
tion
be
a-
he
n
re
on-
e
te
m

he
g-
T
nd

-
lu-
e
he
ally
of
re

thm
il-
nd
-
rk-

the
ior
e-
ix-
to

re-

lu-
ly
e)
ge
e
c-

Rapid 3D Cone-Beam Reconstruction with the Algebraic Reconstruction

Technique (ART) by Utilizing Texture Mapping Graphics Hardware

Klaus Mueller1,2 and Roni Yagel1,2

1 Department of Computer Science, The Ohio State University, Columbus, OH 43212, USA
2 Biomedicom, Ltd., Jerusalem. Israel

Presented at the 1998 IEEE Medical Imaging Conference
Abstract
The Algebraic Reconstruction Technique (ART) recon

structs a 2D or 3D object from its projections. It has, in certa
scenarios, many advantages over the more popular Filte
Backprojection approaches and has also recently been show
perform well for 3D cone-beam reconstruction. However, so f
ART’s slow speed has prohibited its routine use in clinic
applications. In this paper, we devise a new hardware accele
tion scheme, employing readily available texture mappin
graphics hardware, that allows quality 3D cone-beam reco
structions to be obtained at almost interactive speeds.

I. INTRODUCTION
The Algebraic Reconstruction Technique (ART), first pro

posed by Gordon et. al. [6], is a tomographic reconstructi
method which reconstructs a 3D object from its projectio
images, acquired from any projective imaging modality, such
X-Ray, PET, or SPECT. ART is an iterative method and reco
structs a volumetric object by a sequence of alternating volu
projections and correction backprojections. Here, the volum
projection measures how close the current state of the volu
matches one of the scanner projections, while in the backproj
tion step a corrective image is distributed onto the volume gr
Many such projection/backprojection operations are typica
required to make the volume fit all projections in the acquire
set. Different ART variants exist: While the original ART cor
rects the volume on a ray-basis, Simultaneous ART (SART)
corrects the volume only after a whole projection image h
been computed.

The iterative process is slow, and this lack of computation
speed has so far prevented ART to be used in real-life clini
applications. However, ART has many advantages over
more commonly used Filtered Backprojection (FBP): It is sup
rior when one does not have a large set of projections availab
when the projections are not distributed uniformly in angle,
when the projections are sparse or missing at certain orien
tions [10]. So far, cone-beam CT is still in the research state.
yet, there are no clinical cone-beam scanners, although a var
of cone-beam algorithms have been proposed in the mid-8
These algorithms are mostly based on FBP [4][7][18] (see a
[14][19] for comparisons and reviews). In more recent resear
[11], it was demonstrated that ART (with certain modification
and SART can reconstruct general cone-beam data as wel
as
1 2015 Neil Ave, 395 Dreese Lab, Columbus, OH 43210, USA
email: {mueller, yagel}@cis.ohio-state.edu.
www: http://www.cis.ohio-state.edu/~{mueller, yagel}
-
in
red
n to
ar
al
ra-
g
n-

-
on
n
as
n-
me

e
me
ec-
id.
lly
d

-
[1]
as

al
cal
the
e-
le,

or
ta-
As
iety
0s.
lso
ch

s)
l, at

high accuracy and even for large cone-angles of up to 60˚.

Thus ART possesses great prospects for 3D reconstruc
from cone-beam data if its computational speed could
improved. It was already shown in [11] that two to three iter
tions are sufficient to reconstruct a 3D object. In addition, t
required number of projections in ART is typically smaller tha
for FPB, at least in the theoretical sense [8]. However, still mo
than 2.5 hours are needed on a modern workstation to rec
struct a 1283 volume from 80 projections [12]. As a remedy, on
could build dedicated ART computer boards and incorpora
those into the clinical scanners, along with the usual custo
DSP (Digital Signal Processing) chips which already run t
FBP algorithm extremely fast. However, designing and confi
uring special chips or boards to implement our ART and SAR
algorithms would be a rather expensive and tedious task, a
would produce narrow devices with little room for modifica
tions and adaptations of the algorithms, hampering the evo
tion of technology. Fortunately, today’s widely availabl
graphics workstations provide us with a better option, as t
graphics hardware resident in these workstations is especi
designed for fast projection operations, the main ingredients
the algebraic algorithms. In a different approach, this hardwa
was also used by Cabral et. al. to accelerate the FBP algori
[3]. Another plus of this hardware choice is the growing ava
ability of these machines in hospitals, where they are more a
more utilized in the daily task of medical visualization, diagno
sis, and surgical planning. The feature of these graphics wo
stations that we will rely on most istexture mapping, a
technique that is commonly used to enhance the realism of
polygonal graphics objects by painting pictures onto them pr
to display. Texture mapping is not always, but often, impl
mented in hardware, and runs at fill rates of over 100 Megap
els/sec. However, hardware texture mapping is not limited
graphics workstations only, many manufacturers offer textu
mapping boards that can be added to any modern PC.

