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Abstract. In this paper we describe an efficient approach to add shadows
to volumetric scenes. The light emitted by the lightsource is properly
attenuated by the intervening volumetric structures before it is reflected
towards the eye. Both parallel and perspective lightsources can be effi-
ciently and accurately modeled. We use a two-stage splatting approach. In
the first stage, a light volume is constructed in O(N?) time, which is about
the same time it takes to render a regular image. This light volume stores
the volumetric attenuated light arriving at each grid voxel and only needs
to be recomputed if the light source is moved. If only diffuse shading is
required, then the contribution of any number of lightsources can be
stored in the same space. The second stage is formed by the usual render-
ing pipeline. The only difference is that the light contributions are interpo-
lated from the light volume, instead of using the constant light source
intensity. Once the light volume is computed, the actual rendering is only
marginally more expensive than in the unshadowed case. The rendered
images, however, convey three-dimensional relationships much better and
look considerably more realistic, which is clearly needed if volume graph-
ics is to become a mainstream technology.

1 Introduction

Volume rendering is a popular technique to visualize datasets that come on three-
dimensional grids. Based on their structure, volumetric grids can be divided into two
main groups: (i) cubic or uniform rectilinear, as typical for datasets acquired from medi-
cal scanners, such as MRI, CT, PET, SPECT, and 3D US, or (ii) curvilinear or irregular,
as is most often the case for datasets output by computational methods, such as CFD or
FE. This paper focuses on the former group. Volumetric datasets obtained via voxeliza-
tion of analytically defined or polygonal data are most commonly members of the first
group as well.

Native volumetric datasets can be visualized in two ways. (1) They can be con-
verted into a polygonal mesh representing some iso-surface [12] in the level-set of the
volume, which can then be rendered with fast and ubiquitous polygon rendering hard-
ware, or (2) they can be viewed without conversion using direct volume rendering algo-
rithms, which tends to be slower but allows the iso-surface to be changed on the fly,
emphasizing different structures and aspects of the volume at will. Retaining the full
volume also allows the rendering of soft surfaces and amorphous phenomena, such as
clouds, gas, steam, which would be difficult to represent with polygonal models.

The spectrum of direct volume rendering algorithms can be divided into four major



families: raycasting [11][24], splatting [26], shear-warp [10], and texture-mapping hard-
ware-accelerated [4]. The quality and computational overhead of these was recently
evaluated by Meissner et. al. [14]. There it was found that the surveyed splatting algo-
rithm, i.e., image-aligned sheet-buffered splatting [18], produces images of comparable
quality to raycasting, but renders faster when objects are sparse or moderately irregular.

Shadows play an important role in the perceived realism of a computer-generated
scene. They also provide additional depth cues to the viewer. This was recognized quite
early in the development of polygonal renderers. The shadow z-buffer algorithm by Wil-
liams [28] first renders a z-buffer image from the view of the lightsource. This shadow
z-buffer image is then used to determine if an object point visible from the eye is also
visible from the lightsource, and thus lit by it. The shadow volume algorithm by Crow
[5] constructs polygonalized solids that model the volume of shadow cast into space by
the silhouette of an occluder. During the rendering, a visible point is first verified that is
does not fall inside such a shadow volume before it is being lit. Finally, fast shadow
algorithms project the occluders onto a flat surface, producing a planar shadow polygon
that can be projected as a texture using graphics hardware. Although this fake-shadow
approach [3] is inaccurate for non-planar objects, it is frequently used in computer
games where speed of image generation is of utmost importance.

Most of the shadow renderers for polygonal scenes capitalize on the fact that the
cast shadows are independent of the viewing direction, as long the light source stays in a
fixed place. This turns the generation of the shadow datastructure into a pre-processing
task. Furthermore, the polygonal shadow renderers also divide the scene into fully lit
(the points outside the shadow volume) and fully unlit (the points inside the shadow vol-
ume) portions. This gives rise to sharp shadows, although shadow volumes for soft shad-
ows, as generated by extended lightsources, have also been implemented [19] (for a
survey of shadow algorithms see also [29]).

