
Abstract Classes and

Interfaces
CSE 114: Introduction to Object-Oriented Programming

Paul Fodor

Stony Brook University

http://www.cs.stonybrook.edu/~cse114

http://www.cs.stonybrook.edu/~cse114

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Contents
 Abstract Classes and Abstract Methods

 Constraints on the subclasses of abstract classes

 Uses of abstract classes

 The abstract Calendar class and its GregorianCalendar subclass

 Interfaces:
 Defining Interfaces

 Implementing Interfaces

 The Comparable Interface
 Writing a generic max Method

 Defining Classes to Implement Comparable

 The Cloneable Interface
 Implementing the Cloneable Interface

 Shallow vs. Deep Copy

 Interfaces vs. Abstract Classes

 Interfaces Inheritance

 Conflicting interfaces
2

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Abstract Classes and Abstract Methods

3

 GeometricObject

-color: String

-filled: boolean

-dateCreated: java.util.Date

#GeometricObject()

#GeometricObject(color: string,

filled: boolean)

+getColor(): String

+setColor(color: String): void

+isFilled(): boolean

+setFilled(filled: boolean): void

+getDateCreated(): java.util.Date

+toString(): String

+getArea(): double

+getPerimeter(): double

Circle

-radius: double

+Circle()

+Circle(radius: double)

+Circle(radius: double, color: string,

filled: boolean)

+getRadius(): double

+setRadius(radius: double): void

+getDiameter(): double

Rectangle

-width: double

-height: double

+Rectangle()

+Rectangle(width: double, height: double)

+Rectangle(width: double, height: double,

color: string, filled: boolean)

+getWidth(): double

+setWidth(width: double): void

+getHeight(): double

+setHeight(height: double): void

The # sign indicates

protected modifier

Abstract classes

are italicized or

have the

annotation

<abstract>

Abstract methods

are italicized or

have the

annotation

<abstract>

Methods getArea and getPerimeter are overridden in

Circle and Rectangle. Superclass abstract methods are

generally omitted in the UML diagram for subclasses.

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

public abstract class GeometricObject {

 private String color = "white";

 private boolean filled;

 private java.util.Date dateCreated;

 protected GeometricObject() {

 dateCreated = new java.util.Date();

 }

 protected GeometricObject(String color, boolean filled) {

 dateCreated = new java.util.Date();

 this.color = color;

 this.filled = filled;

 }

 public String getColor() { return color; }

 public void setColor(String color) { this.color = color; }

 public boolean isFilled() { return filled; }

 public void setFilled(boolean filled) { this.filled = filled; }

 public java.util.Date getDateCreated() { return dateCreated; }

 public String toString() {

 return "created on " + dateCreated + "\ncolor: " + color +

 " and filled: " + filled;

 }

 /** Abstract method getArea */

 public abstract double getArea();

 /** Abstract method getPerimeter */

 public abstract double getPerimeter();

}

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

public class Circle extends GeometricObject {

 private double radius;

 public Circle() { }

 public Circle(double radius) {

 this.radius = radius;

 }

 public double getRadius() {

 return radius;

 }

 public void setRadius(double radius) {

 this.radius = radius;

 }

 public double getArea() {

 return radius * radius * Math.PI;

 }

 public double getPerimeter() {

 return 2 * radius * Math.PI;

 }

 public double getDiameter() {

 return 2 * radius;

 }

}

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

public class Rectangle extends GeometricObject {

 private double width;

 private double height;

 public Rectangle() {

 // super();

 }

 public Rectangle(double width, double height) {

 this();

 this.width = width;

 this.height = height;

 }

 public Rectangle(double width, double height, String color,

 boolean filled) {

 super(color,filled);

 this.width = width;

 this.height = height;

 }

 public double getWidth() { return width; }

 public void setWidth(double width) { this.width = width; }

 public double getHeight() { return height; }

 public void setHeight(double height) { this.height = height; }

 public double getArea() {

 return width * height;

