
1

1. Introduction

Volumetric datasets are routinely produced in a great vari-
ety of application domains, with the most prominent being the
medical field, both for clinical and educational purposes, and
the computational sciences, for fluid flow and other types of
simulations. More recent are applications for volumetric
design, such as sculpting [1], as well as new data acquisition
technologies, such as 3D Doppler radar [4] or cyber scanners.
At the same time, we have also seen tremendous growth in the
resolution of the devices that are used to visualize the
datasets. As the number of available pixels increases (and
often the size decreases), users want to view their datasets at
higher resolutions. In many cases, this resolution exceeds that
of the dataset and magnified viewing occurs. On the other
hand, even if the volume is larger than the screen, users may
want to zoom into certain volume areas, which again gives
rise to a magnification.

Magnified viewing means that the resolution of the image
exceeds that of the volume. The implications for this can be
grasped by realizing that (i) the frequency content of a volume
dataset is bounded from above by its grid sampling rate, and
(ii) this upper frequency (the Nyquist frequency) cannot be
exceeded, even if we resampled the volume at a higher rate,
for the purpose of slicing or magnified volume rendering. In
other words, we cannot gain any high-frequency detail in the
densities just by oversampling, and if densities is all we’re
interested in for image generation, which is the case for X-ray,
then we may just as well 3D-sample the volume at the vol-
umes’s Nyquist frequency and magnify the resulting image
just before display. If, however, the interpolated densities are
used as an input to another function, then this translation can
potentially extend the frequency content of the interpolated
signal beyond the volume’s upper frequency bound. In fact,
the color and opacity transfer functions as well as the shading
operations used in full volume rendering represent such a fre-
quency translation. This implies that we will not be able to

perform the magnification after a full rendering, but only
before the shading and coloring occurs.

An example for an algorithm that does not observe this
constraint is the shear-warp algorithm [5]. It gains a fair share
of its famous speed by performing all interpolation, shading,
and compositing operations at volume resolution and then
scaling up the resulting image via an inexpensive 2D warp
(see [9] for a closer analysis). This yields a relative insensitiv-
ity to magnification in terms of runtime, but it generates blur
in places of high geometric and color detail. On the other
hand, Westenberg and Roerdink [11] used this idea for their
wavelet compression-space X-ray volume rendering
approach. Due to their restriction to the X-ray transform, they
did not observe significant blurring artifacts.

The magnification of an image is generally performed via a
convolution with a suitable filter. Hence, we shall call the
technique of obtaining a magnified image from an image that
was rendered at volume resolution post-convolved volume
rendering (PCVR). We found that PCVR, when used in the
context of splatting [12], raises a few interesting peculiarities,
which are mainly due to the required use of spherically-sym-
metric kernels (for reasons of efficiency). These issues are
explained in the following sections of this paper, and our solu-
tions for them are discussed as well.

The outline of our paper is as follows: First, Section 2
starts with a discussion of previous work related to PCVR,
and then Section 3 provides our theoretical treatment of the
subject. Section 4 presents details on our implementation, and
Section 5 shows results both on visual quality and the speed-
ups we were able to obtain. Finally, Section 6 ends this paper
with conclusions.

2. Motivation and Previous Work

Westenberg and Roerdink [11] used a PCVR scheme to
accelerate their hierarchical wavelet X-ray splatting tech-

Post-Convolved Splatting

Neophytos Neophytou Klaus Mueller

Center for Visual Computing, Department of Computer Science, Stony Brook University

Abstract
One of the most expensive operations in volume rendering is the interpolation of samples in volume space. The
number of samples, in turn, depends on the resolution of the final image. Hence, viewing the volume at high mag-
nification will incur heavy computation. In this paper, we explore an approach that limits the number of samples to
the resolution of the volume, independent of the magnification factor, using a cheap post-convolution process on
the interpolated samples to generate the missing samples. For X-ray, this post-convolution is needed only once,
after the volume is fully projected, while in full volume rendering, the post-convolution must be applied before
each shading and compositing step. Using this technique, we are able to achieve speedups of two and more, with-
out compromising rendering quality. We demonstrate our approach using an image-aligned sheet-buffered splat-
ting algorithm, but our conclusions readily generalize to any volume rendering algorithm that advances across the
volume in a slice-based fashion.