Shadow volumes and the shadow z-buffer were defined for boundary representa-
tions and not for volumetric datasets where all space is filled with attenuating material.
There, as light traverses the volume and is reflected towards the eye, it is continuously
attenuated by the volumetric densities it traverses. This effect is not modeled by either
shadow volumes nor shadow z-buffers, and hence these algorithms are not suitable for
direct volumetric rendering.

However, an algorithm that works for both domains is raytracing. Although slow, it
traditionally produces images of considerably higher quality than polygon projection
methods, and this also holds true for the generation of shadows. Soft shadows with
translucent effects have been generated using raytracing, for surface representations [27]
as well as for volumetric datasets [21]. More recently, Behrens [2] utilized 3D texture
mapping hardware for fast shadow generation to suggest depth relationships on
unshaded volumetric objects. This approach first constructs a shadowed volume using
the hardware, which can then be viewed from the eyepoint in place of the original,
unshadowed volume. The performance drops less than 50% when shadows are included,
however, only orthograpic (parallel) lightsources can be modeled without considerable
overhead. Finally, global illumination methods and volumetric radiosity [6][13][20] can
also produce realistic shadow effects but image generation tends to be slow.

Recently, Dobashi et.al. [7] proposed a method for the modeling of light attenuation



effects of clouds. Their method is probably the one most closely related to ours, as it,
too, represents the volumetric objects (the clouds) as an aggregation of smoothly vary-
ing basis functions (here metaballs [30]). The metaballs are first rendered under parallel
projection from the viewpoint of the sun to calculate the amount of light arriving at each
metaball center, and then they are, as lit metaballs, projected to the screen. A basic splat-
ting algorithm is employed for both rendering steps.

In this paper, we combine the efficiency of the recently introduced image-aligned
splatting algorithm [18] with the realism of volumetric shadows. The algorithm uses
splatting for the rendering as well as for the shadow generation process. Both parallel
and perspective lightsources, with or without hood, can be easily and accurately mod-
eled. By performing all shadow-related calculations in a pre-processing step, the render-
ing of volumes with shadows is as efficient as the rendering without them. The pre-
processing is only required if lightsources are moved, but since splatting is also used at
that stage, it is not any costlier than the volume rendering itself. The paper is structured
as follows: Section 2 will present some preliminaries, mainly on splatting. Section 3 will
outline the theoretical concepts, while Section 4 will describe our implementation of
these as well as a few extensions of the basic framework. Finally, Section 5 and Section
6 present results and conclusions, respectively.

2 Preliminaries

The splatting algorithm was proposed by Westover [26]. It works by representing
the volume as an array of overlapping basis functions, commonly Gaussian kernels with
their amplitudes scaled by the voxel values. An image is generated by projecting these
basis functions to the screen. The screen projection of the radially symmetric 3D basis
function can be efficiently achieved by the rasterization of a precomputed 2D footprint
lookup table, where each footprint table entry stores the analytically integrated kernel
function along a traversing ray. A major advantage of splatting is that only voxels rele-
vant to the image must be projected and rasterized. This can tremendously reduce the
size of the volume data that needs to be both processed and stored [17]. Another advan-
tage of splatting is that filtering for the purpose of anti-aliasing can be efficiently
achieved by stretching (and attenuating) the footprints before they are rasterized to the
screen [23]. Stretching the footprint along one direction reduces the bandwidth of the
underlying kernel in the same direction. This is useful to produce blurring effects as well
as to prevent aliasing when the volume is viewed below grid resolution or in perspective
[23]. In the latter case, the kernels are stretched for volume portions further away from
the eye point, where the sampling density falls below the grid resolution [15].