In the following sections, we will describe aTexture-Map-
ping hardwareAccelerated version of ART (TMA-ART) that
reconstructs a 1283 volume from 80 projections in about 2 min-
utes — a speedup of over 70 with respect to the software so
tion outlined in [8]. The programs were written using the wide
accepted OpenGL API (Application Programming Interfac
and can easily be reproduced to run on any medium-ran
graphics workstation or PC with graphics board. Although w
will describe our algorithm in terms of cone-beam reconstru
tion, it naturally also applies to parallel-beam reconstruction
a private case.

ing

l-
ted
al-
s

2

-

so
-
to

ion
.g.
ta-

ts
ch
ric
is
II. PRELIMINARIES
ART is inherently a pixel-based reconstruction algorithm

i.e., a grid correction is based on the projection and backproj
tion of a single image pixel at a time. This is usually performe
via image-order projection methods, i.e., the volume is pr
jected by casting rays into the volume, pixel by pixel. Graphi
hardware, however, uses object-order projection methods,
the graphics objects are projected to the screen where their c
tributions accumulate into the final image. This image-bas
projection makes it tedious and inefficient to implement a pixe
based approach such as ART. Hence, we have opted no
implement ART, but the related method SART, which perform
grid correction only after an entire projection image is availab
This decision is justified by the observation that SART produc
cone-beam reconstructions of a quality equal to those obtai
with cone-beam ART, but without requiring the depth-adaptiv
interpolation filters that were shown to be necessary for go
reconstruction quality with cone-beam ART [11].

We shall now briefly describe the individual steps of th
SART algorithm, producing a decomposition that will later b
emulated in the graphics pipeline. Recall that SART reco
structs a volume by a series of grid projections and grid corre
tions (implemented as backprojections). Consider Fig. 1, th
shows how a grid voxel (i.e., a volume element) contributes to
projection and backprojection, respectively. We can think of t
volume to be decomposed into a field of 3D interpolation ke
nels, with one such kernel placed at each grid voxel location a
attenuated by the voxel’s valuevj. During projection (and back-
projection), this field can be thought of being traversed by pr
jection raysri, connecting the X-ray source with the imag
pixelspi. The influential weightwij that a voxel has on one of
these rays is the integral of the traversed voxel kernel functio
During projection, the rays traverse the voxel kernels, weighti
all voxel values by the respective voxel kernel integrals, a
accumulating the weighted voxel contributions into the ray int

wij

Pϕ

pi
interpolation kernel

projection
 image

(kernel integrals)

of voxel j

projectio
n ra

ys

Fig. 1. The interpretation of a voxel weight factorwij .

ϕ

,
ec-
d
o-
cs
i.e.,
on-
ed
l-
t to
s

le.
es
ned
e
od

e
e
n-
c-
at
a

he
r-
nd

o-
e

n.
ng
nd
e-

grals. The grid correction factors are computed by subtract
the ray integrals so obtained from the pixel valuespi in the scan-
ner imagePϕ. During backprojection, the rays traverse the vo
ume again, but this time the ray correction factors are weigh
by the voxel kernel integrals and added to the present voxel v
ues. A normalization is performed among all ray contribution
that a particular voxel receives in this process.

More formally, the SART correction for voxelj, to be per-
formed for each grid correction stepk, is written as follows:

(1)

Here,λ is a relaxation factor, typically chosen «1.0. Fig.
illustrates the algorithm, decomposed in its constituents:

The software implementations typically perform grid pro
jection and backprojection by a procedure termedsplatting, in
which the kernel integrals are pre-integrated into tables (
called footprints) and indexed by the traversing rays. Alterna
tively, in an object-order approach the footprints are mapped
the image plane where they accumulate into the project
image or retrieve the correction value, respectively (see e
[12]). We are now ready to describe the hardware implemen
tion of SART.