2

nique. In their work, they first calculate a decomposition of
the original density volume into a wavelet basis, which gives
rise to a set of wavelet coefficient volumes at decreasing reso-
lution. Then for display, they project each volume separately
(after culling irrelevant voxels determined by the wavelet
coefficients) into images that match the resolution of the cor-
responding volume. The projection itself is performed by
spreading the projected point into its 2x2 image pixel neigh-
borhood, using bilinear weighting. After all points have been
splatted in this way, the images are convolved with a 2D filter
corresponding to the projection of the wavelet function (also
known as the footprint) at that level. This process is illustrated
in Fig. 1. Finally, the images are added to yield the final dis-
play. Significant speedups can be obtained because the bilin-
ear spreading is much more efficient than a full footprint
rasterization for each voxel. This is because bilinear spreading
involves only 4 pixels, while the rasterization of the footprint
for a kernel of radial extent=2 involves 16 pixels, at magnifi-
cation=1. For larger magnifications this number scales by the
square of the magnification factor. For wavelet-splatting the
magnification factor is determined by the level of the wavelet
volume and grows in a power of 2. So it is obvious why the
PCVR brought great speedups, since the rasterization of large
wavelet footprints would take much longer than the bilinear
spreading.

Despite the obvious benefits and the innovative nature of
Westenberg’s and Roerdink’s work, there are still a few open
issues with this method. First, the authors only use a wavelet
decomposition of 2-3 levels, and in their paper they only show
the rendering results achieved with the 2-level wavelet
decomposition, which is equivalent to a maximum magnifica-
tion of 2. It is not clear at this point how the approach would
behave for larger magnifications, since no formal analysis
was given. Second, the approach was only investigated for X-
ray rendering and not for full volume rendering with shading
and compositing. Third, and finally, the effort for the 2D con-
volution on the image plane also has to be taken into account,
especially if we need to perform it at every sampling slice, in
full volume rendering. We would like to have an efficient
scheme for this operation as well.

In this paper, we shall address these three issues. First, we

will give a formal analysis of PCVR in the frequency domain,
illustrated by image examples. Then we will show the appli-
cation of the method for full volume rendering and describe
an efficient method for post-convolution.

3. Theory

Splatting (also known as point-based volume rendering)
[12] is an object-order projection algorithm, where each voxel
is represented by a 3D basis function (identical for all voxels)
and a density value. For image generation, all voxel basis
functions bi are projected to the screen, scaled in value by
their corresponding voxel densities vi, and accumulated in the
pixels pj:

(1)

A projected 3D basis function gives rise to a 2D footprint
that is rasterized (i.e., sampled) into the image grid, scaled in
value by the voxel’s density attribute. Since the footprint is
identical for all voxels, it can be pre-computed and stored in a
table (called the footprint table), and since the pre-computa-
tion is typically not fast, it is most efficient to use a basis func-
tion that is spherically symmetric such that it projects the
same from all viewing directions.

3.1. Overview
We use the image-aligned sheet-buffered splatting algo-

rithm [6] in our work. In essence, this algorithm interpolates,
via splatting of pre-integrated basis-function slices, a series of
image-aligned density sheets from the volume, and then
shades, colors, and composites them. For X-ray, on the other
hand, we can just add the density sheets, or even better, just
rasterize and accumulate the fully pre-integrated basis func-
tions themselves. In any case, the basis functions act as recon-
struction kernels - they are reconstructing the continuous
density function from their gridded voxel samples. Further,
the grid on the sheet (slice) or image acts like a sampling pro-
cess - it samples the reconstructed 3D volume into a 2D raster.
Hence, we have a 3D reconstruction process immediately fol-
lowed by a 3D resampling process, which generates gridded
samples on a 2D slice of the 3D space. This is illustrated (for
the 2D case) in Fig. 2.

Figure 1: Two-phase splatting for magnification=2: (a)
splatting of a voxel into a (low-resolution) grid at volume
resolution, (b) post-convolution of the low-resolution grid
samples to give the high resolution grid samples.