 }

 public double getPerimeter() {

 return 2 * (width + height);

 }

}

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

public class TestGeometricObject1 {

 public static void main(String[] args) {

 // Declare and initialize two geometric objects

 GeometricObject geoObject1 = new Circle(5);

 GeometricObject geoObject2 = new Rectangle(5, 3);

 // Display circle

 displayGeometricObject(geoObject1);

 // Display rectangle

 displayGeometricObject(geoObject2);

 System.out.println("The two objects have the same area? " +

 equalArea(geoObject1, geoObject2));

 }

 /** A method for displaying a geometric object */

 public static void displayGeometricObject(GeometricObject object) {

 System.out.println(object); // object.toString()

 System.out.println("The area is " + object.getArea());

 System.out.println("The perimeter is " + object.getPerimeter());

 }

 /** A method for comparing the areas of two geometric objects */

 public static boolean equalArea(GeometricObject object1,

 GeometricObject object2) {

 return object1.getArea() == object2.getArea();

 }

}

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

abstract methods in abstract classes
An abstract method can only be contained in an

abstract class.

8

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

subclasses of abstract classes
 In a nonabstract (a.k.a., concrete) subclass extended from

an abstract super-class, all the abstract methods MUST be

implemented.

abstract class A {

 abstract void m();

}

class B extends A {

 void m(){

 }

}

9

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

subclasses of abstract classes
 In an abstract subclass extended from an abstract

super-class, we can choose:

 to implement the inherited abstract methods OR

to postpone the constraint to implement the

abstract methods to its nonabstract subclasses.

10

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

abstract class A {

 abstract void m();

}

abstract class B extends A {

 void m(){

 }

}

class C extends B {

}

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

abstract class A{

 abstract void m();

}

abstract class B extends A{

}

public class C extends B {

 void m(){

 }

}

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

A subclass can be abstract even if its

superclass is concrete.
For example, the Object class is concrete, but

a subclass, GeometricObject, is abstract

13

abstract classes

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

 A subclass can override a method

from its concrete superclass to

define it abstract

useful when we want to force

its subclasses to implement that

method, or

 the implementation of the

method in the superclass is

invalid in the subclass

14

abstract classes

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

abstract classes
 It is possible to define an abstract class that contains no

abstract methods.

This class is used as a base class for defining new

subclasses.

15

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

abstract classes
An object cannot be created from abstract class:

An abstract class cannot be instantiated using the new

operator:

GeometricObject o =

 new GeometricObject();

We still define its constructors, which are invoked in the

constructors of its subclasses through constructor

chaining.

 For instance, the constructors of GeometricObject are

invoked by the constructors in the Circle and the

Rectangle classes.
16

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

An abstract class can be used as a data type:
GeometricObject c = new Circle(2);

We can create an array whose elements are of

GeometricObject type:
GeometricObject[] geo =

 new GeometricObject[10];
 There are only null elements in the array until they are

initialized with concrete objects:

geo[0] = new Circle();

geo[1] = new Rectangle();

…

17

abstract classes as types

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

 An instance of java.util.Date represents a specific

instant in time with millisecond precision

 java.util.Calendar is an abstract base class for

extracting detailed information such as year, month, date,

hour, minute and second from a Date object for a specific

calendar

 Subclasses of Calendar can implement specific calendar

systems such as Gregorian calendar, Lunar Calendar and Jewish

calendar.

 java.util.GregorianCalendar is for the modern

Gregorian calendar

18

The abstract Calendar class and its

GregorianCalendar subclass

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

The GregorianCalendar Class
 Java API for the GregorianCalendar class:

http://docs.oracle.com/javase/8/docs/api/java/util/GregorianCalendar.html

 new GregorianCalendar() constructs a default

GregorianCalendar with the current time

 new GregorianCalendar(year, month,

date) constructs a GregorianCalendar with the

specified year, month, and date

 The month parameter is 0-based, i.e., 0 is for January, 1

is for February, …, 11 is for December.