III. HARDWARE ACCELERATION OF GRID
PROJECTION / BACKPROJECTION

TMA-ART decomposes the volume into slices and trea
each slice separately. In grid projection (shown in Fig. 3), ea
slice is associated with a square polygon with the volumet
slice content texture-mapped onto it. A projection image

v j
k()

v j
k 1–() λ

pi winv n
k 1–()

n 1=

N

∑–

win
n 1=

N

∑
--

 
 
 
 
 
 
 
 
 

wij
pi Pϕ∈
∑

wij
pi Pϕ∈
∑

---+=

SART algorithm

Initialize volume

Until convergence

 Select a projectionPϕ
Image projection:

 Compute line integrals through allpi of Pϕ
 (the inner sums in equation (1))

Correction image computation:
 For allpi, subtract line integrals from scannerpi

 (expression in parentheses in nominator of (1))

Image backprojection:
 Distribute corrections onto grid voxels

Fig. 2. The steps of the SART algorithm.

ain
n.
ble
c-
5])
gle
e
l-
d,
as

his
c-
ust
the

ol-
f

uc-

e

se

ack

e

obtained by accumulatively rendering each such polygon in
the framebuffer. Here, a bilinear interpolation kernel is used
the hardware to resample the texture image into screen coo
nates.

Note that the ray integrals so computed are equivalent to
ray integrals obtained in a software solution that uses a triline
interpolation filter and samples only within each volume slic
In this respect, the integration follows the trapezoidal rule a
is similar to that obtained by Joseph’s algorithm [9]. Note th
since the distance between sample points is not identical
every ray (due to the perspective distortion), we have to norm
ize the projection image for this varied distance. This can
conveniently achieved by normalizing the scanner images
the inverse amount in a pre-processing step.

After a projection image has been generated, the correct
image is computed. First, the projection image is subtrac
from the scanner image. The resulting image is then divided
the weight image at that orientation. (The weight images a
computed beforehand by projecting a volume in which all vo
els within the spherical reconstruction region have been se
1.0.) Since the texture map can only hold values in the ran
[0.0...1.0], but the correction image may have values in t
range [-1.0...1.0], we must scale and translate the values in
correction image to the [0.0...1.0] interval. Note that, in th
way, the values in the volume slices are always in the ran
[0.0...1.0]. We may add that, at least for now, all computatio
with regards to the correction image are performed on the CP

In backprojection (shown in Fig. 3), we need to distribute
correction image onto the volume slices. This is achieved
associating each volume slice with the framebuffer onto whi
the correction image, mapped to a polygon, is rendered. (Thi
the inverse situation of Fig. 3.) Although projection is simple

ϕ

texture polygons

screen (projection image)

cone angleγ
 (volume slices)

TMA-ART Projection algorithm

Rotate texture polygons by projection angleϕ
Texture map the volume slices onto texture polygons

Project textured polygons onto the screen

Accumulate screen contributions at each pixel

Fig. 3. Grid projection with TMA-ART.
to
by
rdi-

the
ar

e.
nd
at
for
al-
be
by

ion
ted
by
re

x-
t to
ge
he
the
is
ge
ns
U.

a
by
ch
s is
,

backprojection is not as straightforward, since here the m
viewing direction is not always perpendicular to the scree
This, however, is required by the graphics hardware. To ena
this viewing geometry, we implemented a virtual slide-proje
tor (using the projective texture approach of Segal et. al. [1
that shines the correction image at the oblique projection an
onto a polygon, which in turn is orthographically viewed by th
framebuffer. This is shown in Fig. 3 for one representative vo
ume slice. The correction image is perspectively mappe
according to the cone-geometry, onto the volume slice that h
been placed at the appropriate position in the volume. T
“slide” projection is then viewed by the screen. After the corre
tion image has been projected onto the slice screen, we m
scale and translate the values of the screen image back into
[-1.0...1.0] range. The resulting image is then added to the v
ume slice in memory, limiting the voxel values to an interval o
[0.0...1.0] and setting voxels outside the spherical reconstr
tion region to zero.

Let us now explain this slide-projector approach in som

ϕ

projective texture screen

projected polygons

r

s

-z

x

γ

dvc-ts

slice screen

 (correction image)

(volume slices)

T1: translate by dvc-ts R: rotate byϕ
T1

-1: translate by -dvc-ts P: perspective mapping

S: scale by 0.5 T3: translate by 0.5

TMA-ART Backprojection algorithm

Set texture matrix toTM =T1⋅R⋅T1
-1⋅P⋅S⋅T3

For each volume slice

 Associate 3D-texture coordinates with each vertex,
 set r-coordinate to z-coordinate

Render the texture-mapped polygon onto the screen (u
TM to map texture coordinates onto texture screen)

Scale and translate the values in the screen image b
into the interval [-1.0...1.0].