(a) (b)

pj vibij

i 1=

N

∑=

volume with basis functions

interpolated slice samples

Figure 2: Interpolation of a slice from volume basis func-
tions.

3

The bandwidth of the 3D reconstruction filter must be set
to that of the volume grid. If we don’t minify, then the sam-
pling rate of the slice or image is greater or equal that of the
volume, and there is no need to lowpass-filter the 2D image.
This is shown in Fig. 3. In the same figure, we also show what
happens in the PCVR approach, for an ideal filter in the fre-
quency domain (an infeasible sinc filter in the spatial
domain). In step 1, we resample the reconstructed signal into
a grid of equivalent bandwidth fv, and in step 2, the post-con-
volution step, we reconstruct the signal with a filter of identi-
cal bandwidth and sample it into a grid of the desired
resolution fi. We see that for the ideal filter, no aliasing is pro-
duced and no signal is lost in this two-stage process. How-
ever, in practice we are not dealing with ideal filters, and this
is where problems may occur. We shall now move into non-
ideal scenarios, with non-ideal reconstruction filters, and see
what happens there.

3.2. Stage 1: Splatting into a low-res buffer
Earlier we have justified that we need spherically symmet-

ric kernels for splatting to work. We shall now have a look at a
few possible practical candidates. Consider first Fig. 4 where
we show (for 1D) the nearest-neighbor filter (the box filter),
the linear filter, and the Gaussian filter in both
the spatial and the frequency domain. There we see that both
the box and the linear filter go to zero at multiples of the sam-
pling rate fv=1.0, which is where the signal replicas are
located (see Fig. 3). So both box and linear filters have good
suppression around the (usually) largest portion of the aliases,
the signal around the DC term. The Gaussian, on the other
hand, suppresses more signal in the passband (f<0.5), but also
suppresses better in the stopband (f>0.5). Thus, we expect
that the Gaussian will generate somewhat more blurry images,
but with less artifacts due to aliasing.

Note that the plots given in Fig. 4 only show the frequency
curves of the 1D filters. For the reconstruction during render-
ing, however, we use 3D filters. Although the spatial domain
3D filter is given by simply plotting the 1D filter curve along
the radial lines, we cannot use an equivalent method to get the
3D frequency response curve from the 1D spectrum. Instead
we must use the Hankel transform to get the frequency
response H(f) of the spatial filter h(x). This is defined as fol-
lows:

 (2)

where n is the dimension, in our case n=2,3, and J0.5n-1(x) is
the (0.5n-1)th order Bessel function of the first kind [2].

Fig. 5a shows the radial profiles of the Hankel-transformed
radially symmetric box, linear, and Gaussian filters. Fig. 5b
shows the 2D frequency plot of the linear filter, in the context
of the “replica landscape”. We observe from Fig. 5a that the

fs=fv

fs

fi

-fs

-fs

-fi

f

f

f

ideal convolution filter

fv-fv f

ideal reconstruction filter

Figure 3: PCVR in frequency space. Step 1: (a) reconstruc-
tion of the volume with bandwidth fv and (b) sampling it into
a slice at equal bandwidth fs=fv; Step 2: (c) reconstruction of
the slice via convolution with a filter with bandwidth fs and
(d) resampling it into the desired high-resolution grid.

(a)

(b)

(c)

(d)

main lobe replicareplica
1.4 r2⋅–()exp

0

0.2

0.4

0.6

0.8

1

– 3 – 2 – 1 1 2 3

x

– 0.2

0

0.2

0.4

0.6

0.8

1

– 4 – 2 2 4

w

Figure 4: Box (red), linear (blue), and Gaussian (black)
in (a) the spatial and (b) the frequency domain.

(a)

(b)

H f() 2π h x()J0.5n 1– 2πxf()x0.5n xd
0

∞

∫=

4

curve for the linear filter goes to zero not only at multiples of
1.0, which suppresses low bands of the aliases along the
major axes, but also at multiples of , which suppresses the
low bands of the aliases along the diagonals (see Fig. 5b).
However, we also see that the transformed Gaussian has much
better suppression in the stop-band regions, at the expense of
more blurring in the passband (as was observed in the 1D case
as well). Note, that in these plots the zeros are not exactly at
1.0 and , but they could be moved there by increasing the
kernel size slightly, via the Fourier scaling theorem.