19

http://docs.oracle.com/javase/8/docs/api/java/util/GregorianCalendar.html

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

The abstract Calendar class and its

GregorianCalendar subclass

20

java.util.GregorianCalendar

+GregorianCalendar()

+GregorianCalendar(year: int,

month: int, dayOfMonth: int)

+GregorianCalendar(year: int,

month: int, dayOfMonth: int,

hour:int, minute: int, second: int)

Constructs a GregorianCalendar for the current time.

Constructs a GregorianCalendar for the specified year, month, and day of

month.

Constructs a GregorianCalendar for the specified year, month, day of
month, hour, minute, and second. The month parameter is 0-based, that

is, 0 is for January.

java.util.Calendar

#Calendar()

+get(field: int): int

+set(field: int, value: int): void

+set(year: int, month: int,

dayOfMonth: int): void

+getActualMaximum(field: int): int

+add(field: int, amount: int): void

+getTime(): java.util.Date

+setTime(date: java.util.Date): void

Constructs a default calendar.

Returns the value of the given calendar field.

Sets the given calendar to the specified value.

Sets the calendar with the specified year, month, and date. The month

parameter is 0-based, that is, 0 is for January.

Returns the maximum value that the specified calendar field could have.

Adds or subtracts the specified amount of time to the given calendar field.

Returns a Date object representing this calendar’s time value (million

second offset from the Unix epoch).

Sets this calendar’s time with the given Date object.

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

The get Method in the Calendar Class

21

Constant Description

The year of the calendar.

The month of the calendar with 0 for January.

The day of the calendar.

The hour of the calendar (12-hour notation).

The hour of the calendar (24-hour notation).

The minute of the calendar.

The second of the calendar.

The day number within the week with 1 for Sunday.

Same as DATE.

The day number in the year with 1 for the first

day of the year.

The week number within the month.

The week number within the year.

Indicator for AM or PM (0 for AM and 1 for PM).

YEAR

MONTH

DATE

HOUR

HOUR_OF_DAY

MINUTE

SECOND

DAY_OF_WEEK

DAY_OF_MONTH

DAY_OF_YEAR

WEEK_OF_MONTH

WEEK_OF_YEAR

AM_PM

 The get(int field) method defined in the Calendar class is useful to extract
the date and time information from a Calendar object.

The fields are defined as constants in Calendar, as shown in the following:

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

import java.util.*;

public class TestCalendar {

 public static void main(String[] args) {

 // Construct a Gregorian calendar for the current date and time

 Calendar calendar = new GregorianCalendar();
 System.out.println("Current time is " + new Date());

 System.out.println("YEAR:\t" + calendar.get(Calendar.YEAR));

 System.out.println("MONTH:\t" + calendar.get(Calendar.MONTH));

 System.out.println("DATE:\t" + calendar.get(Calendar.DATE));

 System.out.println("HOUR:\t" + calendar.get(Calendar.HOUR));

 System.out.println("HOUR_OF_DAY:\t" + calendar.get(Calendar.HOUR_OF_DAY));

 System.out.println("MINUTE:\t" + calendar.get(Calendar.MINUTE));

 System.out.println("SECOND:\t" + calendar.get(Calendar.SECOND));

 System.out.println("DAY_OF_WEEK:\t" + calendar.get(Calendar.DAY_OF_WEEK));

 System.out.println("DAY_OF_MONTH:\t" + calendar.get(Calendar.DAY_OF_MONTH));

 System.out.println("DAY_OF_YEAR: " + calendar.get(Calendar.DAY_OF_YEAR));

 System.out.println("WEEK_OF_MONTH: " + calendar.get(Calendar.WEEK_OF_MONTH));

 System.out.println("WEEK_OF_YEAR: " + calendar.get(Calendar.WEEK_OF_YEAR));

 System.out.println("AM_PM: " + calendar.get(Calendar.AM_PM));

 // Construct a calendar for January 1, 2020

 Calendar calendar1 = new GregorianCalendar(2020, 0, 1);

 System.out.println("January 1, 2020 is a " +

 dayNameOfWeek(calendar1.get(Calendar.DAY_OF_WEEK)));

 }

 public static String dayNameOfWeek(int dayOfWeek) {

 switch (dayOfWeek) {

 case 1: return "Sunday“; case 2: return "Monday“; case 3: return "Tuesday“;

 ... case 7: return "Saturday";

 default: return null;

 }}}

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Interfaces
An interface is a class-like construct that

contains only abstract methods and constants.