Add the resulting image to the respective volume slic
(limit the summed values to the interval [0.0...1.0]).

Fig. 4. Grid backprojection with TMA-ART.

he
d-

re
er-

[-
a

ure
is

n
t us

en
ted
r,
or-

for-
he
ted

ive
ion
more detail. In OpenGL, a polygon is represented by three
more vertices. When the polygon is projected onto the scre
the coordinates of its vertices are transformed by a sequenc
matrix operations, as shown in Fig. 5. (For more detail on the
fundamental issues refer to [5] and [13].)

A texture is an image indexed by 2D coordinates in th
range [0.0..1.0, 0.0...1.0]. When a texture is mapped onto
polygon, the polygon’s vertices are associated with textu
coordinates [s,t], as shown in Fig. 6. The viewing transform
tion of the polygon vertices yields a closed region on the scre
In a process calledscan conversion,all pixels inside this region
are assigned (via interpolation) texture coordinates within t
range assigned to the bounding vertices. Note that this trans
mation can lead to a stretching or shrinking of the texture.

The texture mapping coordinates need not be two-dime
sional. As a matter of fact, they can be up to four-dimension
(involving a homogeneous coordinate), just like the verte
coordinates. In addition, OpenGL provides a transformati
facility, similar to the one supplied for vertex transformation
with which the interpolated texture coordinates can be tran
formed prior to indexing the texture image. We can use th
facility to implement our virtual slice projector.

The algorithm proceeds as follows. First, we create an ar
of n square texture coordinate polygons with vertex coordina
(s,t,r). Here, we set the (s,t) coordinates to (n, n), i.e., the extent
of the volume slices. Ther-coordinate we vary between [dvc-ts-
n/2, dvc-ts+n/2]. (dvc-ts is the distance of the source to the vo
Modelview
Matrix

Projectio

Matrix

eye
coordinates c

x

y

z

w
object

coordinates

Vertex

Fig. 5. Stages of vertex transformation

texture im

polygon

(0.0,0.2)

(0.9,1.0)(0.0,1.0)

(0.9,0.2)

Fig. 6. Texture mapping of an image onto a polygon. The tex
or
en,
e of
se

e
a

re
a-
en.

he
for-

n-
al
x

on
,
s-
is

ray
tes

l-

ume center.) Refer now back to Fig. 5, where we show t
decomposition of the texture transformation matrix. The Mo
elview matrix is set to the productT1⋅R⋅T1

-1, i.e., each polygon
is rotated about the volume center by the viewing angleϕ. The
Projection matrix is set to a perspective mapping of the textu
coordinates onto the projective texture screen. After the p
spective divide, the texture coordinates would be in the range
1.0...1.0]. Since we can only index the texture image within
range of [0.0..,1.0], we need to scale and translate the text
perspective texture coordinates prior to indexing. This
achieved by incorporating a scale and translation given byS⋅T3
into the Projection matrix.

We can now perform the backprojection of the correctio
image, represented by the texture, onto the volume slices. Le
just look at one of the volume slices, represented by polygonPs
with vertex coordinates (n, n, z), which is projected orthograph-
ically on the slice screen. Depending on itsz-location, the poly-
gon is assigned one of the texture coordinate polygons. Wh
mappingPs onto the screen, texture coordinates are genera
for each pixel within the projected polygon extent. Howeve
these texture coordinates are not used directly to index the c
rection image, but are first passed through the texture trans
mation pipeline. The transformed coordinates then index t
correction image texture as if this image had been projec
ontoPs at the backprojection angleϕ.

One should add that this process is not any more expens
than direct texture mapping. Once the texture transformat
n Perspective

Division

Viewport
Transfor-

clip
oordinates

normalizedwindow
coordinates

mation

 coordinates
device

age

mapped texture

ture coordinates assigned to the polygon vertices are given in parentheses.

fer

s
ay
rate
he
el

t.

in

he

ata

ls,
ata

s

che
s,
e-

r-

lt
I,

he
-

5

-

matrix is compounded, just one hardware vector-matrix mul
plication is needed. As a matter of fact, this multiplication
always performed even if the texture transformation is unity

IV. OPTIMAL MEMORY ACCESS
The volume data is stored as 16 bit unsigned shorts, wh

the scanner, projection, and weight image data are stored a
bit unsigned integers, since they represent accumulations
many 16 bit voxel slices. The correction image is stored in
bit, since it is normalized to one volume slice prior to back
projection. Thus the precision of the reconstruction process
inherently 16 bit, hampered, however, by a limited 12 bit res
lution of the framebuffer. This precision bottleneck is to be ke
in mind when attempting to use the graphics hardware for hig
fidelity reconstruction.