The profiles of the 3D Hankel-transformed filters are
shown in Fig. 6. We observe that the zeros at 1.0 and are
still there for the spherically symmetric linear filter’s 3D fre-
quency response (we shall call it 3D-L from now on). How-
ever, in a cubic cartesian frequency space, we ought to
consider that there are three types of replica neighbors to the
main spectrum (see also an illustration of one such Cubic Car-
tesian (CC) cell in Fig. 8a). The closest 6 (axis-aligned)
neighbors are 1.0 away, which is where the 3D-L spectrum is
low (or can be made low via scaling). Then there are 12
neighbors that are away, where 3D-L is also low. How-
ever, there are also 8 neighbors that are away (marked in
blue in Fig. 8a), where 3D-L has a local maximum. This is a
potential source for aliasing. The Gaussian 3D-G, on the other
hand, has small values all around. Thus, we conclude that the
reconstruction with 3D-L will likely tend to give more alias-
ing than 3D-G. Moreover, this aliasing is not removed by the
subsequent convolution step. Since it is pre-aliasing for this
second filtering step, it cannot be removed by subsequent fil-
tering.

The bilinear spreading of points in Westenberg’s and Roer-
dink’s PCVR approach is synonymous with using a 3D-L fil-

ter for splatting (into a grid that has the same resolution than
the volume). So we should expect aliased results, perhaps
more visible at magnification levels larger than were used in
their paper. On the other hand, the more traditional splatting
with 3D-G will not yield aliasing. But before we go on and
present results, we need to consider the post-convolution pro-
cess as well.

3.3. Stage 2: Post-convolution
The process of post-convolution is a 2D operation, and we

would only use it for magnification. (For minification, the
PCVR approach would not be used anyway as it does not
offer any speed benefits.) Note, that the 2D convolution does
not have to be performed with spherically symmetric filters.
Axis-aligned filters, such as a bilinear filter, will be just as
efficient. In fact, it is more efficient, since we can use it as a
separable filter to speed up the convolution process (see Sec-
tion 4 for more details).

The combined filter that results from the PCVR is the con-
volution of the 3D-G (the usual Gaussian employed for splat-
ting) with the kernel used for post-convolution. If we use the
2D equivalent of the 3D-G for post-convolution, then the
resulting Gaussian is which is a stronger low-
pass than the 3D-G. Therefore, it is actually better to use the
bilinear filter for post-convolution, or a slimmer Gaussian, to
keep the slice image sharp. Fig. 7 contrasts the combined fil-
ters that result from different filter pairs. Section 5 will show
the implication on visual quality.

3.4. Potential of alternative grid topologies
Since it was somewhat disappointing to us that the (fast)

bilinear spreading cannot not be applied in the general case,
we also looked into the use of alternative voxel grid configu-
rations. To that end, the BCC (Body-Centered Cartesian) grid
has been found to provide the sparsest grid point distribution
without compromising the signal content (under the condition
that the signal is spherically bounded) [3]. It was used for
splatting by [7][10]. The BCC grid gives rise to the FCC
(Face Centered Cartesian) grid in the frequency domain. The
FCC grid provides the closest 3D packing of signal spectra in
the frequency domain [3]. This grid is shown in Fig. 8b. There
we marked the 1-neighbors to the main spectra (those with
distance 1.0) in red, the -neighbors in green, and the -

2

(a)

(b) (c)

0

0.2

0.4

0.6

0.8

1

– 3 – 2 – 1 1 2 3

u

Figure 5: (a) Radial profile of the 2D frequency responses
for the radially symmetric box (red), linear (blue), and
Gaussian (black) filters. (b) 2D plot of the frequency
response of the linear filter, the black bars denote the DC
locations of the signal replicas. (c) 2D plot of the frequency
response of the Gaussian filter.