The most basic splatting approach [25] simply composites all kernels on the screen
in back-to-front order. Although this is the fastest method, it can cause color bleeding
and also introduce sparkling artifacts in animated viewing due to the imperfect visibility
ordering of the overlapping kernels. This may not be a problem if the objects are highly
amorphous, as, for example the clouds in [7], but it can be highly noticeable for more
opaque and structured objects. An improvement in these regards is Westover’s sheet-
buffer method [26] that sums the voxel kernels within volume slices most parallel to the
image plane. Although doing so eliminates the color bleeding artifacts in still frames, it



introduces very noticeable brightness variations in animated viewing. A more recent
method by Mueller et. al. [17][18] eliminates these drawbacks, processing the voxel ker-
nels within slabs, or sheet-buffers, of width As, aligned parallel to the image plane —
hence the approach was termed image-aligned sheet-buffered splatting: All voxel ker-
nels that overlap a slab are clipped to the slab and summed into a sheet buffer, followed
by compositing the sheet with the sheet in front of it. Efficient kernel slice projection
can still be achieved by analytical pre-integration of an array of kernel slices and by
using fast footprint rasterization methods to project these to the screen [9]. Fig. 1 illus-
trates the image-aligned splatting algorithm in closer detail. Although the shadow algo-
rithm described here would work with both incarnations of splatting, we choose the
image-aligned one for its better image quality.

current sheet-buffer /slicing slab

z-resolution

kernel kernel kernel kernel
section 1  section 2 section 3 section S

Fig 1. Image-aligned sheet-buffered splatting (from [17]). (a) All kernel sections that
fall within the current slicing slab, formed by a pair of image-aligned planes spaced
apart by the sampling interval As, are added to the current sheet buffer. The sheet-buff-
ers are composited in front-to-back order. (b) Array of pre-integrated overlapping kernel
sections (shaded areas). The integration width of the pre-integrated sections is deter-
mined by the slab width As, while the z-resolution is determined by the number of ker-
nel sections.

3 Theory

3.1 Low-albedo light transport

The low-albedo volume rendering integral is written as:
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where C(x, r) is the spectrum of light (usually divided into a red, green, and blue color
component) that comes from a direction defined by the unit vector r and is received at
location x on the image plane. EYE is the location of the eye point, L is the length of the
ray, l(s) is the extinction (or density) at a location s along the ray, and C(s) is the spec-
trum of light at s.

The sampled color C(s) can be expanded into:

C(s) = C () +C (s) )

where C,(s) is the color emitted at s and C,(s) is the color received at s and reflected
towards the eye. C,(s) is usually obtained via the traditional illumination equation [8]:

C,(5) = Coky+ CC () g N()L(s) +C k- (N(s)H(s)™ 3)

where C, is the ambient color, k, is the ambient material coefficient, C; is the color of
the light source, C,, is the color of the object (determined by the transfer function), k, is
the diffuse material coefficient, N is the normal vector (determined by the gradient), L is
the light direction vector, k; is the specular material coefficient, H is the halfvector, and
ns is the Phong exponent. The entities k,, kg, ky, and C, are not dependent on the sample
location, while N, L, and C,, are. Further, for volume renderers that only model the atten-
uation of light after it has been reflected but not before, C; is independent of s as well.
Although this is physically correct for the emitted light, it is not so for the reflected light
where the light also incurs attenuation on its path from the light source to the reflection
site. In many applications, this deficiency is not really a disadvantage, since shading is
only used to give depth cues and the light intensity is simply set to unity. However, if
one desires a more physically correct illumination model which allows for both shadow-
ing and self-shadowing, one should use this equation:

C (s) = Ck,+C()C (s)k - N(s)L(s)

ns 4)
+Cy()k - (N()H(s))
where C;is a function of s. C; is then computed as:
(—f T u(t)dm)
Cl(s)=CL-e 5 t=s+r;-m (5)

where C; is the color of the lightsource, r; is the unit direction vector that points from s
to the light source location LGT, and T is the distance s - LGT.