Consider now Fig. 7 where we illustrate the three differe
viewing directions (VDs) at which the memory is accessed du
ing the reconstruction. Usually, computers organize their me
ory in a hierarchy of several levels: a small primary on-ch
cache, a larger secondary on-chip cache, main memory,
some swap partition on disk. Whenever a datum requested fr
the CPU is not found in one level, a cache fault or a memo
fault is generated and the datum is fetched from the next low
memory level, and so on. When the datum has reached the C
it is also stored in all memory levels that were traversed on t
quest. Usually, the data are fetched in blocks, following the la
of locality-of-reference which states that once a datum
requested it is likely that the neighboring datum will be need
soon. Since memory access time is generally much larger t
transfer time, it is usually more efficient to transfer a who
block once the memory access is performed, than to acc
every consecutive datum anew. Therefore, once a block of d
is loaded into cache, no more faults are generated for any d
in the block. Fetching data from the caches is generally mu
faster than retrieving the data from main memory. In case o
secondary-cache fault, the CPU will in many cases switch
another job until the data block is in, while at a primary cach
fault the CPU will just introduce a few wait states. Hence, w
want to keep the number of secondary cache faults as low

ϕ ϕ > 135˚ϕ < 45˚

45˚ ≤ ϕ ≤ 135˚

x

y

z

VD I

VD II

VD III

Fig. 7. Memory access order for different projection anglesϕ.
There are three major viewing directions (VDs). For VD I and VD
III the volume data are accessed onez-slice at a time, while for
VD II, the volume data are accessed oney-slice at a time.
ti-
is
.

ile
s 32

of
16
-
is

o-
pt
h-

nt
r-

m-
ip
and
om
ry
er

PU,
he
w
is

ed
han
le
ess
ata
ata
ch
f a
to
e-
e
as

possible. (For more details on memory hierarchies please re
to [17])

Our SGI Octane workstation with a Mips R10000 CPU ha
a secondary cache of 1MByte, with 128-byte slots and 2-w
set-associativity. The secondary cache has a peak transfer
of 3.2GByte/s to the CPU, which is magnitudes higher than t
transfer rate from main memory. Since each volume vox
occupies 2 bytes, we can store 64 voxels in each cache slo

We need to be intelligent about how we store the data
memory. The minimum number of cache faults isN/64 (where
N is the number of voxels). Consider Fig. 8 where we show t
case in which the data are stored inx-y-zorder, i.e.,x runs fast-
est. Recall that TMA-ART accesses and stores the volume d
in slices. If we access the data from VD I or VD III inx-yorder
for each slice, we will encounter a cache fault every 64 voxe
the minimum cache-fault rate. However, if we access the d
from VD II in z-y order (ory-z order) for each subsequentx-
slice, we will have a cache fault for every voxel. This is 64 time
more cache faults than for VD I and VD III, and will slow the
reconstruction down considerably. Note also that these ca
faults may occur not only for the loading of the volume slice
but also for the storing of the corrected volume slices, if a writ
back cache-policy is used.

Consider now Fig. 8 where we show a different, more favo
able memory organization in which the voxels are stored iny-x-
z order. Let us look at VD I and VD III first. If we access the
data iny-xorder for everyz-slice, then we generate a cache fau
every 64 voxels, just like before. On the other hand, for VD I
if we access the data iny-zorder for everyx-slice, then we will
not have any extra cache faults either. Thus they-x-zstorage
arrangement in conjunction withy-first memory traversal will
yield the optimal cache behavior.

The following example may serve as a demonstration for t
importance of optimizing cache behavior. In our initial imple
mentation, we used the most natural storage scheme, thex-y-z
order, with which a reconstruction could be performed in 1

Fig. 8. Voxels are stored inx-y-zorder. The arrows indicate con-
secutive data items in memory. No extra cache faults are gener
ated for VD I and VD III. For VD II, however, a cache fault is
generated for every voxel.

64 voxels

64 voxels

64 voxelsx

Memory

z

y

x

d
-

en-
, a
ro-
l

on-
he
d
s,
g.
nto
.)
minutes. After observing the large number of cache fau
(using SGI’sperfexutility), we switched to they-x-z storage
order and they-first data traversal. By using this access schem
a reconstruction could be otained in 2 minutes.

z

y

x

Fig. 9. Voxels are stored iny-x-zorder. No extra cache faults are
generated for VD I, VD II and VD III.