 Why is an interface useful?
 An interface is similar to an abstract class, but the

intent of an interface is to specify behavior for

objects.
 For example: specify that the objects are comparable,

edible, cloneable, …

Allows multiple inheritance: a class can implement

multiple interfaces.
23

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Defining Interfaces
 Declaration:
public interface InterfaceName {

 // constant declarations;

 // method signatures;

}

24

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Implementing Interfaces
 The Edible interface specifies whether an object is edible
public interface Edible {

 public abstract String howToEat();

}

 The class Chicken implements the Edible interface:

class Chicken extends Animal implements Edible {

 public String howToEat() {

 return "Chicken: Fry it";

 }

}

25

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

interface Edible {

 public abstract String howToEat(); /** Describe how to eat */

}

abstract class Animal { }

class Chicken extends Animal implements Edible {

 public String howToEat() {

 return "Chicken: Fry it";

 }

}

class Tiger extends Animal {

}/** Does not extend Edible */

abstract class Fruit implements Edible { }

class Apple extends Fruit {

 public String howToEat() {

 return "Apple: Make apple cider";

 }

}

class Orange extends Fruit {

 public String howToEat() {

 return "Orange: Make orange juice";

 }

}

public class TestEdible {

 public static void main(String[] args) {

 Object[] objects = {new Tiger(), new Chicken(), new Apple()};

 for (int i = 0; i < objects.length; i++)

 if (objects[i] instanceof Edible)

 System.out.println(((Edible)objects[i]).howToEat());

 }

}

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Omitting Modifiers in Interfaces

In an interface:
 All data fields are public static final

 All methods are public abstract

 These modifiers can be omitted:

A constant defined in an interface can be accessed using

InterfaceName.CONSTANT_NAME, for example: T1.K

27

 public interface T1 {
 public static final int K = 1;

 public abstract void p();

}

Equivalent

public interface T1 {

 int K = 1;

 void p();

}

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

 An interface is treated like a special class in Java:

 Each interface is compiled into a separate

bytecode file just like a regular class.

 Like an abstract class, you cannot create an

instance from an interface using the new operator

 Uses of interfaces are like for abstract classes:

 as a data type for a variable

 as the result of casting

28

Interfaces

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

The Comparable Interface
The Comparable interface is defined in the
java.lang package and it is used by
Arrays.sort

package java.lang;

public interface Comparable {

 int compareTo(Object o);

}

29

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

 Many classes in the Java library implement
Comparable (e.g., String and Date) to
define a natural order for the objects:

30

public class String extends Object

 implements Comparable {

 // class body omitted

}

public class Date extends Object

 implements Comparable {

 // class body omitted

}

new String() instanceof String true

new String() instanceof Comparable true

new java.util.Date() instanceof java.util.Date true

new java.util.Date() instanceof Comparable true

The Comparable Interface

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)
31

In UML, the interface and

the methods are italicized

dashed lines and triangles

are used to point to the

interface

Object

-

«interface»

java.lang.Comparable

+compareTo(o: Object): int

String

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Writing a generic max Method

The return value from the max method is of the Comparable type. So,

we need to cast it to String or Date explicitly.