2

2

2
3

Figure 6: Radial profile of the 3D frequency responses for
the radially symmetric box (red), linear (blue), and Gauss-
ian (black) filters.

0.2

0.4

0.6

0.8

1

– 3 – 2 – 1 1 2 3

u

0.7 r2⋅–()exp

2 3

5

neighbors in blue. There are 12 1-neighbors and 6 -neigh-
bors. (Note that there are more 1-neighbors than for the CC
cell, which is why the FCC cell represents a closer packing.)
But more importantly for this discussion, there are also 8 -
neighbors, exactly as many as in the standard CC grid. Due to
this circumstance, we do not expect that the BCC grid will
give better results than the CC grid for the bilinear spreading
in the first phase of the PCVR.

4. Implementation Details

In our image-aligned sheet-buffered splatting pipeline [6],
after the viewing transform is applied, each voxel is sliced
during a front-to-back traversal of the volume. A sliced foot-
print of its basis function is then rasterized on each of the

sheetbuffers it intersects. Since the density sheetbuffers match
the image resolution, they are ready to be used for per-pixel
classification and shading (post-classified rendering).

As explained in Section 3, PCVR consists of two distinct
stages. For each sheetbuffer, the view-transformed volume is
first sampled onto a grid of matching resolution (no scaling).
Then a scaled convolution filter is used to resample the sheet-
buffer to image resolution. After closely examining the PCVR
process, a simple observation can be made: If the resulting
image resolution is an exact multiple of the volume resolu-
tion, then all the pixels of the initial sampling grid (at volume
resolution) coincide with pixels of the larger grid. This allows
both stages to be performed on the same high resolution grid.
Accessing the low resolution grid is just a matter of adjusting
indices in the storage array. It also makes it possible to use the
much more efficient discrete convolution using a separable
kernel. It turns out that this is 3-4 times faster than a full con-
volution.

During the first stage a Gaussian kernel is used to splat the
voxels into the low-resolution subgrid (see Fig. 9a). The
radius of the kernel used is 2, so an area of 4x4 pixels is splat-
ted on the low-res grid for each voxel. Here, after the viewing
transform, voxels may project onto arbitrary image locations,
so splatting requires a hi-resolution splatting kernel to be sam-
pled by the pixels. This happens once per voxel, independent
of the scale factor. As shown in Fig. 11h and Fig. 12h, this
splatting stage just updates the corresponding pixels of the
low-resolution subgrid.

At the second stage, the resulting sheetbuffer (with non-
zero values only in the pixels of the low-res subgrid) is con-
volved with a 2D kernel that matches the image resolution in
order to update the values of the hi-res grid of the sheetbuffer
and fill in the gaps. Since the positions of the low-res grid pix-
els now coincide with the hi-res grid pixels, there is no need
for a high-resolution kernel lookup table that can be sampled
everywhere, we can just use discrete convolution (see
Fig. 9b). The kernel is only sampled once to match the resolu-
tion of the target image. Further savings can be achieved by
using a separable filter, like a Gaussian or the bilinear filter
for this operation. As shown earlier, both will produce accept-
able results in this 2D operation. However, the smaller bilin-
ear kernel achieves much better performance in terms of
speed (see Fig. 9c).

Our rendering engine is further optimized using an image-
driven occlusion scheme. Simulating the effect of early ray
termination in ray-casting, the system maintains an “occlusion
map”. The occlusion test culls the voxel if its footprint area in
the resulting image buffer is fully opaque. Additionally, in this
implementation we are maintaining a tile structure which pro-
vides a coarse grain division of the image. Only the tiles with
updated pixels are post-convolved using a cache-friendly sep-
arable convolution algorithm.

