result. The four panels show the evolution of the clusters as the user reclassifies the segmentation of some address entries, and 

the HMM relearns the model taking this into account 
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4.2 Refinement Stage 

At this stage the user can help resolve inconsistencies in the 

segmentation, and help debug the model. To make this more 

intuitive, we first need the user to give the clusters semantic 

names. This is done by highlighting the nodes in all clusters which 

has a very low similarity to nodes in other clusters. In case the 

presence of some entity makes the identity of the class 

ambiguous, the user can choose to see some strings where the 

entity appears. For e.g. if Washington appears in a cluster with 

what mostly appears to be street names, seeing it in context will 

help the user be sure that the given cluster indeed contains street 

names, not cities or states. Two examples are given below: 

1. D Sacilotto 399 Washington St New York NY (212) 966-

7274 

2. Burke & Casserly PC 255 Washington Avenue Ext Albany 

NY (518) 452-1961 

At this stage, we have named clusters and a trained HMM. 

Now, we can involve multiple users in the refinement stage. Just 

as interaction with users can quickly help define models, 

misclassifications at any stage can slow the process down. Hence 

involving multiple users at the refinement stage can help remove 

mistakes made by a user due to either lack of knowledge, or 

uncertainty. 

 We pick documents that contain tokens that did not cluster well 

– i.e. had a lot of highly similar nodes in other clusters. These are 

the entities which belong to multiple classes in a dataset. The user 

resolves this inconsistency, and if such a token is indeed classified 

into more than one class by the user, we duplicate it to represent 

various identities of a single entity. This also reduces the edges 

across clusters, making the model better defined. We ask the user 

to reclassify a few documents at a time, and then retrain the HMM 

to reflect these changes.  

During this debugging stage, the user can highlight the 

consecutive tokens in the graph layout. When a specific token is 

selected, the corresponding node(s) in the graph are highlighted. 

Also, the cluster to which it has been classified is also highlighted. 

This helps the user see the possible classes the token could belong 

to. The user can traverse forwards and backwards along a given 

document to establish if there is any misclassification. 

The visualization where the clusters are marked often excludes 

entities with low frequency – either because they were filtered out 

by the user, or they were not assigned a cluster due to low 

similarity to any cluster. However, after the HMM is trained, all 

the entities in the dataset will be assigned emission probability 

values. Further, if we want to display duplicates for entities 

belonging to multiple clusters, the visualization will become too 

dense. To overcome this problem, after the initialization stage, we 

only display the entities which have very few high similarity 

edges to nodes in other clusters. These are called the inner nodes, 

and are the representatives of their classes. When a certain token 

is selected during debugging, its corresponding node(s) are also 

visualized. The user can still use our interface to display more 

nodes if required. 

5 RESULTS 

The system we described can help in the classification of varied 

types of datasets. As a starting step, we worked with text-based 

datasets since they require minimal preprocessing, and can show 

the utility of our method. In this section we will see a running 

example of learning a model (HMM) for the business address 

dataset. The BigBook business address dataset contains 

approximately 3000 business addresses from New York State. 

This dataset contains a large number of distinct integers, and each 

separate integer does not have a special meaning, but usually just 

represents a street or building number or is a part of a business 

name. To make sure that the HMM is able to learn well, and apply 

the model to addresses with new tokens, we replace each integer 

with the term DIGIT-<i> where “i” is the length of the integer.  

After the initial preprocessing, we calculate feature vectors 

based on the three properties of structure, context and location: 

 

 The feature vector on structure contains the following 

information: does it contain a letter, does it contain a digit, 

does it contain a non-alphanumeric symbol, does it begin 

with a capital letter, is it all caps, and its length. Except for 

the last element, the others are binary.  

 

 The feature vector on context contains a summary (i.e. 

histogram) of the structure based feature vectors of the 

tokens that appear immediately before and after the given 

entity in all the documents.  