64 voxels

64 voxels

64 voxels

Memory

y

original phantom

original contrast 2 × original

Fig. 10. Slices across reconstruction volumes obtained with diff
structions were performed using 80 128×128 projections of the 3D
1283 reconstruction grid,λ=0.1).

TMA-ATMA-ART

(c) (d)

(a)
lts

e,

V. RESULTS
Using both the software implementation of ART (discusse

in [11][12]) and the new hardware-accelerated version, TMA
ART, we reconstructed a simulated brain dataset, the 3D ext
sion of the Shepp-Logan phantom [16] (described e.g. in [2]
slice is shown in Fig. 10a). Projection sets of 80 cone-beam p
jections (γ=40˝) of 1282 pixels each were obtained by analytica
integration of the phantom and used to reconstruct a 1283 recon-
struction volume in 3 iterations (λ=0.1). To evaluate the effect
of the limited framebuffer resolution in TMA-ART, we
acquired the brain projection sets at three different feature c
trast levels. The original contrast of the main features in t
phantom is 2% of the full dynamic range, while the backgroun
contrast of the small tumors in the bottom portion of the slice
shown in Fig. 10, is only 0.5%. (Note that, in the images of Fi
10, the small dynamic range of the features was stretched i
the full displayable range in order to make the features visible
ART (software)

contrast 4 × original contrast

erent implementations of ART, software and hardware-accelerated. All recon-
extension of the Shepp-Logan phantom (cone-angleγ=40˚, 3 iterations,

TMA-ARTRT

original contrast

(b)

(e)

y
ble
e

ce
nd
ted
ail-
s
ted

e
the
be
at
ge.
nal-

od
ly
er
ly
es-
-
n
16

e
r-

nd
-
. It
ss

n

e
re

l-

e

s,

c
al
Fig. 10b shows a slice (from the same location than that
Fig. 10a) through a volume reconstructed with the softwa
implementation of ART. We observe that very little reconstru
tion noise is present and that the brain features can be well
tinguished. The software implementation uses both floati
point arithmetic and floating point buffers throughout th
reconstruction process. TMA-ART, on the other hand, also us
floating point arithmetic but only fixed point buffers. The main
restriction here is the limited resolution of the 12 bit frame
buffer, which can only resolve 1/4096=0.02%. As Fig. 10c ind
cates, this is apparently not sufficient to resolve the three sm
tumors in the bottom portion of the phantom. The limited res
lution also gives rise to a somewhat noisy appearance of
reconstructed slice. However, as can be observed in Fig. 1
TMA-ART manages to resolve slightly higher tumor contras
of 1% rather well. In addition, only little noise is apparent in th
slice of Fig. 10e, where the tumor contrast was 2%. It appe
that the limited resolution of the framebuffer and, probably to
lesser extent, the limited resolution of the texture memo
causes reconstruction noise levels equivalent to the 0.5-1% c
trast range.

Finally, Table 1 compares the run times for both the so
ware and the two different TMA-ART implementations (i.e., x
y-z data access order and y-x-z data access order). We see
by utilizing texture mapping hardware for the grid projectio
and backprojection operations, dramatic speedups can
achieved: a cone-beam reconstruction of a 1283 volume from 80
projections can now be performed in about 2 minutes, dow
from the 2.5 hours that were required in the software impleme
tation. We also see that the effects of caching on the volu
data retrieval are very significant. When accessing the volu
data in x-y-z order a reconstruction still takes almost 15 minu
(a speedup of 10.5 with respect to the software implemen
tion). However, when accessing the data in the optimal y-x
order, the reconstruction time shrinks to a mere 2 minutes
speedup of 73 with respect to software-ART and a speedup o
with respect to the sub-optimal x-y-z data access order).

VI. CONCLUSIONS
In this paper, we have shown that ART can be accelerated

almost interactive speeds without building any expensive c
tom hardware. All that is needed is a standard graphics works

Table 1. Run times for one iteration as well as for a complete
reconstruction (3 iterations) of different ART implementations.
(These timings are needed to produce the images shown in Fig

implementation
 time /

iteration
reconstr.

time
speedup

ART (software) 0.85 min 2.55 h -

TMA-ART: x-y-z 289.0 sec 14.45 min 10.5

TMA-ART: y-x-z 42.2 sec 2.1 min 73
in
re
c-
dis-
ng
e
es

-
i-
all

o-
the
0d,
ts
e
ars
a

ry,
on-

ft-
-
that

n
be

n
n-

me
me
tes
ta-
-z
(a
f 7

to
us-
ta-

.

tion with 2D texture mapping capabilities or one of man
inexpensive texture mapping boards that are readily availa
for almost any desktop PC. Previously, ART’s many qualitativ
advantages could not be utilized in clinical applications sin
the computational effort was too high compared to other 2D a
3D reconstruction methods. Our texture-mapping accelera
algorithm closes this performance gap and makes ART av
able for any clinical setting, with the added benefit that it run
on a platform that can also be used to visualize the reconstruc
data.