For X-Ray images the original rendering engine would
keep updating the footprints of voxels into the same sheet-
buffer, since no depth information is necessary for this visual-
ization. After the whole volume is traversed, the final image is

0

0.2

0.4

0.6

0.8

1

– 8 – 6 – 4 – 2 2 4 6 8

w

Figure 7: Frequency plot of various combinations of fil-
ters, generated by convolving the filter used in stage 1
(splatting) with the filter used in stage 2 (post-convolution).
We will use the following terminology: G1.4: The traditional
Gaussian with exp(-1.4·r2); G2.0: A slimmer Gaussian with
exp(-2.0·r2); B: Bilinear filter. From greater bandwidths
towards smaller bandwidths, listing the splatting filter first
and the post-convolution filter second:

• Red: G1.4 used directly without post-convolution
• Green: G2.0*B
• Black: G2.0*G2.0
• Magenta: G1.4*B
• Blue: G1.4*G1.4

2

3

(a) (b)

Figure 8: (a) Cubic cartesian (CC) cell in frequency space,
(b) Face centered cartesian (FCC) cell in frequency space.
The black dot marks the location of the main spectrum. The
red dots mark the 1-neighbors (the neighbors with dis-
tance=1), the green dots mark the -neighbors, while the
red dots mark the -neighbors.

2
3

6

produced by adjusting the resulted intensities to fit the image
range. The PCVR version of X-Ray splatting accumulates all
of the splatted voxels in the low-resolution subgrid of the
intensity buffer, and it convolves the resulting image only
once in the end. As we can see in the results section, PCVR
provides even higher speedups for X-Ray rendering.

5. Results

We now present the performance impact of applying
PCVR to our current software implementation of image-
aligned sheet-buffered splatting. In terms of performance we
have observed speedups of two and more, depending on the
scale factor. Fig. 10a and b show rendering times of the UNC
CT Head dataset for both full shaded rendering and X-Ray
rendering. The curves in Fig. 10a show the time taken to ren-
der the image using traditional splatting (blue curve), PCVR
using a Gaussian kernel for the post-convolution (magenta),
and PCVR using a bilinear filter for the post-convolution (sky
blue). In the first graph, we observe significant reductions and
speedups of about 2 for magnification < 5. After magnifica-
tion=7 we can see that PCVR using a Gaussian post-convolu-
tion kernel is actually slower than regular splatting. This can
be explained by the fact that full shaded splatting is image
driven using an occlusion culling scheme. Our PCVR port of
the splatter uses occlusion culling, on top of a coarse grain tile
structure that depends on the size of the post-convolution ker-
nel, and it drives the convolution process. The smaller bilinear
kernel behaves much better under these circumstances.

In X-Ray imaging, PCVR seems to have a more obvious
advantage. In this case all the voxels have to be splatted, and
rasterization is the dominating operation. The advantage of
PCVR is that it only splats at the resolution of the volume.
Thus the rasterization operations are not affected at all by the
image size. In addition, post-convolution only occurs once, at
the end of the volume traversal.

In order to compare the quality of the proposed method we
have rendered the CT head dataset both as an isosurface and
as an X-Ray image. In Fig. 11a-c we show the head rendered
using regular splatting, PCVR using a bilinear post-convolu-
tion filter, and PCVR using a Gaussian post-convolution filter.
The expected effect of the post-convolution is slight blurring,
as explained in the previous section. The (amplitude-magni-
fied) difference images in Fig. 11e-g show that the differences
are observed mainly at sharp edges and contours. Fig. 11d is a
rendering using bilinear spreading as the first step of the pro-
cess. This image illustrates the aliasing artifacts expected

–2 –1 1 2

Low-res grid
Hi-res grid

resulting
points

Source voxel
(any position)

Splatting Kernel

samples at
any location

(a)

(b)

(c)

Discrete Convolution Kernel precomputed weights
at fixed positions

Initial points from
splatting

Interpolated points from
convolution

Discrete Convolution Kernel

Figure 9: Overview of the PCVR in our splatting pipeline:
(a) splatting of a voxel into a (low-resolution) grid at vol-
ume resolution, (b) post-convolution of the low-resolution
grid samples to give the high resolution grid samples, using
Gaussian kernel, (c) using a linear bilinear filter (shown
for 1D)

Full Shaded Splatting

0

10

20

30

40

50

60

70

80

1X 2X 3X 4X 5X 6X 7X 8X

Regular Splatting
PostConvGaussian
PostConvBilinear

XRay Splatting

0

5

10

15

20

25

30

35

1X 2X 3X 4X 5X 6X 7X 8X

Regular Splatting
PostConvGaussian
PostConvBilinear

Figure 10: Impact of PCVR on our splating pipeline for: (a) Full Volume rendering, (b) X-Ray Splatting. The graphs show time
to render in seconds for scales of 1X to 8X.

