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Abstract—This paper proposes a consolidation method for
scanned point clouds that are usually corrupted by nois-
es, outliers, and thickness. At the beginning, we construct
neighborhood of a point based on shared nearest neighbor
relationship. Then, the points with few number of neighbors
are regarded as outliers and removed. After that, we propose a
feature-aware projection operator to thin the thick point clouds
by considering spatial distances, normal diversifications, and
the squash directions of thick point clouds. Experiment results
of scanned point clouds show that our method can consolidate
the thick point clouds while preserving sharp features and
geometry details.
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I. INTRODUCTION

Scanned point clouds can be easily obtained and widely
used in the field of computer graphics and computer aided
design. Due to the limitations of scanners or surrounding
environments, scanned point clouds usually contain outliers
and noises. In point clouds processing, an important chal-
lenge is the thick point clouds, which may occur in the
misalignment of multiple scan fusion. When reconstructing
surfaces from these raw point clouds, rough, fragmental and
non-manifold parts may appear on constructed models. The
thicker the point clouds are, the more challenges we will
face. Therefore, it is important to thin the point clouds before
downstream geometry processing.
In the literature, a large number of methods have been

proposed to deal with raw point clouds [1], [2], [3], [4],
[5], [6], [7], [8], [9], [10], [11]. Alexa et al. [1] proposed a
moving least squares (MLS) based method, in which the raw
points are projected onto the fitting surfaces. This method
assumes the smoothness of underlying surface, hence it
could not deal with sharp features. In order to deal with
sharp features, more improved MLS methods have been
proposed, for example, Lipman et al. [3] proposed a data-
dependent moving least squares for surface reconstruction
and Fleishman et al. [7] developed a robust moving least
squares method based on robust statistics.
In [8], Lipman et al. proposed a locally optimal projection

operator (LOP) method, which is robust to noise and out-
liers. Huang et al. [9] further improved the LOP method
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Figure 1. Thick point clouds consolidation. (a) and (c) Surfaces recon-
structed directly from real scanned turtle toy model without and with our
consolidation method, respectively. (b) and (d) Close-up cross-section views
corresponding to (a) and (c). The side-by-side comparisons demonstrate the
effectiveness of our consolidation algorithm, which not only removes noises
while preserving features, but also successfully consolidates the thick point
clouds into thin sheet.

by introducing local density weight. Recently, Huang et
al. proposed another anisotropic LOP algorithm using the
normal projection distance as the weight parameter in [12].
Liu et al. [10] proposed an iterative method to consolidate
the scanned point clouds. For outdoor scenes, Wang et
al. [13] proposed a consolidation method of point clouds
by combining outliers filtering and noise smoothing. Most
of them assume that the acquired point clouds are densely
sampled and without thickness. If the scanned point clouds
contain thickness, the previous algorithms may fail.
To improve, in this paper, we develop a feature-preserving

projection operator to consolidate the scanned point clouds.
At first, some extreme outliers are removed by investigating
the connection strength between the current vertex with their
neighbors. Then, to reconstruct the unknown models and
preserve the sharp features from the raw scattered point
clouds, we propose an iterative scheme to thin the point
clouds. The main contributions of our work are:
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Figure 2. Illustration of shared nearest neighborhoods.

• Well-defined neighborhoods. The neighborhoods of
point clouds are well selected, which works well in
noisy scanned point clouds.

• Sharp and detail feature preserving. Our algorithm
can preserve the sharp features and geometry details
during the process of consolidation.

The rest of the paper is organized as follows. Section II
presents the scheme of neighborhood selection and proposes
consolidation algorithm. Experimental results are illustrated
in Section III. Finally, Section IV concludes the paper.

II. ALGORITHM
Given raw point clouds P = {pi = (xi, yi, zi)} ⊂ R3, i =

1, · · · , n, corrupted by noises, outliers, and thickness, we
focus on obtaining clean and thin point clouds with the
feature-preserving property. Our algorithm contains three
parts: neighborhood selection, outlier removal, and thick
point clouds thinning.