VII. FUTURE WORK
The quality of the reconstructions is currently limited by th

resolution of the framebuffer (and, to a lesser extent, that of
texture memory). We find that objects of 1% contrast can
resolved well even with a 12 bit framebuffer. We also find th
the reconstruction noise levels are in the 0.5-1% contrast ran
This means that once the features exceed this range, the sig
to-noise ratio becomes sufficient for a reconstruction of go
quality. It is hoped that hardware manufacturers will supp
machines with higher-resolution framebuffers, yielding bett
signal-to-noise ratios. To parallel this effort, we are current
working on schemes that extend the machine’s framebuffer r
olution (independently of what it is) by utilizing all color chan
nels and combining them to yield a virtual, higher resolutio
data word. These schemes extend a 12 bit framebuffer into
bits, and initial results look promising.

We are also working to implement other portions of th
ART algorithm in hardware, such as the computation of the co
rection image, the accumulation of the projection image, a
the voxel update. In addition, a TMA-ART version for multi
processor PCs and workstations is currently being developed
is expected that this version will achieve a reconstruction in le
than 30 sec.

VIII. REFERENCES
[1] A.H. Andersen, A.C. Kak, “Simultaneous Algebraic

Reconstruction Technique (SART),”Ultrason. Img., vol.
6, pp. 81-94, 1984.

[2] C. Axelson, “Direct Fourier methods in 3D reconstructio
from cone-beam data,”Thesis, Linkoping University,
1994.

[3] B. Cabral, N. Cam, and J. Foran, “Accelerated volum
rendering and tomographic reconstruction using textu
mapping hardware,”1994 Symposium on Volume Visua
ization, pp. 91-98, 1994.

[4] L.A. Feldkamp, L.C. Davis, J.W. Kress, “Practical con
beam algorithm,”J. Opt. Soc. Am., pp. 612-619, 1984.

[5] J.D. Foley, A. van Dam, S.K. Feiner, and J.F. Hughe
Computer Graphics: Principles and Practice.New York:
Addison-Wesley, 1990.

[6] R. Gordon, R. Bender, and G.T. Herman, “Algebrai
reconstruction techniques (ART) for three-dimension
electron microscopy and X-ray photography,”J. Theoret-
ical Biology, vol. 29, pp. 471-481, 1970.

en-
m
-

d
g

f

a

c-
d

nd
[7] P. Grangeat, “Mathematical framework of cone-beam 3
reconstraution via the first derivative of the Radon tran
form,” Proc. Mathematical Models in Tomography
(Oberwohlfach, 1990), Springer Lecture Notes in Math
matics, 1497, pp. 66-97.

[8] H. Guan and R. Gordon, “Computed tomography usin
ART with different projection access schemes,”Phys.
Med. Biol., no. 41, pp. 1727-1743, 1996.

[9] P.M. Joseph, “An improved algorithm for reprojecting
rays through pixel images,”IEEE Trans. Med. Imag.,vol.
1, no. 3, 1982.

[10] A.C. Kak and M. Slaney,Principles of Computerized
Tomographic Imaging. IEEE Press, 1988.

[11] K. Mueller, R. Yagel, and J.J. Wheller, “Accurate 3D
cone-beam reconstruction with algebraic methods,”
review, 1998.

[12] K. Mueller, R. Yagel and J.J. Wheller, “Fast implementa
tions of algebraic methods for the 3D reconstruction fro
cone-beam data,” in review, 1998.

[13] J. Neider, T. Davis, M. Woo,OpenGL Programming
Guide, Addison-Wesley, 1993.
D
s-

e-

g

in

-
m

[14] P. Rizo, P. Grangeat, P. Sire, P. Lemasson, and P. Mel
nec, “Comparison of three-dimensional x-ray cone-bea
reconstruction algorithms with circular source trajecto
ries,” J. Opt. Soc. Am. A, vol. 8, no. 10, pp.1639-1648.