In a practical implementation, the integrals are replaced by Riemann sums which
puts equation (1) as follows (see e.g. [11]:

L/As i-1 5 EYE+vr-i-As

Cxr = 3 Clspats)- TT (1-als)) [N ©
i=0 =0 5j reJoas

where o is known as opacity = (1 - transparency), and As is the ray sampling interval.



The weighting of the colors with a-terms is called compositing.
Likewise, equation (5) is written as follows:

T/(As)
C)sp) =Cp I (1-als;)) s;= 8,41k As (7
k=1

3.2 The effect of imperfect interpolation filters

The rendering rays must sample the volume grid at discrete positions along their
paths. This sampling process can be thought of as a two-step process, performed at each
ray sample location: First, the discrete grid signal is reconstructed into a continuous sig-
nal, which is subsequently resampled to yield the sample value. Of course, placing the
interpolation filter at the sample location and integrating the sample neighborhood by
the kernel function performs these two steps simultaneously, in place. However, for the
sake of quantifying the errors of the various shadow algorithms presented later, it is
helpful to imagine that these two steps are completely disjoint, i.e., the grid is first com-
pletely reconstructed into a continuous representation (by ways of convolution with the
interpolation filter kernel), and then the rays traverse this continuous function, sampling
it at discrete locations. It is the reconstruction step that introduces the well known low-
passing artifacts — unless an (impractical) sinc filter is used for this purpose. Hence, the
number of times a volume must be reconstructed before an image is generated deter-
mines the amount of lowpassing that will occur. Specifically, each such lowpassing
operation will yield a continuous signal that is equivalent to the original discrete signal
convolved with a wider and wider interpolation filter, one that suppresses an increasing
amount of the signal’s upper passband, causing an increasing amount of smoothing. We
shall soon see that different approaches used for shadow generation vary in the number
of reconstructions that need to be performed, which is crucial for the image quality that
can be obtained. In the following, we will discuss three such algorithms, trading com-
plexity with the number of lowpassing operations that they perform. We will, for now,
assume that there is only one lightsource in the scene, and outline a solution for multiple
lightsources in Section 4.

3.3 Computing the light attenuation during rendering

This is the most straightforward approach and a direct implementation of equation
(6): At each sample location s, a ray r; is cast from s to the light source and the amount
of attenuation that the light source spectrum undergoes by the intervening volume densi-
ties is computed. This process is illustrated in Fig. 2a. To compute the complexity asso-
ciated with this, let us assume that the volume is cubic with N3 voxels, As=1, and the
resolution of the rendered image is M X M, i.e., there are M? rendering rays. In that case
the complexity of the rendering is O(M2~N +M2N N) = O(Mz-Nz), where the first term
is the cost for interpolating M? rays at O(N) sample locations, while the second term is
the complexity to cast shadow rays from each of these O(M?N) sample locations and
sampling those at O(N) locations. Hence, the complexity is O(M?:N?), one magnitude of
N higher than rendering without light attenuation effects.

Let us now assess the degree of lowpassing of this approach. Following the theoret-
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Fig 2. Different ways to compute light pre-reflective light attenuation. Items drawn in
red denote operations done in a pre-processing step that do not have to be repeated for
every rendered frame, while items drawn in blue denote operations that are required for
each rendered frame. (a) Casting a light ray for every interpolated and shaded sample.
(b) Casting light rays from every voxel to compute a light volume, whose voxels are
then interpolated during rendering to obtain a sample’s lighting. (c) Constructing the
light volume via splatting, which requires alternating forward and backward projection
steps, and then using this light volume for the rendering, done also using splatting.



ical framework presented in Section 3.2, we observe that once the volume has been
reconstructed into a continuous form, all rays can be cast in their entirety from light-
source (emission) — sample (reflection) — image (reception). Hence we conclude that
this approach will lowpass the discrete volume only once during image generation,
which is optimal.