Full Shaded Splatting

0

10

20

30

40

50

60

70

80

1X 2X 3X 4X 5X 6X 7X 8X

Scale

Ti
m

e
(S

ec
)

Regular Splatting
PostConvGaussian
PostConvBilinear

XRay Splatting

0

5

10

15

20

25

30

35

1X 2X 3X 4X 5X 6X 7X 8X
Scale

Ti
m

e
(S

ec
)

Regular Splatting
PostConvGaussian
PostConvBilinear

(a) (b)

7

from this approach. Finally, Fig. 11h is a rendering without
the post-convolution step, to better demonstrate the algorithm.

As we observe the X-Ray images in Fig. 12, we can still
observe a slight blurring effect visible mostly in the Gaussian
post-convolved image of Fig. 12c. For the image rendered
with bilinear splatting in Fig. 12d, we can already observe
slight aliasing artifacts that appear as lines within the image.
Again, these are caused by the less than perfect spherically
symmetric bilinear filter used. The four images in the bottom
row (Fig. 12i) have all been rendered using the bilinear
spreading method for magnifications of 1X, 2X, 3X, and 4X.
We can observe that for magnification 1 and 2, there no per-
ceivable artifacts, as was also shown in [11]. However, as the
magnification increases to 3 and higher, the aliasing becomes
more visible in the image. Note that these artifacts are easier
to detect at low magnifications in full shaded renderings,
since there the gradient estimation and shading operations are
very sensitive to even small errors. Finally, in Fig. 12k, we
contrast these images with the alias-free image obtained with
the 3D-G and subsequent bilinear convolution.

6. Conclusions

We have shown that post-convolved volume rendering
(PCVR) can yield significant speed-ups for magnified view-
ing, especially for X-ray volume rendering. It reduces the ren-
dering effort by moving all 3D interpolations that serve
volume supersampling to a subsequent, less expensive 2D
post-convolution stage. We discussed the method in the con-
text of splatting, using spherically symmetric interpolation fil-
ters. Previous approaches suggested (for X-ray) to perform a
simple bilinear spreading of voxels into the low-resolution
grid, followed by a post-convolution into the desired high-res-
olution grid. We found (and justified), however, that this can
lead to significant rendering artifacts, which are caused by
aliasing in the first stage of the process. The aliasing comes

from the fact that the bilinear spreading is equivalent to splat-
ting a spherically symmetric linear filter kernel, whose fre-
quency response is unfortunately non-zero at some of the
signal replicas. Based on our analysis, we found that it is
advised to instead use the traditional Gaussian in the first
stage, which has a more favorable frequency response. On the
other hand, it is permissible to use an efficient bilinear filter in
the post-convolution stage, and we also found that for integer
magnifications an efficient discrete post-convolution scheme
can be employed, which provides additional significant
speedups for PCVR. A downside of the PCVR approach is
that it may lead to a slight increase in blurring since the com-
bined filter is a convolution of two lowpass filters. Our exper-
iments indicated, however, that the blurring is relatively
minor.

The PCVR method has a number of application scenarios
in which it can proof useful. The first is in software splatting,
and, in fact, we use the PCVR scheme as a default option in
our in-house software splatter. We also think that it can be
useful in hardware implementations. We are currently porting
our image-aligned sheet-buffered splatting approach to com-
modity hardware platforms, such as nVIDIA and ATi. For
PCVR, one could rasterize the texture-splats into a low-reso-
lution buffer and then project this buffer into a high resolution
buffer, all in hardware. At the current time we cannot report
any timings, but it may be beneficial to do this if the applica-
tion turns out to be rasterization-bound. We have already seen
the application of PCVR for the image generation from hier-
archical basis functions, such as wavelets [11]. We think that
our approach will facilitate higher magnifications and there-
fore more levels, artifact-free. We also think that PCVR may
be useful for custom hardware implementations. For example,
the VolumePro 500 [8] could only cast one ray per voxel. To
increase resolution without having to cast more rays, a post-
convolution module could be inserted before the shading

Figure 11: Full rendering of CT Head using: (a) Regular Splatting, (b) PCVR with bilinear Post Convolution, (c) PCVR with
gaussian Post Convolution, (d) PCVR with Bilinear Spreading (pre-convolution). (e),(f),(g): Difference Images of (a-b), (b-c),
(a-c). (h) PCVR without the Post Convolution, to better demonstrate the process.