 

 Finally, for the feature vector on location, we use the 

windowing approach as presented in Section 3.2. Initially, if 

we know the number of classes (Nc) in the dataset, we use its 

multiples as the number of windows. In the absence of this 

information, the window size is decided by the document 

lengths (i.e. number of tokens in the document). 

 

Now the data is displayed on the screen, and as the user plays with 

the similarity cutoff slider, the graph goes from being one main 

cluster with all nodes interconnected, to one which shows the 

inbuilt structure of the data. At this point, the user clusters the 

dataset. Since there is a lot of overlap between the terms in 

ADDRESS and CITY (see Figures 4 and 6), there is an extra 

cluster which contains these common tokens. The user organizes 

and splits this cluster to the best of his knowledge, and merges the 

corresponding halves with the two clusters.  

 Next we highlight the inner nodes in the dataset, which shows 

the user the representative terms for each cluster, and he is able to 

name them. Figure 7 shows an example of these inner nodes. Now 

we initialize the emission probabilities for all states based on the 

clusters. If an entity belongs to a cluster, its emission probability 

Figure 7: Graph showing the inner entities/nodes in green. 
These nodes help the user both during the cluster sculpting 
stage, and during the cluster naming stage. 
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is the ratio between frequency of the entity and the total frequency 

of the entities in the cluster. As mentioned in Section 4.1, we 

assign a small probability value to all the entities not belonging to 

the cluster. At this stage the Baum-Welch algorithm is called to 

learn an initial model. 

 Now the user is shown strings with one token that has high 

similarity to nodes in multiple clusters. Given that the token has 

high similarity to entities in classes c1 and c2, we: 

(a) Assign a positive value if the classification was correct 

(b) If the classification in class ci is deemed incorrect, and 

reclassified to class cj, then we assign a heavy penalty to ci 

and a heavy bonus value to cj. 

The accumulated values at the end of a reclassifying round are 

used to modify the emission tables learned by the Baum-Welch. 

Further, based on this, we also split the nodes if they are classified 

into different classes in the cluster. The user helps in the 

debugging process till the clusters become better defined, as 

shown in Figure 6. After four rounds of refinement based on the 

tokens with high presence in multiple clusters, we get a good 

model for classification. The time taken between iterations 

depends on the complexity and implementation of the algorithms 

used to learn the model, and segment the strings – in this case the 

Baum Welch, and Viterbi algorithm respectively.  

6 CONCLUSIONS  

In this paper we have presented a general approach to 

visualization-assisted model learning for data segmentation and 

classification tasks. The driving motivation for our approach is 

that the typical manual tagging of data is very resource intensive. 

Further, even if one uses just a small dataset for tagging to boot-

strap the learning process, if the chosen subset is not a good 

representative of the entire dataset, then the models learnt might 

not be robust. On the other hand, completely automated methods 

which take a brute force approach by using large feature vectors 

for classification have the drawback of being very time intensive, 

and small misclassifications can cause the model learnt to be less 

than ideal. In this case user interaction at various stages can help 

the machine stay on track, and so will improve the speed as well.  

As part of our future work, we aim to extend this approach to 

varied data types and with different clustering and classification 

algorithms. This promises to give further insight into semi-

automatic design of feature vectors for other domains. In this 

paper, we have demonstrated the use of our system for a fairly 

constrained problem – the segmentation of business addresses 

using HMMs. Work is currently underway that extends the use of 

our system to other model building tasks, such as classifiers, using 

the categorization of large image collections and documents as a 

driving application. 

In future work, we plan to optimize the usability aspects if the 

system by ways of focused user studies. In particular, we would 

like to study and precisely quantify how much faster a model of 

equal quality can be derived with our framework, as opposed to 

more traditional non-interactive approaches. Further, we also wish 

to study if the visual analytics approach we have proposed here 

allows domain experts to produce models that are more accurate 

than those derived automatically since the user is actively 

involved in the model-sculpting task.   
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