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ABSTRACT

Volume ray casting is based on sampling the data along si
rays. In this technique, reconstruction is achieved by a convolutio
which collects the contribution of multiple voxels to one samp
point. Splatting, on the other hand, is based on projecting d
points onto the screen. Here, reconstruction is implemented by
“inverted convolution” where the contribution of one data eleme
is distributed to many sample points (i.e., pixels). Splatting pr
duces images of a quality comparable to raycasting but at grea
speeds. This is achieved by precomputing the projection footpr
that the interpolation kernel leaves on the image plane. Howev
while fast incremental schemes can be utilized for orthograph
projection, perspective projection complicates the mapping of t
footprints and is therefore rather slow. In this paper, we merge
technique of splatting with principles of raycasting to yield a ray
driven splatting approach. We imagine splats as being suspende
object space, a splat at every voxel. Rays are then spawned
traverse the space and intersect the splats. An efficient and accu
way of intersecting and addressing the splats is described. Not o
is ray-driven splatting inherently insensitive to the complexity o
the perspective viewing transform, it also offers acceleration me
ods such as early ray termination and bounding volumes, which
methods that traditional voxel driven splatting cannot benefit from
This results in competitive or superior performance for parall
projection, and superior performance for perspective projection

1 INTRODUCTION

In the past few years, direct volume rendering has emerged
a major technology in many visualization scenarios. A natur
choice for its use is the viewing of data sets that are inherently v
umetric, such as medical data produced by MRI, CT, or PET sca
ners, or scientific studies, such as the visualization of flow
terrain. Newer applications, such as volume-based interact
design and sculpting [8][16], require direct volume rendering
display the results of the design process. Yet another applicat
for direct volume rendering is the interactive exploration of volum
data in form of fly-throughs, that has recently shown great prom
for medical diagnosis and surgical training [7].

The rendering speed requirements for interactive volum
viewing and manipulation stand in great contrast to the complex
of the rendering task. In contrast to surface rendering where ha
ware accelerators are readily available at relatively low cost, tr
volumetric rendering hardware is still rather expensive and restr
tive. Thus the development of software solutions running on sta
dard computer hardware still forms an important area of resear
In addition to rapid generation, we also desire the image to lo
realistic. The perspective viewing distortion is an important com
ponent in this strive for realism, as it can be utilized to conve
some depth information.
a
ect
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1.1 Modes of Volume Rendering

In this paper, we distinguish between three types of volum
rendering modes: 1) Direct volume rendering in the low-albed
approximation; 2) Summation or X-ray rendering; and 3) Max
mum Intensity Projection (MIP) rendering.

In direct volume rendering, we computeIλ(x,r), the amount of
light of wavelengthλ coming from ray directionr that is received
at pointx on the image plane:

(1)

HereL is the length of rayr. We can think of the volume as being
composed of particles that receive light from all surrounding ligh
sources and reflect this light towards the observer according to
specular and diffuse material properties of the particles. Thus,
Equation (1),φλ is the light of wavelengthλ reflected at locations
in the direction ofr. Since volume particles have certain densitiesµ
(e.g., opacities), the light scattered ats is attenuated by the volume
particles betweens and the eye according to the exponential atte
uation function. The process of merging colors and opacities alo
the ray is calledcompositing.

In summation rendering, we are only interested in the attenu
tion line integral accumulated alongr:

(2)

Summation rendering comes to bear in a class of iterative
reconstruction algorithms, the Algebraic Reconstruction Techniq
(ART) [5], that is often used to reconstruct a volumetric obje
from projectional image data acquired by CT, PET, or SPEC
scanners. One ART iteration step consists of projecting the volu
onto one of the image planes, computing the error between the r
dered image and the acquired image, and backprojecting the e
image in a “smearing” fashion onto the voxel grid. This procedu
is repeated possibly many times at all projection angles for whi
data is available and continues until some convergence criterio
reached. Both projection and backprojection is performed usin
variation of summed perspective volume rendering. Since a la
number of projection operations is usually required for faithful 3
reconstruction, the volume renderer employed must be both f
and accurate. If the projection data were generated by a cone-b
projection source, as is usually the case in 3D CT, then the volu
renderer must support the perspective viewing transform.

Finally, in MIP we seek the maximum density alongr:

. (3)

MIP displays are often utilized in medical applications, e.g., in th
display of volumes obtained by Magnetic Resonance Angiograp
(MRA). In MRA, a vascular structure is perfused with an opaqu
contrast agent while the MRI image acquisition is in progress. If
MIP rendered image is appropriately thresholded, then the obj
appears transparent with only the brightest (e.g. densest) featu

I λ x r,( ) φλ s( ) µ t( ) td
0

s

∫– 
 exp

0

L

∫ ds=

I Sum x r,( ) µ t( ) td
0
L∫=

I MIP x r,( ) max µ s( )( ) 0 s L≤ ≤( ),=

-

du,
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here the opacified arteries, shining through. Perspective viewing
may be used to provide the viewer with the necessary depth cues
for distinguishing the individual arterial structures, and, at the
same time, mimics best the cone-beam viewing scenario found in
traditional X-ray angiography.