A. Neighborhood Selection and Outlier Removal
We first establish the neighborhood relationship for each

point based on the shared nearest neighbor (SNN) clustering
algorithm [14]. Then, the points with fewer neighbors are
treated as outliers and removed.
To find a reasonable neighborhood for a point, we first

measure the similarity of two points p and q by counting
the number of shared nearest neighbors between them. The
similarity of p and q is defined as:

S(p, q) = #(NN(p) ∩NN(q)), (1)

where NN(p) and NN(q) are the K-nearest neighbor sets
of p and q. The more shared neighbors they have, the more
confidence they locate in each other’s neighborhood.
The illustration of shared nearest neighborhood is shown

in Fig. 2, where the involved two points are marked in
red and green stars. Their ten shared nearest neighbors are
shown in blue with fourteen nearest neighbors used. Except
the shared nearest neighbors, their individual remaining
nearest neighbors are marked in the same color as the
involved points.

Figure 3. Neighborhood selection and outlier removal. Top: Close-by 2D
point clouds with noises and outliers. Bottom: Point clouds with outliers
removed and the neighborhoods of two red points are shown in green points.

After obtaining the similarities among points, the neigh-
borhoods of the point clouds are established in a front
propagation way. Specifically, for each point, a few number
of nearest neighbor points are inserted into the front list, if
they satisfy the following two conditions. First, the similarity
between the added point and the current front point should
be more than a given number, which depends on how many
K-nearest neighborhoods are used (the default value is 40%
of K). Second, the distance between them should be less
than a specific threshold, which is usually set to several
times of average distance within the entire data. The newly-
added vertices become new front points by replacing the
current front vertex. This propagation process is going on
until there are no qualified candidates that can be searched
or the maximum number of neighbors is reached.
Among the constructed neighborhoods, there are some

points capturing few neighbor vertices, which may be far
away from the main part of model or can not be confirmed
from their surrounding neighbors. These points are naturally
corresponding to outliers and should be removed together
with their captured neighbors. The outlier removal result
of the close-by 2D point clouds with noises and outliers
is shown in Fig. 3, in which most outliers are effectively
deleted. For remaining point clouds, repeat the above proce-
dure, the neighborhood structures can be finally established.
The pseudo-code of our neighborhood selection and outlier
removal is documented in Algorithm 1.
During neighborhood selection, potential neighbor ver-

tices are added in a probing way, only the vertex with the
strong connection to the current vertex is selected. This
scheme makes our method be able to obtain reasonable
neighborhoods in close-by regions, which reflects the intrin-
sic structures of underlying surfaces and provides faithfully
information for the subsequent processes.

B. Thick Point Clouds Consolidation
Till now, we have constructed the neighborhood structures

of the input point clouds, which will be consolidated by
the newly-devised method. The goal of our work is to

39



Algorithm 1 Neighborhood Selection and Outlier Removal
Input: data set P ∈ R3

Initialization:
1: NN :K-nearest neighborhoods of P
2: h: average distance among P

3: for each i ∈ P do
4: N{i} = []: the selected neighborhoods
5: TFT = []: temporary front set
6: FT ← NN{i}: the propagation front set
7: repeat
8: for each j ∈ FT do
9: for each k ∈ NN{j} do
10: Compute distance D(j, k)
11: Compute similarity S(j, k)
12: if D(j, k) ≤ λ ∗ h & S(j, k) ≥ ω ∗K then
13: TFT ← k

14: end if
15: end for
16: end for
17: N{i} ← TFT − FT

18: update FT ← TFT − FT

19: until Three times are reached
20: end for
21: Delete the points with the number of neighborhoods
smaller than K

Output: The neighborhood selection of each point N{i}

consolidate the raw thick point clouds, which means squash
the thick point clouds into thin sheets. To this end, with
the estimated normals by traditional principal component
analysis, feature-preserving projection operator for point
p ∈ P with neighborhoods NBp = {qi}, i = 1, · · · ,m
is defined as:

p̂ = p+ r · np,

r =
1∑

q∈NBp
wq

∑

q∈NBp

wq · (q − p) · np,

wq = wd · wnn · wnd,

(2)

where np is the normal of point p and r is the step-size of
displacement in normal direction. The weight wq involves
three geometric aspects, each of them is defined as:

wd = exp(−
‖q − p‖2

2α2
),

wnn = exp(−
(nq · np)