[15] M. Segal, C. Korobkin, R. van Widenfelt, J. Foran, an
P.E. Haeberli, “Fast shadows and lighting effects usin
texture mapping, ”Computer Graphics (Proceedings o
SIGGRAPH’92), vol. 26, pp. 249-252, 1992.

[16] L.A. Shepp, B.F. Logan, “The Fourier reconstruction of
head section,”IEEE Trans. Nucl. Sci., vol. NS-21, pp. 21-
43, 1974.

[17] A. Silberschatz, J.L. Peterson, P.B. Galvin,Operating
Systems, Addison-Wesley Publishing Company, 1991.

[18] B. Smith, “Image reconstruction from cone-beam proje
tions: necessary and sufficient conditions an
reconstruction methods,”IEEE Trans. Med. Img., vol. 4,
no. 1, pp. 14-25, 1985.

[19] B. Smith, “Cone-beam tomography: recent advances a
a tutorial review,”Optical Engineering, vol. 29, no. 5, pp.
524-534, 1990.

	I. INTRODUCTION
	II. PRELIMINARIES
	Fig. 1. The interpretation of a voxel weight factor wij.
	(1)
	Fig. 2. The steps of the SART algorithm.

	III. HARDWARE ACCELERATION OF GRID PROJECTION / BACKPROJECTION
	Fig. 3. Grid projection with TMA-ART.
	Fig. 4. Grid backprojection with TMA-ART.

	IV. OPTIMAL MEMORY ACCESS
	Fig. 7. Memory access order for different projection angles j. There are three major viewing dire...
	Fig. 8. Voxels are stored in x-y-z order. The arrows indicate consecutive data items in memory. N...
	Fig. 9. Voxels are stored in y-x-z order. No extra cache faults are generated for VD I, VD II and...

	V. RESULTS
	Table 1. Run times for one iteration as well as for a complete reconstruction (3 iterations) of d...

	VI. CONCLUSIONS
	VII. FUTURE WORK
	VIII. REFERENCES
	[1] A.H. Andersen, A.C. Kak, “Simultaneous Algebraic Reconstruction Technique (SART),” Ultrason. ...
	[2] C. Axelson, “Direct Fourier methods in 3D reconstruction from cone-beam data,” Thesis, Linkop...
	[3] B. Cabral, N. Cam, and J. Foran, “Accelerated volume rendering and tomographic reconstruction...
	[4] L.A. Feldkamp, L.C. Davis, J.W. Kress, “Practical cone beam algorithm,” J. Opt. Soc. Am., pp....
	[5] J.D. Foley, A. van Dam, S.K. Feiner, and J.F. Hughes, Computer Graphics: Principles and Pract...
	[6] R. Gordon, R. Bender, and G.T. Herman, “Algebraic reconstruction techniques (ART) for three-d...
	[7] P. Grangeat, “Mathematical framework of cone-beam 3D reconstraution via the first derivative ...
	[8] H. Guan and R. Gordon, “Computed tomography using ART with different projection access scheme...
	[9] P.M. Joseph, “An improved algorithm for reprojecting rays through pixel images,” IEEE Trans. ...
	[10] A.C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging. IEEE Press, 1988.
	[11] K. Mueller, R. Yagel, and J.J. Wheller, “Accurate 3D cone-beam reconstruction with algebraic...
	[12] K. Mueller, R. Yagel and J.J. Wheller, “Fast implementations of algebraic methods for the 3D...
	[13] J. Neider, T. Davis, M. Woo, OpenGL Programming Guide, Addison-Wesley, 1993.
	[14] P. Rizo, P. Grangeat, P. Sire, P. Lemasson, and P. Melennec, “Comparison of three-dimensiona...
	[15] M. Segal, C. Korobkin, R. van Widenfelt, J. Foran, and P.E. Haeberli, “Fast shadows and ligh...
	[16] L.A. Shepp, B.F. Logan, “The Fourier reconstruction of a head section,” IEEE Trans. Nucl. Sc...
	[17] A. Silberschatz, J.L. Peterson, P.B. Galvin, Operating Systems, Addison-Wesley Publishing Co...
	[18] B. Smith, “Image reconstruction from cone-beam projections: necessary and sufficient conditi...
	[19] B. Smith, “Cone-beam tomography: recent advances and a tutorial review,” Optical Engineering...
	Fig. 5. Stages of vertex transformation
	Fig. 6. Texture mapping of an image onto a polygon. The texture coordinates assigned to the polyg...
	Fig. 10 . Slices across reconstruction volumes obtained with different implementations of ART, so...