3.4 Pre-computing a light-volume using raycasting

We can return to a rendering complexity of O(M?N) by computing the light attenu-
ations beforehand and storing these in a light volume, in which each voxel holds the
amount of light received. An alternative to this is a shadow volume which would store
the attenuations. Note that this shadow volume is not binary as in the polygonal
approaches mentioned earlier, but is continuous where each voxel can assume values in
the range [0, 1]. Constructing the light volume requires a ray to be sent from each voxel
to the light source, measuring the attenuation of the light on its way to the voxel. Equa-
tion (7) becomes:

T/(As)
C,»n =C; I1 (I—OL(sj)) Sj=v+rl-j-As (8)
j=1

where v is the location of the illuminated grid voxel and r; is now the unit direction vec-
tor that points from v towards LGT. The complexity of this process is O(N3-N) = O(N4).
Once the light volume is constructed, it can be interpolated at the sample locations s
during rendering to retrieve the properly attenuated amount of light received from the
light source at s. The rendering complexity is the same than that of a standard raycasting
algorithms, O(M?N), with one extra interpolation per sample location to interpolate the
light. If the image has about the same resolution than the volume, then M=N and the
rendering complexity is O(N?). The amount of lowpassing to obtain the shadow effects,
however, has increased by one: First we reconstructed the volume to get the attenuated
light to the voxels (the pre-processing step), and then we reconstructed the light volume
during the rendering to interpolate the attenuated light at the sample points (Fig. 2b).

3.5 Pre-computing a light-volume using splatting

Splatting can help to reduce the complexity of the light-volume generation. We will
now describe a framework that uses splatting at all stages of the volume rendering: (1)
for light-volume generation and (2) for image generation.

Let us begin with re-stating equation (6) in the context of splatting:

L/As i—1 s. = EYE+r-i-As
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where C(sl.) and 0(s;) are the averaged (over As) colors and opacities, respectively, as
computed from the footprint tables [18]. Image-aligned splatting can be thought of as a
raycaster that casts all rays simultaneously in lock-step as a rayfront (see Fig. 2c). Thus,
for some fixed i, all s; for all rays are available in one sheetbuffer, and are composited
from front to back. Due to this simultaneous raycasting approach, equation (8) changes



quite significantly:
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where s, ,, is the m-th sample point on the sheetbuffer /-As away from the light source,
and % is the interpolation kernel. Note that since splatting stores the averaged (over a
line of length As) kernel values, we need to write % instead of 4. Note also that we pro-
cess the voxels in front-to-back order as seen from the lightsource. To understand equa-
tion (10) better, let us think of the task of constructing the light volume as one in which
the grid voxels must sample the continuous light field that is formed by light rays ema-
nating from the light source and being attenuated by the volume densities. This light
field is available in discrete form in the composited sheet buffers as they progress from
the light source (the product term in equation (10)). Sampling this light field consists of
splatting the sheetbuffer content back into the grid (the sum term in equation (10)).
Dividing by the sum of kernel weights affecting a voxel v provides the necessary nor-
malization.

The complexity is O(N?) for the rendering (similar to the raycasting approach in
Section 3.4), but also O(N3) for the generation of the light volume, a magnitude lower
than for the raycasting approach. However, there are now three reconstruction and low-
passing steps associated with the shadow data. The first two occur during the computa-
tion of the light volume, i.e., (1) when splatting the volume opacities into the sheet-
buffers (i.e., reconstructing the volume, which is sampled by the sheet buffers), and (2)
when splatting the composited sheet-buffer opacities into the voxels of the light volume
(i.e., reconstructing the sheet buffers, which is sampled by the volume). The third recon-
struction and lowpassing operation occurs during rendering, when splatting the attenu-
ated light into the sheet-buffers (i.e., reconstructing the volume, which is sampled by the
sheet-buffers). Fig. 2c illustrates all three operations.