1.2 Ray-Driven vs. Voxel-Driven Approaches

Direct volume rendering algorithms can be grouped into two
categories: Forward projection methods in which rays are cast
from the image pixels into the volume [10][15][18], and backward
projection methods, such as the splatting algorithm introduced by
Westover [20], in which volume elements are mapped onto the
screen [19][21].

In raycasting, a discretized form of Equation (1) is computed
by sampling the volume at certain intervals and compositing the
sample’s opacity and color with the present ray values. A sample
value is obtained by reconstructing, e.g. interpolating, the continu-
ous volume function at the sample location from the voxel grid val-
ues. This is a rather time consuming process given the large
number of sampling steps and makes the use of sophisticated inter-
polation filters with an extent larger than the commonly applied tri-
linear kernel impractical. However, raycasting can be accelerated
by restricting the interpolation operations to relevant volume
regions. Common acceleration techniques include bounding poly-
hedra [17], space leaping [22][3], and hierarchical volume decom-
position, such as octrees or pyramids [4][11]. In addition, since
raycasting usually operates from front to back, compositing can
terminate as soon as the accumulated opacity reaches unity. This is
not valid for X-ray and MIP renderings which may use bounding
polyhedra, but must then traverse the entire enclosed volume.

For our purposes it is important to realize that raycasting is
relatively insensitive to the complexity of the perspective viewing
transform: Perspective sight-rays emanating from neighboring pix-
els are just tilted relative to each other but remain linear and, there-
fore, do not differ conceptually from rays stemming from parallel
projection. However, we must also realize that the diverging nature
of the perspective rays leads to a non-uniform sampling of the vol-
ume: Volume regions more distant from the eye point are sampled
less densely then regions closer to the eye. Thus small features fur-
ther back in the volume may be missed and not displayed.

In splatting, a voxel’s contribution is mapped directly onto the
pixels, eliminating the need for interpolation operations. A voxel is
modeled as a fuzzy ball of energy shaped by the interpolation func-
tion. Projection is performed by mapping the view-transformed,
pre-projected 2D “footprint” of the kernel function to the screen.
This footprint is usually implemented as a discrete lookup table,
storing an array of equally spaced parallel line integrals that are
computed across the kernel function either analytically or by
quadrature. For non-compositing X-ray type projections, summing
the individual voxel contributions by their footprint line integrals
on the image plane is equivalent to accumulating this sum by inter-
polating samples from the grid voxels along individual rays. How-
ever, the line integrals across a voxel are now continuous or
approximated with good quadrature, whereby in raycasting the
computed line integrals are only discrete ray sums. Splatting also
allows the efficient use of sophisticated interpolation functions of
larger extent. For these two reasons, summed, non-compositing
volume integrals as used for X-ray projection are considerably
more accurate with splatting than with raycasting. However, com-
positing of color and opacity is only approximate. This stems from
the circumstance that kernels must overlap in object space to
ensure a smooth image, and thus reconstruction and compositing
can no longer be separated. Fortunately, for volumes with reason-
ably dense sampling rates, the effects of this deficiency are usually
hardly noticeable.

Traditional splatting allows orthographic projections to be

rendered very fast by utilizing efficient incremental scheme
Unfortunately, these schemes are not applicable for perspec
projection due to the non-linearity of the perspective viewing tran
form. Another drawback of splatting is that being a voxel-drive
algorithm, it must visit every voxel in the grid. However, only vox
els with density values within the range of interest need to be tra
formed and composited. Furthermore, since splatting is m
commonly used in a back-to-front fashion, it is likely that man
voxels will be transformed and shaded only to be occluded later
opaque structures located closer to the image plane, giving rise
many unnecessary computations. A possible front-to-ba
approach, eliminating this problem, would divide the volume in
octrees and the image into quadtrees, transforming only the oc
nodes that fall within a non-opaque region in the screen quadtr
However, the induced overhead for tree traversal may offset
savings gained. Another way of speeding up the splatting proc
is the use of larger splats in volume areas of little variation, as su
gested by [9].

Approaches that utilize special graphics hardware have a
been proposed. These solutions are relatively insensitive to
complexity of the perspective viewing transform, but requir
sophisticated graphics workstations. While [1] maps the vox
footprint as a texture onto a polygon and uses texture mapp
hardware for its projection, [4] approximates the screen footpr
as the projection of a Gouraud shaded polygon mesh. The qua
of the rendered image or 3D reconstruction, respectively, is th
bounded by the resolution of the texture memory (commonly n
more than 12 bits per texel component) or the quality of the poly
onal approximation, respectively.

We now describe an algorithm that merges voxel-driven spl
ting with the advantages of ray-driven approaches to enable f
and accurate perspective rendering. Although researchers in
field of medical imaging have proposed table-based pre-integra
raycasting long before the splatting algorithm became popular
(and later [12]), these efforts were limited to summed X-Ray typ
rendering, and the issue of comparing ray-driven and voxel-driv
approaches in terms of speed and accuracy was never addres
We also introduce the concept of pyramidal beams to compens
for the effect of diverging perspective rays.