2

2β2
),

wnd = exp(−
‖q − p‖2 − ((q − p) · np)

2

2γ2
),

(3)

where wd is a spatial weight in Gaussian filter with stan-
dard deviation parameter α, which determines the influence
region inversely proportional to Euclidean distance. The
second weight wnn is a feature-preserving weight, with

parameter β that penalizes the weight of a point with
significantly different normal with np. The third term wnd

considers the special distribution of thick point clouds,
which indicates that, the smaller vertical distance a point
has towards the normal direction, the larger influence it
will have, even though they may have the same Euclidean
distance to the current point. This weight is controlled by
the parameter γ.
Different from traditional projection operators, our new

operator not only considers the spatial distance information
and the normal diversification, but also emphasizes the
importance of the squash directions of thick point clouds.
These properties enable us to consolidate the thick point
clouds into thin and clean data in a feature-preserving
manner, which can be seen from the comparisons of our
projection operator with bilateral denoising method [15] in
2D thick and noisy point clouds in Fig. 4. At the top of
Fig. 4, the different weight distributions of bilateral method
and our method are shown, in which our method assigns
more weight to the points closing to normal direction.
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Figure 4. Illustration of projection weights and thinning results. Top left
and right show the projection weight illustrations of bilateral method [15]
and our method for blue star points, respectively. The projected points are
shown in black stars. The middle and bottom rows show the thinning results
of bilateral method (left) and our method (right) for noise-free and noisy
thick point clouds, respectively.
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III. EXPERIMENTAL RESULTS
In this section, we apply our new consolidation method

to raw scanned point clouds to show the efficiency and
robustness of the proposed algorithm. To show the thinning
results, the consolidated point clouds are reconstructed by
the Ball Pivoting algorithm [16] and are converted into mesh
models.
Thick point clouds consolidation. We first show a

reconstructed turtle toy model from noisy, raw thick point
clouds in Fig. 1. From the zoomed region and cross section
of original reconstruction model in Fig. 1(b), we can see
that the thick point clouds lead to multi-layer surfaces with
noise. After consolidation using our method, the thin point
clouds are obtained and the reconstructed model is presented
in single sheet with noise removed (Fig. 1(d)).
In Fig. 5, we compare our method with Wang et al.’s

method [13] on a raw scanned door knob model in terms of
noise removal and thick point clouds thinning. Our proposed
method can successfully handle the thick point clouds and
heavy noises. Additionally, our method achieves better result
than Wang’s method, which can be observed from Fig. 5
together with the corresponding cross-sectional views.

Figure 5. Consolidation results of scanned door knob model. Top
left: Reconstructed surface of raw point clouds. Top middle and right:
Consolidation results of Wang’s method [13] and our method, respectively.
The middle and bottom figures are corresponding cross-sectional views of
top row.

In Fig. 6, the result of a scanned CAD model is used
to further illustrate the effectiveness of our consolidation
method in items of the property of sharp feature-preserving.
The proposed operator considers the spatial distance infor-
mation and the normal diversification, and in particular, it
emphasizes the importance of the squash directions of thick

(a) (b)

(c) (d)

(e) (f)

Figure 6. Results of our method being applied to scanned CAD model
Nasa. (a) The reconstructed result of raw point clouds. (b) Our consolidation
result. The cross sections corresponding to (a) and (b) are shown in (c-d)
and (e-f), respectively.

point clouds, which makes our algorithm successfully deal
with thick point clouds and preserve sharp features. The
properties of the algorithm become more evident when we
render cross-sections of two reconstruction surfaces (see
Fig. 6(c-f)).
Our method can also preserve geometry details. In the

same scheme, as shown in Fig. 7, the regular and explicit
texture details are successfully recovered from noisy scanned
golf ball model. Focusing on cross sections, we can observe
that the raw thick point clouds are correctly thinned.
More results of our consolidation method are shown in