Note that a raycasting approach that starts at the lightsource (instead of at the vox-
els) would achieve the same effects. We chose splatting since we wanted to have a com-
mon algorithm for both tasks: light volume construction and rendering. In addition,
splatting will reduce the complexity of the light volume generation for all those volume
datasets that also benefit from splatting being used in the rendering phase, i.e., sparse or
irregular volumetric objects. Please refer to [14] for a detailed comparison of raycasting
vs. splatting in terms of their rendering costs. If we assume the standard volume render-
ing configuration in which the image resolution is the same than the volume resolution,
i.e., M=N, then the theoretical rendering complexity of the raycasting approach out-
lined in Section 3.4 matches that of the splatting approach.

C,(v) = C; - (10)

4 Implementation

In this section we will describe the practical aspects of our new enhancement for
splatting. Consider Fig. 3 for an illustration of the basic algorithm for one lightsource.
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place sheetbuffer perpendicular to the central light ray and to the first voxel with opacity > 0

// initialize data structures

// start generating the light volume
while sheetbuffer is inside the volume {
for all voxels v; within sheetBuffer width {
if OpacityTransferFunction[density(v;)] = = 0; //no need to process invisible voxels
continue;
pick appropriate footprintTable for v;;
v’ « project vj onto sheetbuffer;
for all sheetBuffer pixels p; that fall inside footprint(v’) { // rasterize the footprint
weight = footprintTable[Iv’ - p;l];
// forward splat: the light reaching the voxel is prop. to (1 - attenuation integral)
opacityBuffer[p;] += weight - OpacityTransferFunction[density(vj)];
/l reverse-splat the light and the interpolation weights
lightVolume[vj] += weight - (1 - attenuationBuffer[p;]);
weightVolume[v;] += weight;

bl

// composite opacities for next reverse splat
attenuationBuffer = opacityBuffer - (1 - attenuationBuffer) + attenuationBuffer;
advance sheetBuffer by As;

}

// normalize
for all voxels Vj with OpacityTransferFunction[density(vj)] >0
lightVolume[vj] = LightSourcelntensity - (lightVolume[vj] / weightVolume[vj]);

Fig 3. Pseudocode for the computation of the light volume in splatting.

Depending on the size of the interpolation kernel a light volume voxel will receive
contributions from a number of consecutive attenuation sheet-buffers. It will also con-
tribute to a number of consecutive opacity sheet-buffers (see Fig. 3a). This manifests
two of the three interpolation operations that are necessary for this algorithm (the third
is the interpolation during rendering).

Fig. 3a shows the (perspective) light source as a single point which irradiates the
volume in a divergent fashion. We have mentioned before that in order to prevent alias-
ing artifacts in perspective rendering, the splatting kernels must be progressively
stretched as a function of distance from the lightsource. At the same time the kernel
amplitude must be progressively lowered to be in conformance with the Fourier scaling



theorem. The same needs to be done during light volume construction, both in the for-
ward splatting and in the reverse splatting. On the other hand, far-away lightsources can
be modeled as well by simply running the algorithm in parallel-projection mode. Then
we only need to supply a light direction vector and orient the sheet buffer orthogonal to
1t.

The light volume generated in ComputeLightVolume() can be used repeatedly as
long the light source position and intensity does not change. Rendering is performed as
usual for splatting [17], only now the light volume must be splatted as well to obtain the
C(s;) in equation (6). The code in Fig. 3 uses one white light source (just one intensity
channel), which gives rise to a single-channel light volume. Thus, during rendering, if
we perform post-classification on the sheet-buffer [16], there will be one extra sheet-
buffer required to sample the light volume. Then, during shading, the pixels in the light
sheet buffer are used to get the light intensity instead of the light source directly. Thus
there are no extra operations beyond the light sheet buffer rasterizations.