In the following, Section 2 describes voxel-driven splatting
Section 3 describes ray-driven splatting, and Section 4 provid
timings and images for both approaches and traditional raycast

2 VOXEL-DRIVEN SPLATTING

We now give a brief review of incremental schemes used f
traditional voxel-driven splatting. In the following discussion w
restrict ourselves to volumes that are sampled in a regular cu
grid. This may seem restrictive at first, but it is not unrealistic
assume that volumes sampled on general rectilinear grids (
some irregular grids) can always be resampled into such a g
configuration. The ellipsoidal kernel functions used by Westov
then become simple spherical kernel functions which project ide
tically for all viewing directions.

2.1 Orthographic Projection

For spherically symmetric kernel functions the same footpri
table and mapping function can be used for all viewing angles. W
chose a Gaussian kernel function with relevant radial extent ofr=2
voxel lengths, sampled into a 2D footprint table of 1000×1000
entries. Nearest neighbor interpolation is used when mapping
footprint onto the image.

Consider Figure 1 where the orthographic projection of
voxel’s footprint is depicted for the 2D case. As suggested by [1
we can think of the footprint as a polygon with a superimposed te
ture map that is placed in object space. Hereby the texture ma
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given by the projected kernel function, e.g. the array of line inte-
grals. For the remainder of our discussion we will refer to the foot-
print in object space as thefootprint polygon, while the projection
of the footprint polygon onto the image plane will be called the
footprint image. Recall that splatting accumulates (with some limi-
tations) the same value on the image plane as a ray would accumu-
late when traversing the volume. Thus, when projecting the
footprint polygon to obtain the line integral for the pixel in the
footprint image we must ensure that we position the footprint poly-
gon orthogonal to the direction of the sight-ray in object space.

In orthographic viewing the projection and mapping opera-
tions are simple and can be done in an incremental fashion.
Figure 1 shows this graphically for the 2D case. The volume is
decomposed into slices, where the slice planes are the voxel planes
most parallel to the image plane. To set up the incremental scheme,
we have to compute the transformation matrix of the volume.
Then, we project the footprint polygon of a voxel located at one of
the volume vertices, say voxelv0,0,0, onto the image plane. This
yields a pointExtLeftBot(v0,0,0), the bottom left vertex ofv0,0,0’s
footprint image on the projection plane (ExtLeft(v0,0) in Figure 1).
For all other voxelsvx,y,z, the bottom left projection extrema
ExtLeftBot(vx,y,z) can be computed incrementally by adding appro-
priate elements of the transformation matrix and advancing in a
voxel→row→slice fashion [13], whereby slices are processed from
back to front. Once a pointExtLeftBot(vx,y,z) is known, then all other
footprint image vertex points are easily computed by adding the
kernel extent along the two image dimensions. In the 2D case of
Figure 1 we get:

.

This yields a square on the image plane. Pixels that fall within the
square are then determined by rounding operations. (In Figure 1,
the interval of pixels [pi,pi+3] that fall within the footprint image is
[Ceil(ExtLeft(vx,y)), Floor(ExtRight(vx,y)). Simple incremental addi-
tions are used to scan through the square, adding the voxel’s opac-
ity and color to the slice compositing sheet.

Thus, the splatting algorithm consists of two nested loops: the
outer loop maps footprint polygons onto the image plane, while the
inner loop maps the pixels within the footprint image into the foot-
print table. If we defineN to be the number of voxels in the grid,
andn the number of pixels that fall within a footprint image, then
the computational complexity for the mapping operation footprint

polygon to image plane is O(N) and the mapping operation foot-
print image to footprint table is O(n) for each voxel. Altogether
there are about 10 additions and multiplication in the outer lo
and 7 such operations in the inner loop.

2.2 Perspective Projection

In perspective, incremental arithmetic can still be utilized t
map the pixels onto the footprint table (the inner loop of the spla
ting procedure), although we now require two divisions per pix
and a few more additions than in the orthographic case. Howev
for mapping the footprint polygon onto the image plane we n
longer can employ incremental operations which is due to the no
linearity of the perspective transform.

Consider Figure 2 which illustrates perspective splatting
2D. Here we fixed the coordinate system at the eye point. The fo
print polygon is placed orthogonal to the vector starting at the e
and going through the center of vx,y,z. Note that this yields an accu-
rate line integral only for the center ray, all other rays traverse t
voxel kernel function at a slightly different orientation than give
by the placement of the 2D (1D in Figure 2) footprint polygon i
object space. This is illustrated in Figure 3 for the 2D case. He
we show the footprint polygonfp (thick solid line) positioned
orthogonal to the line connecting the eye point and the voxel ce
ter. The dotted liner’ coincides with the ray that intersects pixelpj
on the image plane. Clearly,r’ does not pierce the footprint poly-
gon at a right angle. Since all entries in the footprint table are co
puted for rays intersecting the footprint polygon perpendicular
the ray integral retrieved by the mapping operation is due to a r
along the solid liner. To obtain the correct value forr’ , we should
rotate the footprint polygon to positionfp’ (thick dotted line)
before we perform the mapping operation forpj. This, however, is