(a) (b) (c) (d)

(e) (f) (g) (h)

8

pipeline but after interpolation. Similarly, the shear-warp
algorithm could be modified by inserting a post-convolution
module after each slice interpolation. Tiles could be used to
limit the convolution effort. Finally, our findings are also rele-
vant for medical imaging, in particular for CT reconstruction
algorithms, which often use bilinear spreading in their projec-
tors/backprojectors. The added accuracy obtained from using
a better kernel may help to increase reconstruction fidelity.

Acknowledgements

This research was partially supported by NSF CAREER
grant ACI-0093157 and DOE grant MO-068.

References

[1] A. Baerentzen, “Octree-based sculpting,” Late Breaking
Hot Topics IEEE Visualization’98, pp. 9-12, 1998.

[2] R. Bracewell, The Fourier Transform and its Applica-
tions - 3rd edition, McGraw-Hill, 1999.

[3] J.H. Conway and N.J.A. Sloane, Sphere Packings, Lat-
tices and Groups, 2nd edition, Springer Verlag, 1993.

[4] J. Jang, C. Shaw, W. Ribarsky, and N. Faust, “View-
dependent multi-resolution splatting of non-uniform
data,” Eurographics/IEEE TGVC Visualization Sympo-
sium 2002, pp. 125-132, 2001.

[5] P. Lacroute and M. Levoy, “Fast volume rendering using
a shear-warp factorization of the viewing transforma-
tion,” Proc. SIGGRAPH ‘94, pp. 451- 458, 1994.

[6] K. Mueller, N. Shareef, J. Huang, and R. Crawfis, "High-
quality splatting on rectilinear grids with efficient culling
of occluded voxels," IEEE Transactions on Visualization
and Computer Graphics, vol. 5, no. 2, pp. 116-134,
1999.

[7] N. Neophytou and K. Mueller, “Space-time points: splat-
ting in 4D,” Symposium on Volume Visualization and
Graphics 2002, pp. 97-106, 2002.

[8] H. Pfister, J. Hardenbergh, J. Knittel, H. Lauer, and L.
Seiler, “The VolumePro real-time raycasting system,”
Proc. SIGGRAPH 99, p. 251-260, LA, August 1999.

[9] J. Sweeney and K. Mueller, "Shear-Warp Deluxe: The
Shear-Warp algorithm revisited," Joint Eurographics -
IEEE TCVG Visualization Symposium 2002, pp. 95-104,
Barcelona, Spain, May 2002.

[10] T. Theussl, T. Möller, and E. Gröller, “Optimal regular
volume sampling,” Proc. Visualization’01, pp. 91-98,
2001.

[11] M. A. Westenberg and J. B. T. M. Roerdink, “X-ray vol-
ume rendering through two-stage splatting,” Machine
Graphics and Vision, vol. 9, no. 1/2, pp. 307-314, 2000.

[12] L. Westover, “Footprint evaluation for volume render-
ing”, Proc. SIGGRAPH’90, pp. 367-376, 1990.

Figure 12: X-Ray rendering of the CT Head using: (a) regular splatting, (b) PCVR with bilinear post-convolution, (c) PCVR
with Gaussian post-convolution, (d) PCVR with bilinear spreading (pre-convolution). (e),(f),(g): amplified difference Images of
(a-b), (b-c), (a-c). (h) PCVR without the post-convolution, (i) compares the image quality of PCVR with bilinear spreading at
scales of 1X, 2X, 3X, 4X, (k) the image obtained with PCVR at 4X via Gaussian spreading and bilinear post-convolution.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (k)