There is a variant to the approach outlined above: Instead of a light volume one can
use an attenuation volume, in which the terms (lightVolume[vj] / weightVolume[vj]) are
stored. This allows one to change the color and intensity of the light source during ren-
dering.

In addition to the memory needed to store the density volume, our approach
requires additional memory to hold the light volume. If there is only one light source,
then two extra unsigned shorts, or floats for extra precision, must be provided for each
voxel: one for the weights used for normalization and one for the light intensity. The
former goes unused after the normalization has been performed. In fact, once the light
volume has been normalized, only one extra byte per voxel is necessary. However, one
can easily preserve memory by performing the normalization on-the-fly by ways of a
rolling normalization buffer, where a sheet of voxels is normalized immediately after
their kernels have been traversed by all their relevant sheet-buffers.

If m lightsources are used and view-dependent specular lighting effects are desired,
then m bytes will be required per voxel to hold the attenuated light for each source. The
weight volume for normalization can be reused for each lightsource. If view-depen-
dency effects are not to be considered (i.e., only diffuse shading is implemented), then
shading may be performed during light volume computation and all light contributions
can be collapsed into one byte. If colored lightsources are used, then three bytes are
required. If the shading is performed during normalization of each attenuated light, then
one would need only two unsigned shorts or floats for the unnormalized light and the
normalization weights.

Due to the repeated lowpassing (i.e., blurring), the surface voxels of very opaque
objects may end up receiving insufficient light due to self-shadowing. This causes the
images to appear somewhat dark. We can fix this by adding a constant term to all voxels
in the light volume, reducing the opacities in the transfer function during light volume
construction, or using a light source intensity greater than unity (but clamping the light
volume to 1.0). Further, using smaller Gaussians that attenuate higher frequencies less
also helps to reduce these effects. Another remedy is to simply add only light to an indi-
vidual light volume voxel when it is first encountered, i.e., when it is touched by the
attenuation buffer for the first time. In that case a weight volume is not needed.



Although this procedure is only approximate from a signal processing point of view, it
does produce brighter images since the voxel self-shadowing is reduced.

Finally, it is sometimes advisable to use two sets of opacity transfer functions, one
for the light volume generation and one the rendering. If the opacities for the light vol-
ume generation are chosen lower then some light is able to penetrate across thin but
opaque structures and so faintly illuminate structures on the other side. Although not
physically correct, this trick tends to generate nicer images at times.

5 Results

We ran our algorithm on a few volumetric datasets stemming from a number of dif-
ferent domains and applications. The first page of this paper shows a volume graphics
scene: a voxelized chair with parallel and perspective shadows, respectively. The shad-
ows add a considerable amount of realism and mood to this minimalistic scene. Fig. 4
(colorplate) shows the bottom of the lobster dataset in full view and zoomed-up, with
and without perspective shadows. Note the shadows cast by the legs onto the lobster’s
body: Only in the shadowed image one can truly discern the legs sticking out of the lob-
ster’s shell. However, we also note that the images are somewhat darker, even on sur-
faces that are not in shadow. This is a manifestation of the attenuation leakage due to the
lowpassing. Fig. 5 (colorplate) shows a physical simulation of diesel being injected into
a cylinder of an engine filled with air. Note the soft shadows cast by the semitransparent
gas. Fig. 6 (colorplate) shows a number of renderings of a voxelized chair.

The image-aligned sheet-buffered splatting engine is identical to that described in
[9]. All we have added here is the ability to splat (sheet-buffer) energy into the grid dur-
ing light volume calculation, to run the splatting algorithm from the viewpoint of the
light source, and to splat one extra volume, i.e., the light volume, during image genera-
tion. Thus, in the general case, the rendering performance is bound to be very similar to
that already reported in [14] for a wide variety of datasets and image sizes. We have
observed that the construction of the light volume took about 25% longer than the gen-
eration of an image, due to the required backprojection. This light volume rendering
time grows proportional to the number of light sources. The images themselves took vir-
tually the same time to generate, with or without shadows.