Figure 1: Orthographic splatting: Incremental mapping of
the footprint polygons onto the image plane and incremen-
tal mapping of the image pixels within the footprint image
into the footprint table.

pi

pi+3
pi+2
pi+1

ExtLeft(vx,y)

ExtRight(vx,y)

Image Plane

Kernel function extentVoxel grid

Proj(vx,y)
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v x,
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Figure 2: Perspective splatting: Mapping the footprint
polygon onto the image plane and mapping the affected
image pixels back onto the footprint table.
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Figure 3: Perspective splatting: Accumulated line inte-
grals vs. actual line integrals.
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prohibitive as it would make the mapping operations computation-
ally rather costly. Fortunately, the error is small for most cases.
Since the splatting kernel is rotationally symmetric, the error solely
due to the orientation difference ofr andr’ is zero. However, there
remains an error with regards to the position at which the lookup
table is indexed. This error is given by: ,
which is nearly zero for most cases unless voxels close to the
image plane are viewed at large view cone angles.

The coefficients of the footprint polygon’s plane equation are
given by the normalized center ray (the vectoreye-vx,y,z). From this
equation we compute two orthogonal vectorsu andw on the plane.
Herebyu and w are chosen such that they project onto the two
major axes of the image. Usingu andw, we can compute the spa-
tial x,y,zpositions of the four footprint polygon vertices in object
space (VRight(vx,y) and VLeft(vx,y) in the 2D case depicted in
Figure 2). These four vertices are perspectively projected onto the
image plane. This yields the rectangular extent of the footprint
image, aligned with the image axes (ExtRight(vx,y) andExtLeft(vx,y)
in the 2D case). By expressing the intersections of the pixel rays
with the footprint polygon in a parametric fashion we can set up an
incremental scheme to relate the image pixels within the footprint
image with the texture map entries of the footprint table. Hence the
inner loop of the splatting procedure can still be executed effi-
ciently.

The computational effort to map a footprint polygon onto the
screen and to set up the incremental mapping of the pixels into the
footprint table is quite large: Almost 100 multiplications, addi-
tions, and divisions, and two square root operations are necessary.
This cost is amplified by the fact that this has to be done at O(N),
unless voxels can be culled by thresholding. The inner loop
requires 10 additions, multiplications, and divisions, and is there-
fore still reasonably fast. We found that with X-ray type summa-
tion rendering, perspective projection was about four times more
expensive than orthographic projection.

3 RAY-DRIVEN SPLATTING

As indicated before, ray-driven algorithms are generally not
sensitive to the non-linearity of the perspective viewing transform.
We now describe an approach that uses this paradigm for splatting.

3.1 Orthographic Projection

In ray-driven splatting, voxel contributions no longer accumu-
late on the image plane for all pixels simultaneously. In contrast,
each pixel accumulates its color, opacity, and density sums sepa-
rately. As in voxel-driven splatting, we ensure proper compositing
by dividing the volume into 2D slices formed by the planes most
parallel to the image plane. When a sight-ray is shot into the 3D
field of interpolation kernels, it stops at each slice and determines
the range of voxel kernels within the slice that are traversed by the
ray. This is shown in Figure 4 for the 2D case: The ray originating
at pixel pi pierces the volume slice located atxs at y=y(i,xs). The
voxel kernels within the slicexs that are intersected by the ray are

given by the interval [Ceil(yLeft(i,xs)), Floor(yRight(i,xs))]. We
computeyRight(i,xs) as:

.

The computation foryLeft(i,xs) is analogous. After determin-
ing the active voxel interval we must compute the indexes into the
voxel footprint table. This can be efficiently implemented by real-
izing that the index into the footprint table of a grid voxelv located
at coordinates (yv,xv) is given by the distancedr of the two parallel
lines (planes in 3D) that traversev’s centerpoint and the slice inter-

section point of the ray aty(i,xs), respectively (see Figure 5). We
find:

(4)

where a and b are the coefficients of the implicit line equation
and are also given by the components o

the (normalized) ray vector. Maintaining the variablesyLeft(i,x),
yRight(i,x), anddr along a ray can all be done using increment
additions.

For the 3D case, we need to replace the linear ray by tw
planes. A 3D ray is defined by the intersection of two orthogon
planes cutting through the voxel field. The normal for one plane
computed as the cross product of the ray and one of the minor a
of the volume. The normal of the second plane is computed as
cross product of the ray and the normal of the first plane. Thus,
two planes are orthogonal to each other and are also orthogona
the voxel footprint polygons. Intersecting the horizontal plane wi
a footprint polygon and using plane equations in the spirit of Equ
tion (4) results in the horizontal row indexdrrow into the footprint

dr' dr– dr 1 αcos–( )=

yRight i xs,( ) y i xs,( )
extentkernel

α( )cos
-----------------------------+=

Figure 4: Ray-driven splatting: Determining the range
of voxels within a given compositing plane that are tra-
versed by a ray originating at pixelpi.
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Figure 5: Ray-driven splatting: Computing the indexdr
into the footprint table.
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table, while the intersection with the vertical plane yields the verti-
cal column indexdrcol. Using these two indexes, the value of the
ray integral can be retrieved from the footprint table.