32

 // Max.java: Find a maximum object

public class Max {

 /** Return the maximum of two objects */

 public static Object max

 (Object o1, Object o2) {

 if (((Comparable)o1).compareTo(o2) > 0)

 return o1;

 else

 return o2;

 }

}

(a)

// Max.java: Find a maximum object

public class Max {

 /** Return the maximum of two objects */

 public static Comparable max

 (Comparable o1, Comparable o2) {

 if (o1.compareTo(o2) > 0)

 return o1;

 else

 return o2;

 }

}

(b)

 String s1 = "abcdef";

String s2 = "abcdee";

String s3 = (String)Max.max(s1, s2);

Date d1 = new Date();

Date d2 = new Date();

Date d3 = (Date)Max.max(d1, d2);

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Defining Classes to Implement Comparable

 We cannot use the max method to find the larger of two instances

of Rectangle, because Rectangle does not implement Comparable

 We can define a new rectangle class ComparableRectangle that

implements Comparable: the instances of this new class are

comparable

33

Rectangle

-

GeometricObject

-

«interface»

java.lang.Comparable

+compareTo(o: Object): int

ComparableRectangle

-

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

public class ComparableRectangle extends Rectangle

 implements Comparable {

 /** Construct a ComparableRectangle with specified properties */

 public ComparableRectangle(double width, double height) {

 super(width, height);

 }

 /** Implement the compareTo method defined in Comparable */

 public int compareTo(Object o) {

 if (getArea() > ((ComparableRectangle)o).getArea())

 return 1;

 else if (getArea() < ((ComparableRectangle)o).getArea())

 return -1;

 else

 return 0;

 }

 public static void main(String[] args) {

 ComparableRectangle rectangle1 = new ComparableRectangle(4, 5);

 ComparableRectangle rectangle2 = new ComparableRectangle(3, 6);

 System.out.println(Max.max(rectangle1, rectangle2));

 }

}

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

 The static sort method for sorting an array of

Object in the java.util.Arrays class that uses

the Comparable interface:

java.util.Arrays.sort(intArray);

35

Sorting an Array of Objects

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

The Cloneable Interface

36

 Marker Interface: is an empty interface (does not contain

constants or methods), but it is used to denote that a class

possesses certain desirable properties to the compiler and the

JVM.

 package java.lang;

 public interface Cloneable {

 }

 A class that implements the Cloneable interface is marked

cloneable:

 its objects can be cloned using the clone() method defined in the

Object class, and we can override this method in our classes

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

 Calendar (in the Java library) implements Cloneable:

Calendar calendar = new GregorianCalendar(2022, 1, 1);

Calendar calendarCopy = (Calendar)(calendar.clone());

System.out.println("calendar == calendarCopy is "

 +(calendar == calendarCopy));

Displays:
 calendar == calendarCopy is false

because the references are different

System.out.println("calendar.equals(calendarCopy) is"

 + calendar.equals(calendarCopy));

 calendar.equals(calendarCopy) is true

because the calendarCopy is a copy of calendar
37

The Cloneable Interface

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

 If we try to create a clone of an object instance of a class

that does not implement the Cloneable interface, it

throws CloneNotSupportedException
The clone() method in the Object class creates a new

instance of the class of this object and initializes all its fields with

exactly the contents of the corresponding fields of this object, as if

by assignment (using a technique named reflection); the contents

of the reference data fields are not cloned.

The clone() method returns an Object that needs to be

casted

We can override the clone() method from the Object

class to create custom clones
38

Implementing the Cloneable Interface

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

public class House implements Cloneable {

 private int id;

 private double area;

 private java.util.Date whenBuilt;

 public House(int id, double area) {this.id = id;

 this.area = area;

 whenBuilt = new java.util.Date();}

 public House(int id, double area, java.util.Date whenBuilt) {

 this.id = id; this.area = area; this.whenBuilt = whenBuilt;}

 public double getId() { return id;}

 public double getArea() { return area;}

 public java.util.Date getWhenBuilt() { return whenBuilt;}

 /** Override the protected clone method defined in the Object

 class, and strengthen its accessibility */

 public Object clone() {

 // return new House(id,area,whenBuilt); // OR

 try {

 return super.clone();

 }catch (CloneNotSupportedException ex) {

 return null;