Finally, we also implemented all three shadow generation variants within a simple,
unoptimized raycaster. The timings obtained for the lobster dataset are given in the fol-
lowing table:

variant 1 variant 2 variant 3
(section 3.3) | (section 3.4) | (section 3.5)

light volume generation time - 132 35s

rendering time 44 s 29s 29s

We observe that it takes roughly 1/4 of the time to generate the light volume with
the reverse splatting method of variant 3 than with the raycasting method of variant 2.
We also observe that rendering the shadows on the fly, without precomputing a light vol-
ume, adds about 50% to the rendering time. Finally, we observe that the combined time



for light volume generation and rendering for variant 3 is 64s, which is 45% greater than
rendering the shadows without precomputing the light volume (variant 1). Note, how-
ever, that one can easily reuse the light volume for a number of close-by frames without
noticeable error, and in this regard, the light volume generation is already amortized
after 3 frames.

Fig. 7 shows renderings of the lobster with all 3 variants using the raycaster. We
notice that variant 3 produces only slightly darker images than the other two variants.

variant 1 variant 2 variant 3

Fig 7. Renderings of the lobster dataset for the three shadow generation variants using
a simple raycaster (timings are given in the table above).

6 Conclusions

We have described an efficient method to add shadows and attenuated light effects
to volumetric scenes. In contrast to most volume renderers, the light is attenuated by the
volumetric densities on its entire path across the volume: (1) from the source to the
reflecting surface, and (2) from the reflecting surface to the eye. Our algorithm uses
splatting for the entire two-stage process, i.e., light volume generation and rendering.
Existing software or hardware for splatting only requires minor modifications to enable
the rendering of attenuated light and shadows. What needs to be added is the ability to
modify a voxel value (a volume write-back mechanism) and a divider unit (for the nor-
malization step).

An advantage of using splatting, instead of raycasting, for the generation of the
light volume is that the computational complexity can be reduced by one order of mag-
nitude. This is in addition to the other advantages that this object-centric, point-based
method may be able to deliver [14]. However, a downside is that the described splatting
approach lowpasses the volume data related to the light attenuation more than the alter-
native raycasting methods. This may cause the attenuations to “leak out” of the object
interior, which can lead to globally darkened surfaces at rendering time. Our experi-
ments indicate, however, that these effects may not be as severe as initially anticipated.

In the future, we plan to extend the existing framework to model extended light-
sources by convolving the interpolation kernel with the shape of the light source, and
using this interpolation kernel in place of the usual one. Doing so will generate softer
shadows with penumbras. A similar technique was used by Soler and Sillion [22] to
generate smooth shadow maps. Our framework would also allow the modeling of global



illumination by making more than one sheetbuffer pass across the volume, from differ-
ent directions. In that case the sheetbuffers would sample the volume along their path
and distribute this energy among voxels further down the trajectory. Conceptually, this
approach is similar to the one presented in [6], but can benefit from the efficiency of the
splatting algorithm. Finally, we plan to model the spectral filtering of the light by the tra-
versed medium, which would result in colored shadows. We can easily achieve this by
specifying spectrally dependent transmission transfer functions to control the calcula-
tion of light attenuations during light volume generation. This would scale the present
light volume memory overhead by a factor of 3.
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Fig 4. Lobster dataset in full view and zoomed-up, with and without perspective
shadows. Note the shadows cast by the legs onto the lobster’s body: Only in the shad-
owed image one can truly discern the legs sticking out of the lobster’s shell.

Fig 5. A physical simulation of diesel being injected into a cylinder of an engine
filled with air. Note the soft shadows cast by the semitransparent gas.

Fig 6. A voxelized chair rendered with and without parellel and perspective shad-
ows, respectively. The shadows add significantly to the realism of the scene.