Note that, in contrast to voxel-driven splatting, a voxel may
now be accessed and composited more than once for different rays.
Since we do not want to shade the voxel each time it is accessed,
we either pre-shade the volume before rendering it for many views,
or we shade on the fly and cache away the result. Since we are
using phong shading in our renderings, we shade voxels on the fly
and maintain an additional shaded volume where we store the color
of a shaded voxel once it is available. In systems where memory is
scarce, one could also use a hash table.

There are now three nested loops: The most outer loop sets up
a new ray to pierce the volume, the next inner loop advances the
ray across the volume slice by slice and determines the set of vox-
els traversed per slice, and finally, the most inner loop retrieves the
voxel contributions from the footprint tables. For orthographic pro-
jection, the plane equations have to computed only once since all
rays are parallel. This reduces setting up a new ray to a few simple
incremental operations. The cost of advancing a ray across the vol-
ume and determining the footprint entries is comparable to the cost
of rotating a kernel and splatting it onto the image plane in the
voxel-driven approach. We found the time for parallel projected
summed X-ray rendering to be only slightly higher for ray-driven
splatting than for voxel-driven splatting, however, when compared
to traditional raycasting the saving were at the order of 3 with the
added benefit of better accuracy. For direct volume rendering, the
benefits of early ray termination in the ray-driven approach domi-
nate over the extra cost for setting up the ray when an adequate
bounding volume is used.

The ray-driven approach changes the splatting algorithm from
voxel order to pixel order. Thus, the most outer loop is of O(P),
with P being the number of image pixels. This has the advantage
that the complexity of any extra work that has to be done for per-
spective projection (e.g. recomputing the two planes that define the
ray in 3D) is roughly one order of magnitude less than in voxel-
driven splatting.

3.2 Perspective Projection

The only change required for perspective, as hinted before, is
to move the computation of the two ray defining planes into the
outer most loop since each ray has a different orientation in space.
This amounts to about 50 extra additions, multiplications, and divi-
sions, and three square roots per pixel. As was also mentioned
before, however, the complexity of this step is only O(P), thus the
extra work required for perspective has a much smaller scaling fac-
tor than in voxel-driven splatting. And indeed, we found that the
extra computational cost for perspective in ray-driven splatting is
rather small. Note also that ray-driven splatting does not introduce
inaccuracies. As a matter of fact, it prevents the situation illustrated
in Figure 3 by design.

But there persists one problem with perspective viewing in
general: Due to the diverging rays, small features further away
from the eye could be missed. In Figure 6a we see that traditional
raycasting is especially prone to exhibit this behavior as it must use
interpolation kernels of small reach and, in addition, only point-
samples the voxel space. Figure 6b illustrates that ray-driven splat-
ting has greater potential in detecting small objects since we may
use wider interpolation kernels in an efficient manner and ray-sam-
pling is, for all practical purposes, continuous. However, even with
larger interpolation kernels, we cannot fully eliminate the well-
known aliasing effects of the progressively coarser sampling rate
as rays diverge: Objects may still either be missed (such as the sec-
ond object in Figure 6b) or show up very faintly. Both of these
effects result in object flicker in animated viewing or incorrect X-
ray projection images, respectively.

Non-homogeneous perspective sampling may also ha
degenerate effects in the 3D reconstruction from cone-beam p
jection images, especially for reconstructions at low object co
trast. Since the value of a pixel in an acquired X-ray projectio
image is equivalent to the attenuation of a pyramid shaped X-r
beam traversing the volume, this beam needs to be approxima
as close as possible when computing the summed project
images in the reconstruction process.

The problem’s remedy is to maintain a constant sampling ra
everywhere in voxel space. Solutions proposed for raycast
include the spawning off of additional rays as one penetrates f
ther into the volume [14]. Splatting, however, offers a much mo
attractive solution. Similar to anti-aliasing methods proposed
texture mapping, one can create summed area footprint tables
and use these in the splatting procedure. This requires tracing
pyramidal volume extruded from the rectangular pixel into the vo
ume and intersecting it with the spherical voxel basis function
Figure 6c illustrates for the 2D case that in this way all objects c
be captured and contribute in proper amounts to the image. No
that summed area tables imply a 0th degree lowpass filtering of
image.

Let us now explain this approach in more detail: A pixel view
ing pyramid is bounded by four planes. Each plane is bounded
one of the pixel edges on the image plane, and the two viewi
rays emanating from the pixel vertices on either side of the pix
edge. To obtain the plane equation we simply take the cross pr
uct of one of the pixel vertex rays and the pixel edge vecto
Figure 7a illustrates this process.