 }

 }

}

39

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Shallow vs. Deep Copy
House house1 = new House(1, 1750.50);

House house2 = (House)(house1.clone());

40

house1: House

id = 1

area = 1750.50

whenBuilt

1

Memory

whenBuilt: Date

 date object contents house2 = house1.clone()

1750.50

reference

house2: House

id = 1

area = 1750.50

whenBuilt

1

Memory

1750.50

reference

shallow copy: if the field is of reference

type, the object’s reference is copied

rather than its content

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

public class House implements Cloneable {

 ...

 public Object clone() { // deep copy

 try {

 House h = (House)(super.clone());

 h.whenBuilt = (Date)(whenBuilt.clone());

 return h;

 }catch (CloneNotSupportedException ex) {

 return null;

 }

 }

 ...

}

41

For deep copying, we can override the clone method with

custom object creation:

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Interfaces vs. Abstract Classes
 In an interface, the data fields must be constants; an abstract class
can have variable data fields
 Interfaces don't have constructors; all abstract classes have
constructors
 Each method in an interface has only a signature without
implementation (i.e., only abstract methods); an abstract class can
have concrete methods

42

Variables Constructors Methods

Interfaces All variables

must be public

static final

No constructors.

An interface cannot be instantiated using

the new operator.

All methods must be

public abstract

methods

Abstract

classes

No restrictions Constructors are invoked by subclasses

through constructor chaining.

An abstract class cannot be instantiated

using the new operator.

No restrictions.

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

 An interface can extend any number of other
interfaces
 There is no root for interfaces
A class can implement any number of interfaces

43

Object Class1

Interface1 Interface1_1

Interface1_2

Class2

Interface2_1

Interface2_2

Interfaces Inheritance

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Conflicting interfaces
 Errors detected by the compiler:

 If a class implements two interfaces with

conflicting information, like:

 two same constants with different values, or

 two methods with same signature but different

return type

44

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Whether to use a class or an interface?

 Strong is-a: a relationship that clearly describes a parent-

child relationship

For example: a student is a person

Should be modeled using class inheritance

 Weak is-a (or is-kind-of): indicates that an object possesses

a certain property

 For example: all strings are comparable, all dates are

comparable

Should be modeled using interfaces
 You can also use interfaces to circumvent single inheritance

restriction if multiple inheritance is desired

45

	Slide 1: Abstract Classes and Interfaces
	Slide 2: Contents
	Slide 3: Abstract Classes and Abstract Methods
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8: abstract methods in abstract classes
	Slide 9: subclasses of abstract classes
	Slide 10: subclasses of abstract classes
	Slide 11
	Slide 12
	Slide 13: abstract classes
	Slide 14: abstract classes
	Slide 15: abstract classes
	Slide 16: abstract classes
	Slide 17: abstract classes as types
	Slide 18: The abstract Calendar class and its GregorianCalendar subclass
	Slide 19: The GregorianCalendar Class
	Slide 20: The abstract Calendar class and its GregorianCalendar subclass
	Slide 21: The get Method in the Calendar Class
	Slide 22
	Slide 23: Interfaces
	Slide 24: Defining Interfaces
	Slide 25: Implementing Interfaces
	Slide 26
	Slide 27: Omitting Modifiers in Interfaces
	Slide 28: Interfaces
	Slide 29: The Comparable Interface
	Slide 30: The Comparable Interface
	Slide 31
	Slide 32: Writing a generic max Method
	Slide 33: Defining Classes to Implement Comparable
	Slide 34
	Slide 35: Sorting an Array of Objects
	Slide 36: The Cloneable Interface
	Slide 37: The Cloneable Interface
	Slide 38: Implementing the Cloneable Interface
	Slide 39
	Slide 40: Shallow vs. Deep Copy
	Slide 41
	Slide 42: Interfaces vs. Abstract Classes
	Slide 43: Interfaces Inheritance
	Slide 44: Conflicting interfaces
	Slide 45: Whether to use a class or an interface?