Fig. 8 and Fig. 9, and they all demonstrate the attractive
behavior of our method in thick point clouds thinning, while
preserving sharp features and geometry details.
Parameters and Timing. In neighborhood construction,

K-nearest neighbors of the front vertices are added at each
time when they fall into specific distance threshold. The
process of propagation will be repeated several times. We
set a default value of K = 25 and repeat three times in our
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Figure 7. Consolidation results of scanned golf ball with regular texture
details. (a) is the reconstructed surface from raw point clouds. (b) is the
reconstruction surface after applying our method. The cross sections of
(a-b) are placed in the middle and the bottom of the figures.

experiments, which works well for most cases. The choice of
distance parameter depends on the sampling strategy of point
clouds. If the sampling is very sparse, the distance threshold
should be set larger, usually [4−7] times of average distance
among the whole data set will be utilized.
In the definition of projection operator, three parameters

α, β and γ are adopted to control the influence range of
each weight. Specifically, α controls the weight in terms of
the Euclidean distances between neighbors and the current
vertex. The smaller the distance is, the higher the value
will be assigned. β is used to control the weight in terms
of normal diversification, which relies on the sharpness of
features. It will be set to a smaller value, such as 60◦, if
a sharper feature is what we prefer. The third parameter γ
emphasizes the importance of points with smaller distances
orthogonal to the current normal, which makes our operator
easier to “shrink” the thick point clouds into thin sheets. The
parameters α and γ are related to the distance and are set to

Figure 8. The consolidation results of perfume bottle model. The left one
is the reconstruction result of original point clouds and the right one is the
reconstruction result after consolidation.

Figure 9. The consolidation results of hand model. The left picture is
the reconstruction result of original point clouds and the right one is the
reconstruction result after consolidation.

be the multiples of average distance of points in our work.
All results shown in our experiments are obtained af-

ter three iterations. The reconstruction parameters of Ball
Pivoting algorithm are set by default values, i.e., clustering
radius is 20% of ball radius and angle threshold is 90◦, while
leaving the parameter of pivoting ball radius to be adaptive
in different cases.
The proposed algorithm is implemented in MATLAB

without any code optimization on a PC with 2.50Hz Intel
Core CPU and 4.0GB RAM. All the timing statistics of
tested models with used parameters are documented in
Table I.

IV. CONCLUSION

In this paper, we have proposed a consolidation method
for raw scanned point clouds. Neighborhood construction
scheme is first developed in a front propagation way, then
the points with few neighbors are removed as outliers. Con-

42



Table I
PARAMETERS AND RUNNING TIMES OF OUR METHOD IN MINUTES. NCT: NEIGHBORHOOD CONSTRUCTION TIME IN ONE ITERATION. NET: NORMAL

ESTIMATION TIME IN ONE ITERATION. PT: PROJECTION TIME IN ONE ITERATION. TOTAL: TOTAL TIME AFTER THREE ITERATIONS.

Parameters Timing (m)Figures Points
α β γ NCT NET PT Total

Turtle toy (Fig.1) 735914 5 60 4 5.87 1.37 4.63 39.97
Door knob (Fig.5) 189153 6 60 4 1.53 0.34 1.18 10.41
Nasa (Fig.6) 444312 4 60 2 3.81 0.82 2.84 24.94
Golf ball (Fig.7) 526921 4 60 2 4.39 0.94 3.62 30.41
Perfume bottle (Fig.8) 415587 5 60 3 3.59 0.80 2.81 24.05
Hand (Fig.9) 654658 3 60 2 5.19 1.22 4.39 36.58

sidering spatial distance information, normal diversification,
and the squash directions of thick point clouds, we have
designed a new projection operator to consolidate the raw
scanned point clouds. We have tested our algorithm on real
scanned point clouds to demonstrate the effectiveness of our
method in thinning thick point clouds with the properties of
sharp feature and geometry detail preserving. In the future,
we plan to explore and add the hole-filling functionality into
our consolidation framework.
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