Just like in the line integral case, intersecting a plane pair w
the footprint polygon in space yields an index point into the foo
print table. By intersecting each of the four plane pairs with th
footprint table we obtain four table indexes. The indexed table v

Figure 6: The effect of diverging rays in perspective: (a)
In raycasting, both objects are missed due to the small
extent of the interpolation kernel. (b) In ray-driven splat-
ting, due to the wider interpolation kernel, the object
closer to the eye now contributes, although to a small
extent, to the image. (c) By using summed area footprint
tables and fan ray beams (pyramidal beams in 3D), both
objects fully contribute to the image.

Eye

Eye

(a)

(b)

(c)
Eye
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ues are then combined according to the well-known summed area
table (SAT) formula such that (see Figure 7b):

It must be added, however, that the method bears slight inac-
curacies. This is due to the fact that for most pyramid orientations
one or more of the plane pairs have non-orthogonal normals, and
hence these plane pairs fail to intersect the footprint table polygon
as two perpendicular lines. This violates the summed area table
index condition. However, the deviation from 90˚ is usually rela-
tively small since we always flip the viewing direction as soon as
the angle between the direction of the ray pyramid center ray and
the major viewing axis exceeds 45˚.

Note however, that errors also occur with voxel-driven splat-
ting when summed area footprint tables are used. These errors are
additional to the inaccuracies reported in Section 3.2. In voxel-
driven splatting, a pixel maps onto the (summed) footprint table as
a non-rectangular four sided polygon which must be approximated
by a rectangle. Thus, similar errors to those found in the ray-driven
case occur.

4 RESULTS

The colorplates show a collection of images obtained with
ray-driven splatting and raycasting. Since ray-driven splatting is
equivalent to voxel-driven splatting, we only present images
obtained with the new method. The Brain dataset is the UNC

“MRbrain”, interpolated into a cubic grid. The resulting volume
has a size of 256×256×145 voxels. The Scalp data set was obtaine
from an MRA study and has a size 256×256×247 voxels. As was
mentioned before, MRA studies oftentimes use MIP rendering
display the contrast enhanced arterial structures.

Color plate a) through c) show 260×260 pixel images of the
Brain data set rendered as an isosurface with parallel projection
30˚ perspective viewing angle, and a 60˚ perspective viewi
angle, respectively. We find that the 30˚ perspective render
gives the head a more realistic look. For example, the curvature
the skull’s edge above the right eye looks much more natural in 3
perspective than under parallel projection. The 60˚ peephole p
spective may be too exaggerated for clinical use.

While a raycaster using trilinear interpolation and a stepsi
of ∆s=1.0 voxel lengths produces images of slightly inferior qua
ity (at similar computational expense), it produces images
higher quality when sampling at∆s=0.3 (however, at much higher
computational expense, as shown below). The qualitative diff
ence between raycasting and ray-driven splatting is best illustra
at lower image resolution, a possible scenario when pre-viewi
volumes or when working in an interactive environment. Colo
plate d) through f) show three 30˚ perspective renderings of t
Brain dataset. Here the image resolution was reduced to 130×130
pixels. The image sequence illustrates that ray-driven splatting p
forms well, even at half the volume resolution, and that a raycas
must sample at around∆s=0.3 for similar results. This, however,
comes at higher computational expense (see below).

Color plate g) and j) show the Scalp dataset rendered as
isosurface at orthographic projection and 30˚ perspective proj
tion, respectively. (The Scalp images are of size 280×280). In color
plate h), we see the same dataset rendered as a parallel X-ray
jection, while color plate k) shows a cone-beam X-ray projectio
of the dataset. As was mentioned before, these kind of images
typically produced as intermediate results in the ART reconstru
tion algorithm for parallel-beam (0˚ orthographic projection) an
cone-beam (30˚ to 60˚ perspective projections).

Color plate i) displays an image obtained by parallel MIP pro
jection, appropriately thresholded to reveal only the brightest (i
densest) structures. Note that from this display it is quite hard
make a statement about the proper depth order of the three c
trast-enhanced arteries in the foreground. Now consider color pl
l) where the same dataset is MIP projected with a 60˚ perspec
viewing angle. Clearly, the perspective projection makes it eas
to distinguish the arteries in general and provides the viewer w
certain depth cues that facilitate the labeling of the displayed art
ies with respect to their 3D location in the human head. Moreov
a 60˚ perspective viewing angle is often encountered in tradition
X-ray angiography, and therefore the 60˚ perspective MIP disp
mimics best the type of environment that the clinician may be us
to from previous work experience in the catherization unit.

Table 1 summarizes the performance of both voxel-driven a
ray-driven splatting for the various rendering modes and data s
In light of the previously mentioned analogies of ray-driven spla
ting with respect to raycasting, we also provide the run tim
required for rendering the data sets with this method. Howev
since pyramid integrals cannot be efficiently implemented wi
raycasting, we will omit comparisons of ray-based splatting wi
raycasting in this category. For the orthographic views, e.g. Bra
0˚, timings are given for both parallel and perspective projectio
In these cases, the perspective renderer was run at a very small
spective angle (say 0.5˚) to enable the comparison of the overh
required for perspective mapping without confounding it with th
effects of a wider viewing angle.

In Table 1, the stepsize for raycasting was set to∆s=0.3 grid
units and the sample values were obtained from the grid voxels
trilinear interpolation. A lookup table was utilized to save compu

Figure 7: Ray-driven splatting with a summed area foot-
print table. (a) Pixel viewing pyramid: raysr1,...,r4 are
emanating from the pixel vertices, together with the pixel
edges they form four planes,A,..,D (b) PlanesA,..,D inter-
sect the summed area footprint table segmenting it into
four areasS1,..,S4, S4 ⊂ S2,S3 ⊂ S1.

(b)
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Table 1: Comparison of ray-driven splatting with voxel-driven splatting and raycasting. The run time is measured in seconds,
the speedup Sp=Timecompeting method/Timeray-driven splatting. (Timings are for a 200MHz SGI Indigo2 workstation.)

Image

Line integral,
parallel projection

Line integral,
perspective projection

Pyramid integral,
perspective projection

Ray-
driven

Voxel-driven
Raycasting

(trilin., ∆s=0.3)
Ray-

driven
Voxel-driven

Raycasting
(trilin., ∆s=0.3)

Ray-
driven

Voxel-driven

Time Time Sp Time Sp Time Time Sp Time Sp Time Time Sp

Brain 0˚ 23.7 27.5 1.16 72.0 3.04 25.9 58.0 2.24 73.0 2.82 53.1 133.0 2.50

Brain 30˚ - - - - - 30.3 60.0 1.98 80.22 2.64 61.8 142.1 2.30

Brain 60˚ - - - - - 29.5 55.7 1.89 81.9 2.77 61.0 130.0 2.13

Scalp 0˚ 71.0 40.5 0.62 297.1 4.18 67.5 80.0 1.18 298.3 4.41 128.6 182.3 1.41

Scalp 30˚ - - - - - 63.9 85.1 1.33 237.3 3.71 122.9 185.0 1.50

MIP 0˚ 128.0 92.5 0.72 479.8 3.74 165.5 370.0 2.23 497.1 3.00 567.9 1260.0 2.21

MIP 60˚ - - - - - 170.6 395.2 2.31 497.0 2.91 560.5 1258.8 2.24

X-ray 0˚ 120.2 89.5 0.74 480.4 4.00 155.5 362.4 2.33 495.2 3.18 557.9 1240.6 2.22

X-ray 60˚ - - - - - 162.5 387.1 2.38 496.8 3.05 558.5 1243.4 2.23
tations. Note that the timings for raycasting would have been sig-
nificantly higher had the (wider) Gaussian interpolation kernel
given in Equation (4) been used in place of trilinear interpolation.
To accelerate the Brain and Scalp isosurface renderings, both ray-
casting and ray-driven splatting used simple bounding boxes and
opacity-based early ray-termination, while voxel-driven splatting
only mapped and composited voxels above the isovalue threshold.
The X-ray and MIP renderings did not use any acceleration meth-
ods.

The timings reveal that ray-driven splatting is superior in both
perspective summation and MIP rendering where it generally out-
performs voxel-driven splatting by a factor of around 2.3 for both
line- and pyramid integral renderings. For orthographic X-ray and
MIP-type projection, ray-driven splatting is less efficient than
voxel-driven splatting, but the gap is by far not as large than it is in
its favor in the perspective case. Since for MIP and X-ray rendering
no acceleration methods are used, these rendering modes are suited
best to compare the two splatting approaches in term of pure map-
ping overhead.

For isosurface rendering, ray-driven splatting is highly depen-
dent on the quality of the bounding volume of the object, which is
typical for all ray-driven methods. In the Brain data set a fairly
tight bounding box could be found, which results in superior ren-
dering speeds even for orthographic projections. The Scalp dataset
had a somewhat less tight bounding box, resulting in inferior per-
formance when compared to voxel-driven splatting. The timings
for perspective projection of the Scalp dataset show that voxel-
driven splatting overcomes the expense of its more expensive map-
ping algorithm by being able to restrict that mapping overhead to
those voxels whose values fall above the iso-threshold. In contrast,
ray-driven splatting’s advantage of early ray termination is offset
by the fact that it must traverse many empty voxels within the loose
bounding box until the isosurface is found.

The speedup gains of ray-driven splatting with respect to ray-
casting (using trilinear interpolation) are in the range of 3 to 4 for

all cases. This comes at no surprise since, at a ray stepsize of
every voxel is considered about 3 to 4 times per ray, as oppose
only once in the ray-driven splatting approach. The addition
overhead for convolution is masked by the fact that we only use
2×2×2 trilinear interpolation kernel for raycasting and not th
4×4×4 Gaussian that was used for ray-driven splatting.

Table 2 compares the run times for ray-driven splatting (usi
the Gaussian kernel) vs. raycasting (using trilinear and Gauss
interpolation filters at stepsizes∆s=1.0 and∆s=0.3) for two differ-
ent image sizes of the Brain 30˚ rendering. With trilinear interpol
tion and a stepsize of∆s=1.0 the run time for raycasting is abou
equal to ray-driven splatting (but renders images of lower quali
as shown above), and for a stepsize of∆s=0.3 the run times are
about 3 times larger than with∆s=1.0 for both filters. This is con-
sistent with our observation in Table 1. The larger Gaussian fil
increases the run time substantially.

5 CONCLUSIONS

We have described the transformation of the traditional voxe
driven splatting algorithm into a ray-driven approach. This enabl
us to take advantage of the inherent advantages of ray-based m
ods: ease of perspective viewing, front-to-back projection with t

Table 2: Comparison of run times for raycasting for two
different image sizes of the Brain 30˚ rendering. Timings
are given in seconds.

Image
size

Raycasting with
trilinear interpol.

Raycasting with
Gaussian interpol.

Ray-
driven

splatting∆s=1.0 ∆s=0.3 ∆s=1.0 ∆s=0.3

260x260 32.3 80.2 113.4 320.4 30.3

130x130 9.3 21.6 28.4 94.9 9.1
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opportunity of early ray termination when the accumulated opacity
reaches unity, and the use of bounding volumes to cull unimportant
structures. Other optimizations commonly used for raycasting,
such as space-leaping [3][22], adaptive screen sampling, and
octree decomposition [11], can be utilized to further speed up our
algorithm. The minimal additional overhead required for perspec-
tive viewing in ray-driven splatting (as opposed to a large computa-
tional expense in voxel-driven splatting) enables speedups of
around 2.3 for summed X-ray-type rendering, MIP, and direct vol-
ume rendering of predominantly translucent objects. For isosurface
rendering, the speedup depends on the dataset and its bounding
volume. Given a tight bounding box, ray-driven splatting is com-
petitive for orthographic projection, and superior for perspective
projection. If the dataset has many voxels above the isovalue, ray-
driven splatting is advantageous to use since it only processes visi-
ble voxels proximal to the eyepoint, while back-to-front composit-
ing voxel-driven splatting must process all. With a more loose
fitting bounding box, the performance of ray-driven splatting is
less superior but still competitive. In terms of image quality, ray-
driven splatting is equivalent to voxel-driven splatting in ortho-
graphic projection. In contrast to voxel-driven splatting which is
slightly inaccurate in perspective projection, ray-driven splatting
avoids these errors by design.

When compared to raycasting, ray-driven splatting gains sig-
nificant performance advantages by using splatting’s scheme of
precomputing the ray integrals and storing them in tables. This
eliminates the need for interpolating sample values along the ray as
is required for raycasting. In addition to being able to compute
these ray integrals at high resolution (i.e. stepsize), we can also
efficiently use interpolation kernels superior to trilinear interpola-
tion. Consistent speedups of 3 to 4 were observed with ray-driven
splatting when compared to a raycasting algorithm that used trilin-
ear interpolation and a step size of 0.3. Perspective raycasting
undersamples volume regions farther away from the eyepoint due
to the diverging nature of the rays. This problem can be eliminated
in ray-driven splatting (and voxel-driven splatting) by utilizing
summed area footprint tables and tracing the volume by pyramidal
raybeams.

In this paper we assumed an underlying cubic grid. In the
future, we would like to expand our algorithm for use in general
rectilinear grids. Westover used ellipsoidal splats to solve this
problem. However, since our incremental algorithm for mapping
the footprint polygons onto the image pixels depends on the basis
kernel functions being spherical, a generalized implementation of
the ray-driven splatting algorithm should maintain this concept. A
convenient way to achieve this would be to warp the non-cubic rec-
tilinear grid into a cubic grid. This new grid would then be com-
posed of spherical kernel functions, and if the rays spawned at the
image pixels are warped accordingly, then the traversal of the new
grid could be performed using the same incremental algorithms as
described in this paper, without significant speed penalties.

We also plan to enhance ray-driven splatting by using tighter,
more intricate bounding volumes, possibly generated by a PARC-
like scheme [17]. We would also like to experiment with hierarchi-
cal volume decomposition methods, such as the one described in
[4], to accelerate the volume traversal of the ray.
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Colorplates
a. Brain 0̊  (ray-splat, line integral) b. Brain 30̊  (ray-splat, line integral) c. Brain 60̊  (ray-splat, line integral)

d. Brain 30̊  (ray-splat, low resolution) e.Brain 30̊  (raycast,∆s=1.0, low res.) f. Brain 30̊  (raycast,∆s=0.3, low res.)

g. Scalp 0̊ (ray-splat, line integral)

j. Scalp 30̊ (ray-splat, line integral)

h. X-ray 0̊  (ray-splat, line integral) i. MIP 0̊  (ray-splat, line integral)

l. MIP 60̊  (ray-splat, line integral)k. X-ray 60̊  (ray-splat, line integral)
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